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Abstract

The goal of this work is to parallelize the multistep scheme for the numerical approximation of
the backward stochastic differential equations (BSDEs) in order to achieve both, a high accuracy
and a reduction of the computation time as well. In the multistep scheme the computations at
each grid point are independent and this fact motivates us to select massively parallel GPU
computing using CUDA. In our investigations we identify performance bottlenecks and apply
appropriate optimization techniques for reducing the computation time, using a uniform domain.
Finally, some examples with financial applications are provided to demonstrate the achieved ac-
celeration on GPUs.

Keywords backward stochastic differential equations, multistep scheme, GPU computing,
CUDA, option pricing

1 Introduction

In this work we parallelize the multistep scheme developed in [Teng et al., 2018] to approximate
numerically the solution of the following (decoupled) forward backward stochastic differential
equation (FBSDE): 

dXt = a (t,Xt) dt+ b (t,Xt) dWt, X0 = x0,

−dyt = f (t,Xt, yt, zt) dt− zt dWt,

yT = ξ = g (Xt) ,

(1)

where Xt, a ∈ Rn, b is a n× d matrix, Wt is a d-dimensional Brownian motion, f (t,Xt, yt, zt) :
[0, T ] × Rn × Rm × Rm×d → Rm is the driver function and ξ is the terminal condition. The
terminal condition yT depends on the final value of a forward stochastic differential equation
(SDE). For a = 0 and b = 1, namely Xt = Wt, one obtains a backward stochastic differential
equation (BSDE) of the form {

−dyt = f (t, yt, zt) dt− zt dWt,

yT = ξ = g (WT ) ,
(2)

where yt ∈ Rm and f (t, yt, zt) : [0, T ] × Rm × Rm×d → Rm. In the sequel of this work, we
investigate the acceleration of numerical scheme developed in [Teng et al., 2018] for solving (2).
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Note that the developed schemes can be applied also for solving (1), where the general Markovian
diffusion Xt can be approximated, e.g., by using the Euler-Scheme.

The existence and uniqueness of the solution of (2) are proven by Pardoux and
Peng [Pardoux and Peng, 1990]. Peng [Peng, 1991] obtained a direct relation between
FBSDEs and partial differential equations (PDEs). Based on this relationship, many nu-
merical methods are proposed, e.g., probabilistic methods in [Bender and Steiner, 2012,
Bouchard and Touzi, 2004, Gobet et al., 2005, Lemor et al., 2006, Zhao et al., 2006],
tree-based methods in [Crisan and Manolarakis, 2012, Teng, 2018] etc. El Karoui et
al. [El Karoui et al., 1997] showed that the solution of a linear BSDE is in fact the pric-
ing and hedging strategy of an option derivative. This is the first claim of the application of
BSDEs in finance.

In the field of financial mathematics, the approach with BSDEs has a couple of advantages com-
pared to the standard approach with FSDEs. Firstly, many market models can be presented in
terms of BSDEs (or FBSDEs), e.g., local volatility models [Labart and Lelong, 2011], stochastic
volatility models [Fahim et al., 2011], jump-diffusion models [Eyraud-Loisel, 2005], defaultable
options [Ankirchner et al., 2010] etc. Secondly, BSDEs can also be used in incomplete mar-
kets [El Karoui et al., 1997] to solve the maximization problem of difference between the value
of the super-replicating portfolio and the option value. Another advantage of using BSDEs is that
one does not need to switch to the so-called risk-neutral measure for pricing financial options in
complete markets. Therefore, BSDEs represent a more intuitive and more understandable way
for pricing problems.

In general, the solution of BSDEs cannot be established in a closed form. Therefore, a numerical
method is mandatory. There are two main classes of numerical methods for approximating the
solution of BSDEs. The first class is proposed based on the relation between the BSDE and
its related PDE. The other class contains approaches which are developed direchtly based on
the BSDE. The θ-discretization method has been most widely used, a second order convergence
rate could be achieved with Crank Nicolson type. For a higher convergence rate, the authors
in [Zhao et al., 2010] proposed the multistep scheme in which the integrands are approximated
by using Lagrange interpolating polynomials. For a better stability and the admission of more
time levels, this multistep scheme has been generalised in [Teng et al., 2018] with spline instead
of Lagrange interpolating polynomials. This kind of multistep schemes are computationally not
efficient, since the values of the integrands at multiple time levels need to be known. Fortunately,
computations in the multistep scheme are independent at each grid point. This fact motivates
us to use massively parallel GPU computing to make these high-order accurate method more
useful in practice.

Many acceleration strategies based on GPU computing have been developed for pricing problems,
however, a very little of them are BSDE-based approach. In [Dai et al., 2010] a linear BSDE is
solved on the GPU with the θ-scheme method. They analyzed the effects of the thread number
per block to increase the speedup. The parallel program with CUDA achieved high speedups
and showed that the GPU architecture is well suited for solving the BSDEs in parallel. Peng et
al. [Peng et al., 2011] developed acceleration strategies for option pricing with non-linear BSDEs
using a binomial lattice based method. To increase the speedup, they reduce the global memory
access frequency by avoiding the kernel invocation on each time step. Also, due to the load im-
balance produced by the binomial grid, they provided load-balanced strategies and showed that
the acceleration algorithms exhibit very high speedup over the sequential CPU implementation
and therefore suitable for real-time application. Peng et al. [Peng et al., 2014] considered solving
high dimensional BSDEs on GPUs with application in high dimensional American option pric-
ing. A Least Square Monte-Carlo (LSMC) method based numerical algorithm is studied, and
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summarised in four phases. Multiple factors which affect the performance (task allocation, data
store/access strategies and the thread synchronisation) are considered. Results showed much
better performance than the CPU version. Gobet et al. [Gobet et al., 2016] designed a new al-
gorithm for solving BSDEs based on LSMC. Due to stratification, the algorithm is very efficient
especially for large scale simulations. They showed big speedups even in high dimensions.

Next we introduce some preliminaries needed to understand the multistep scheme. Let
(Ω,F ,P, {Ft}0≤t≤T ) be a complete, filtered probability space. In this space a standard d-
dimensional Brownian motion Wt is defined, such that the filtration {Ft}0≤t≤T is the natural
filtration of Wt. We define ‖ · ‖ as the standard Euclidean norm in the Euclidean space Rm or
Rm×d and L2 = L2

F
(
0, T ;Rd

)
the set of all Ft-adapted and square integrable processes valued

in Rd. A pair of processes (yt, zt) : [0, T ]×Ω→ Rm ×Rm×d is the solution of BSDE (2) if it is
Ft-adapted, square integrable, and satisfies (2) in the sense of

yt = ξ +

∫ T

t
f (s, ys, zs) ds−

∫ T

t
zs dWs, t ∈ [0, T ) , (3)

where f (t, yt, zt) : [0, T ] × Rm × Rm×d → Rm is Ft-adapted and the third term on
the right-hand side is an Itô-type integral. This solution exist under regularity condi-
tions [Pardoux and Peng, 1990]. Let us consider the following:

yt = u (t,Wt) , zt = ∇u (t,Wt) ∀t ∈ [0, T ) , (4)

where ∇u denotes the derivative of u (t, x) with respect to the spatial variable x and u (t, x) is
the solution of the following (backward in time) parabolic PDE:

∂u

∂t
+

1

2

d∑
i=1

∂2u

∂x2
i

+ f (t, u,∇u) = 0, (5)

with the terminal condition u (T, x) = φ(x). Under regularity conditions, the PDE (5) possess
a unique solution u (t, x). Therefore, for ξ = φ (WT ), the pair (yt, zt) is the unique solution of
BSDE (3).

Now we introduce some notation which is used in the Sections that follow. Let F t,xs for t ≤ s ≤ T
be a σ-field generated by the Brownian motion {x+Wr−Wt, t ≤ r ≤ s} starting from the time-
space point (t, x). We define Et,xs

[
X
]

as the conditional expectation of the random variable X

under the filtration F t,xs , i.e. Et,xs
[
X
]

= E
[
X|F t,xs

]
.

In the next Section, we introduce the multistep scheme. In Section 3, we present our algorithmic
framework. Section 4 is devoted to strategies of parallel GPU computing using CUDA. In Sec-
tion 5, we illustrate our findings with some examples including financial applications. Finally,
Section 6 concludes this work.

2 The multistep scheme

In this Section we present the multistep scheme [Teng et al., 2018].

2.1 The stable semidiscrete scheme

Let N be a positive integer and ∆t = T/N the step size that partitions uniformly the time
interval [0, T ]: 0 = t0 < t1 < · · · < tN−1 < tN = T , where tn = t0 + n∆t, n = 0, 1, . . . , N . Let k
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and Ky be two positive integers such that 1 ≤ k ≤ Ky ≤ N . The BSDE (3) can be expressed as

ytn = ytn+k +

∫ tn+k

tn

f (s, ys, zs) ds−
∫ tn+k

tn

zs dWs. (6)

In order to approximate ytn based on the later information [tn, tn+k], we need to obtain the
adaptability. Therefore, we take the conditional expectation Extn [·] in (6) and obtain

ytn = Extn
[
ytn+k

]
+

∫ tn+k

tn

Extn
[
f (s, ys, zs)

]
ds. (7)

In order to approximate the integral in (7), Teng et al. [Teng et al., 2018] used the
cubic spline polynomial to approximate that integrand. Based on the support points(
tn+j , E

x
tn

[
f
(
tn+j , ytn+j , ztn+j

)])
, j = 0, · · · ,Ky, we have∫ tn+k

tn

Extn
[
f (s, ys, zs)

]
ds =

∫ tn+k

tn

S̃tn,xKy
(s) ds+Rny , (8)

where the cubic spline interpolant is given as

S̃tn,xKy
(s) =

Ky−1∑
j=0

s̃tn,x,jKy
(s) , (9)

where
s̃tn,x,jKy

(s) = ayj + byj (s− tn+j) + cyj (s− tn+j)
2 + dyj (s− tn+j)

3

with
s ∈ [tn+j , tn+j+1] , j = 0, · · · ,Ky − 1.

Obviously, the residual reads

Rny =

∫ tn+k

tn

(
Extn
[
f (s, ys, zs)

]
− S̃tn,xKy

(s)
)
ds.

We calculate ∫ tn+k

tn

S̃tn,xKy
(s) ds =

∫ tn+k

tn

Ky−1∑
j=0

s̃tn,x,jKy
(s) ds

=

Ky−1∑
j=0

∫ tn+k

tn

s̃tn,x,jKy
(s) ds

=

Ky−1∑
j=0

∫ tn+j+1

tn+j

s̃tn,x,jKy
(s) ds

=

Ky−1∑
j=0

[
ayj∆t+

byj∆t
2

2
+
cyj∆t

3

3
+
dyj∆t

4

4

]
.

(10)

and obtain the reference equation for y as

ytn = Extn
[
ytn+k

]
+

Ky−1∑
j=0

[
ayj∆t+

byj∆t
2

2
+
cyj∆t

3

3
+
dyj∆t

4

4

]
+Rny . (11)
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In order to obtain the reference equation for the z process, we follow the similar approach. Let
∆Ws = Ws−Wtn for s ≥ tn. Then ∆Ws is a standard Brownian motion with the zero mean and
the standard deviation

√
s− tn. Let l and Kz be two positive integers such that 1 ≤ l ≤ Kz ≤ N .

Using l instead of k in (6), multiplying both sides by ∆Wtn+l , taking the conditional expectation
Extn [·] and using the Itô isometry we obtain

0 = Extn
[
ytn+l∆Wtn+l

]
+

∫ tn+l

tn

Extn
[
f (s, ys, zs) ∆Ws

]
ds−

∫ tn+l

tn

Extn
[
zs
]
ds. (12)

Using again the cubic spline interpolation to approximate the two integrals in (12) and the
relation

Extn
[
ytn+l∆Wtn+l

]
= l∆tExtn

[
ztn+l

]
,

we obtain the reference equation for z process

0 = l∆tExtn
[
ztn+l

]
+

Kz−1∑
j=0

[
az1j ∆t+

bz1j ∆t2

2
+
cz1j ∆t3

3
+
dz1j ∆t4

4

]

−
Kz−1∑
j=0

[
az2j ∆t+

bz2j ∆t2

2
+
cz2j ∆t3

3
+
dz2j ∆t4

4

]
+Rnz1 +Rnz2 .

(13)

The results above can be straightforwardly generalized to the d-dimensional case as

ym̃tn = Extn
[
ym̃tn+k

]
+

Ky−1∑
j=0

[
ay,m̃j ∆t+

by,m̃j ∆t2

2
+
cy,m̃j ∆t3

3
+
dy,m̃j ∆t4

4

]
+Rn,m̃y ,

0 = l∆tExtn
[
zm̃,d̃tn+l

]
+

Kz−1∑
j=0

az1,m̃,d̃j ∆t+
bz1,m̃,d̃j ∆t2

2
+
cz1,m̃,d̃j ∆t3

3
+
dz1,m̃,d̃j ∆t4

4


−
Kz−1∑
j=0

az2,m̃,d̃j ∆t+
bz2,m̃,d̃j ∆t2

2
+
cz2,m̃,d̃j ∆t3

3
+
dz2,m̃,d̃j ∆t4

4

+Rn,m̃,d̃z1 +Rn,m̃,d̃z2 ,

(14)

where m̃ = 1, 2, · · · ,m and d̃ = 1, 2, · · · , d.

The unknown coefficients in (14) are found using cubic spline conditions. For instance, for the y
process (in 1-dimension), using support points

(
tn+j , E

x
tn

[
f
(
tn+j , ytn+j , ztn+j

)])
, j = 0, · · · ,Ky,

the conditions are
S̃tn,xKy

(tn+j) = Extn
[
f
(
tn+j , ytn+j , ztn+j

)]
, j = 0, · · · ,Ky

s̃tn,x,jKy
(tn+j) = s̃tn,x,j+1

Ky
(tn+j) , j = 0, · · · ,Ky − 2

s̃′ tn,x,jKy
(tn+j) = s̃′ tn,x,j+1

Ky
(tn+j) , j = 0, · · · ,Ky − 2

s̃′′ tn,x,jKy
(tn+j) = s̃′′ tn,x,j+1

Ky
(tn+j) , j = 0, · · · ,Ky − 2

(15)

For Ky = 3 and using not-a-knot cubic spline, the coefficients are calculated as follows. Consider
the notation

gtn+j = Extn
[
f
(
tn+j , ytn+j , ztn+j

)]
.

Then

• For s̃tn,x,0Ky
(s) , s ∈ [tn, tn+1]

5
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a0 = gtn ,

b0 = −
(
11gtn − 18gtn+1 + 9gtn+2 − 2gtn+3

)
/6∆t,

c0 =
(
2gtn − 5gtn+1 + 4gtn+2 − gtn+3

)
/2∆t2,

d0 = −
(
gtn − 3gtn+1 + 3gtn+2 − gtn+3

)
/6∆t3,

• For s̃tn,x,1Ky
(s) , s ∈ [tn+1, tn+2]

a1 = gtn+1 ,

b1 = −
(
2gtn + 3gtn+1 − 6gtn+2 + gtn+3

)
/6∆t,

c1 =
(
gtn − 2gtn+1 + gtn+2

)
/2∆t2,

d1 = −
(
gtn − 3gtn+1 + 3gtn+2 − gtn+3

)
/6∆t3,

• For s̃tn,x,2Ky
(s) , s ∈ [tn+2, tn+3]

a2 = gtn+2 ,

b2 =
(
gtn − 6gtn+1 + 3gtn+2 + 2gtn+3

)
/6∆t,

c2 =
(
gtn − 2gtn+1 + gtn+3

)
/2∆t2,

d2 = −
(
gtn − 3gtn+1 + 3gtn+2 − gtn+3

)
/6∆t3.

Reference equation for y process can therefore be written as

ytn = Extn
[
ytn+k

]
+

3∆t

8
gtn +

9∆t

8
gtn+1 +

9∆t

8
gtn+2 +

3∆t

8
gtn+3 +Rny ,

= Extn
[
ytn+k

]
+ ∆tKy

Ky∑
j=0

γkKy ,jE
x
tn

[
f
(
tn+j , ytn+j , ztn+j

)]
+Rny ,

where

γ
Ky
Ky ,0

= γ
Ky
Ky ,3

=
1

8
, γ

Ky
Ky ,1

= γ
Ky
Ky ,2

=
3

8
.

In a similar way, the corresponding coefficients can be found for other choices of Ky. In
[Teng et al., 2018], the authors have shown that the semidiscrete scheme are stable when

k = 1, · · · ,Ky, with Ky = 1, 2, 3, · · · , N,
l = 1, with Kz = 1, 2, 3, · · · , N.

This is to say that the algorithm allows for arbitrary multiple time levels Ky and Kz. In Table 1
and 2, we present the coefficients up to 6 time levels.

We denote (yn, zn) as the approximation to (ytn , ztn), given random variables
(
yN−i, zN−i

)
,

i = 0, 1, . . . ,K − 1 with K = max{Ky,Kz}, (yn, zn) can be found for n = N − K, . . . , 0 such
that

yn = Extn
[
yn+Ky

]
+Ky∆t

Ky∑
j=0

γ
Ky
Ky ,j

Extn
[
f
(
tn+j , y

n+j , zn+j
)]

+Rny ,

0 = Extn
[
zn+1

]
+

Kz∑
j=1

γ1
Kz ,j E

x
tn

[
f
(
tn+j , y

n+j , zn+j
)

∆W>tn+j
]
−

Kz∑
j=0

γ1
Kz ,j E

x
tn

[
zn+j

]
+
Rnz
∆t

,

(16)
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Table 1: The coefficients
{
γ
Ky
Ky ,j

}Ky
j=0

until Ky = 6.

Ky γ
Ky
Ky ,j

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

1 1
2

1
2

2 1
6

2
3

1
6

3 1
8

3
8

3
8

1
8

4 1
12

1
3

1
6

1
3

1
12

5 41
600

19
75

107
600

107
600

19
75

41
600

6 19
336

3
14

15
112

4
21

15
112

3
14

19
336

Table 2: The coefficients
{
γ1
Kz ,j

}Kz
j=0

until Kz = 6.

Kz γ1
Kz ,j

j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

1 1
2

1
2

2 5
12

2
3 − 1

12

3 3
8

19
24 − 5

24
1
24

4 35
96

5
6 −13

48
1
12 − 1

96

5 131
360

151
180 −103

360
37
360 − 1

45
1

360

6 163
448

47
56 −129

448
3
28 − 37

1344
1

168 − 1
1344

where yn =
(
yn,1, yn,2, · · · , yn,m

)T
, zn =

(
zn,m̃,d̃

)
m×d

and ∆W>tn+j =(
W 1
tn+j ,W

2
tn+j , · · · ,W

d
tn+j

)>
−
(
W 1
tn ,W

2
tn , · · · ,W

d
tn

)>
. One can show that the local errors

in (16) are given by
|Rny | = O

(
∆t5

)
, |Rnz | = O

(
∆t5

)
(17)

provided that f and g are smooth enough. In (15) we need to divide by ∆t to find the value
of z process. Therefore, in order to balance time truncation errors, one might set Kz = Ky +
1. In the following, we only present the results of error analysis, for their proofs we refer to
[Teng et al., 2018] and [Zhao et al., 2010].

Lemma 2.1. The local estimates of the local truncation errors in (16) satisfy

|Rny | = C∆tmin{Ky+2,5} |Rnz | = C∆tmin{Kz+2,5},

where C > 0 is a constant depending on T , f , g and the derivatives of f and g.

Theorem 2.1. Suppose that the initial values satisfy{
maxN−Ky+1≤n≤N E

[
|ytn − yn|

]
= O

(
∆tKy+1

)
, for Ky = 1, 2, 3

maxN−Ky+1≤n≤N E
[
|ytn − yn|

]
= O

(
∆t4

)
, for Ky > 3

for sufficiently small time step ∆t it can be shown that

sup
0≤n≤N

E
[
|ytn − yn|

]
≤ C∆tmin{Ky+1,4}, (18)

where C > 0 is a constant depending on T , f , g and the derivatives of f and g.
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Theorem 2.2. Suppose that the initial values satisfy{
maxN−Kz+1≤n≤N E

[
|ztn − zn|

]
= O

(
∆tKz

)
, for Kz = 1, 2, 3

maxN−Kz+1≤n≤N E
[
|ztn − zn|

]
= O

(
∆t3

)
, for Kz > 3

and the condition on the initial values in Theorem 2.1 is fulfilled. For sufficiently small time
step ∆t it can be shown that

sup
0≤n≤N

E
[
|ztn − zn|

]
≤ C∆tmin{Ky+1,Kz ,3}, (19)

where C > 0 is a constant depending on T , f , g and the derivatives of f and g.

Remark 2.3. If f does not depend on process z, the maximum order of convergence for y process
is 4 and 3 for z process; If f depends on process z, the maximum order of convergence for y and
z processes is 3

2.2 The fully discrete scheme

Let ∆x denote the step size in the partition of the uniform d-dimensional real axis, i.e.

Rd̃ =
{
xd̃i |xd̃i ∈ R, i ∈ Z, xd̃i < xd̃i+1,∆x = xd̃i+1 − xd̃i , lim

i→+∞
xd̃i = +∞, lim

i→−∞
xd̃i = −∞

}
,

where
Rd̃ = R1 ×R2 × · · · × Rd and d̃ = 1, 2, · · · , d.

Let xi =
(
x1
i1
, x2

i2
, · · · , xdid

)
for i = (i1, i2, · · · , id) ∈ Zd.

We denote (yni , z
n
i ) as the approximation to (ytn,xi , ztn,xi), given the random variables

(yN−li , zN−li ), l = 0, 1, . . . ,K − 1 with K = max{Ky,Kz}, (yni , z
n
i ) can be found for n =

N −K, . . . , 0 such that

yni = Êxitn
[
ŷn+Ky

]
+Ky∆t

Ky∑
j=1

b
Ky
Ky ,j

Êxitn
[
f(tn+j , ŷ

n+j , ẑn+j)
]

+Ky∆tb
Ky
Ky ,0

f(tn, y
n
i , z

n
i ),

0 = Êxitn
[
ẑn+1

]
+

Kz∑
j=1

b1Kz ,j Ê
xi
tn

[
f(tn+j , ŷ

n+j , ẑn+j) ∆W>tn+j
]

−
Kz∑
j=1

b1Kz ,jÊ
xi
tn

[
ẑn+j

]
− b1Kz ,0z

n
i .

(20)

where Êxitn
[
·
]

is used to denote the approximation of the conditional expectation. The functions
in the conditional expectations involve the d-dimensional probability density function of the
Brownian Motions, one can choose e.g., the Gauss-Hermite quadrature rule to achieve a high
accuracy only with a few points. The conditional expectation can be approximated as

Êxitn
[
ŷn+Ky

]
=

1

π
d
2

L∑
Λ=1

ωΛŷ
n+Ky

(
xi +

√
2k∆t aΛ

)
, (21)

where ŷn+Ky are interpolating values at the space points
(
xi +

√
2k∆t aΛ

)
based on yn+Ky

values, (ωΛ, aΛ) for Λ = (λ1, λ2, · · · , λd) are the weights and roots of the Hermite polynomial
of degree L ([Abramowitz and Stegun, 1972]), ωΛ =

∏d
d̃=1

ωλd̃ , aΛ = (aλ1 , aλ2 , · · · , aλd) and∑L
Λ=1 =

∑L,··· ,L
λ1=1,··· ,λd=1. In the same way, one can express the other conditional expectations in

(20).
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3 The algorithmic framework

In this Section we present the alogithmic framework of the proposed numerical method.

3.1 The Algorithm

According to (20), we will consider the following three steps.

1. Construct the time-space discrete domain.
We divide the time period [0, T ] into N time steps using ∆t = T/N and get N + 1 time
layers and the space domain Rd as explained in Subsection 2.2 using step size ∆x. We will
use the truncated domains [−8, 8] or [−16, 16]. Furthermore, in order to balance the errors
in time and space directions, we adjust ∆x and ∆t such that they satisfy the equality
(∆x)r = (∆t)q+1, where q = min {Ky + 1,Kz} and r denotes the global error from the
interpolation method used to generate the non-grid points when calculating the conditional
expectations.

2. Calculate K initial solutions with K = max{Ky,Kz}.
Since only the terminal value is given, one needs to generate the other K − 1 values. This
can be done by running a 1-step scheme for [tN−K+1, tN−1] with a smaller ∆t such that
the K − 1 produced initial values will have neglectable error.

3. Calculate the numerical solution (y0
0, z

0
0) backward using equation (20).

Note that the calculation for the y process is done implicitly by Picard iteration.

3.2 Preliminary considerations

For our numerical experiments we give the following remarks:

• When generating the non-grid points for the calculation of conditional expectations, some
of them will be outside of the truncated domain. For these points, we take the values on
the boundaries.

• Due to uniformity of the grid, one does not need to consider 2K (K for y and K for z)
interpolations for each new calculation, but only 2. Suppose that we are at time layer tn−K .
To calculate y and z values on this time layer, one needs the calculation of conditional
expectations for K time layers. The cubic spline interpolation is used to find the non-
grid values for 1-dimensional cases and bicubic interpolation for 2-dimensional cases. For

instance, the coefficients for the y process are Ay ∈ RK×(4d×Md), all the coefficients are
stored. When we are at time layer tn−K−1, only the spline interpolation corresponding to
the previous calculated values is considered. Then, the columns of matrix Ay are shifted +1
to the right in order to delete the last column and enter the current calculated coefficients
in the first column. The new Ay is used for the current step. The same procedure is followed
until t0. This reduces the amount of work for the algorithm.

• There is a very important benefit from the uniformity of the grid. When we need to find
the position of the non-grid points, a naive search algorithm is to loop over the grid points.
In the worst case, an O

(
Md
)

work is needed. Fortunately, this can be done in O (d), i.e.,

without for-loop. Recall that each new point is generated as Xλd̃
= xid̃ +

√
2∆tk aλd̃ .

9
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This means that taking int

(
Xλ

d̃
−xmin
∆x

)
for xid̃ ∈ [xmin, xmax] and M − int

(
Xλ

d̃
−xmin
∆x

)
for xid̃ ∈ [xmax, xmin] gives the left boundary of the grid interval that Xλd̃

belongs to.
This reduces substantially the total computation time, as it will be demonstrated in the
numerical experiments.

3.3 The Parallel implementation

In this Section we present the naive parallelization of the multistep scheme. Nevertheless, we
have kept into attention the optimal CUDA execution model, i.e., creating arrays such that the
access will be aligned and coalesced, reducing the redundant access to global memory, using
registers when needed etc.

The first and second steps of the algorithm are implemented in the host. The third step is fully
implemented in the device. Recall from (20) that the following steps are needed to calculate the
approximated values on each time layer backward:

• Generation of non-grid points XΛ = xi +
√

2∆tk aΛ.
In the uniform domain, the non-grid points need to be generated only once. To do this, a
kernel is created where each thread generates Ld points for each space direction.

• Calculation of the values ŷ and ẑ at the non-grid points.
This is the most time consuming part of the algorithm. For the 1-dimensional cases, we
have considered the cubic spline interpolation. Since (20) involves the solution of two linear
systems, the BiCGSTAB iterative method is used since the matrix is tridiagonal. To apply
the method, we consider the cuBLAS and cuSPARSE libraries. For the inner product,
second norm and addition of vectors, we use the cuBLAS library. For the matrix vector
multiplication, we use the cuSPARSE library with the compressed sparse row format,
due to the structure of the system matrix. Moreover, we created a kernel to calculate the
spline coefficients based on the solved systems. Finally, a kernel to apply the last point in
Subsection 3.2 is created to find the values at non-grid points. Note that each thread is
assigned to find m+m×d values (m for y and m×d for z). For the 2-dimensional examples,
we have considered the bicubic interpolation. We need to calculate 16 coefficients for each
point. Based on the bicubic interpolation idea, we need the first and mixed derivatives.
These are approximated using finite difference schemes of the fourth order of accuracy
(central, forward and backward). Therefore, a kernel is created where each thread calculates
these values. Moreover, to find the 16 coefficients, a matrix vector multiplication needs to
be applied for each point. Therefore, each thread performs a matrix-vector multiplication
using another kernel. Finally, a kernel to apply the last point in Subsection 3.2 is created
to find the values at non-grid points, where each thread calculates m+m× d values.

• Calculation of the conditional expectations.
For the first conditional expectations in the right hand side of (20), we creat one ker-
nel, where each thread calculates one value by using (21). Furthermore, we merged the
calculation of three conditional expectation in one kernel, namely

Êxitn
[
ẑn+j

]
, Êxitn

[
f(tn+j , ŷ

n+j , ẑn+j)
]
, Êxitn

[
f(tn+j , ŷ

n+j , ẑn+j) ∆Wtn+j

]
,

for j = 1, 2, . . . ,K. This reduces the accessing of data multiple times from the global
memory. Note that one thread calculates three values.

• Calculation of the z values.
The second equation in (20) is used and each thread calculates m× d values.

10
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• Calculation of the y values.
The first equation in (20) is used and each thread calculates m values, using the Picard
iterative process.

4 GPU computing and CUDA

In this Section, we discuss about GPU computing using CUDA. We start with CUDA program-
ming and execution model and present an iterative process to optimize CUDA application.

4.1 CUDA programming and execution model

CUDA (Compute Unified Device Architecture) provides a framework for developing parallel
general purpose applications on a GPU. At its core, there are three key abstractions: a hierar-
chy of thread groups, a hierarchy of memory and multiple thread level communication. These
abstractions provide granular and coarse parallelism. Therefore, the application domain can be
divided into sub-domains based on the data independence. Threads are organised into blocks
of threads (threads within the block can communicate), grid of blocks and are executed in the
SIMD fashion (a group of 32 threads called warps). Since the execution is based on warps (and
scheduled from the warp schedulers; each GPU has a number of warp schedulers), the dimension
of thread blocks gives different performances.

In a GPU, the largest and slowest memory is the global memory, which allows us to transfer
data between the host (CPU) and the device (GPU) and is accessible for all threads. The shared
memory is exclusive to thread blocks. The access is significantly faster than that of the global
memory, and using this memory is profitable for optimisation tuning. In order to have an optimal
application, each kernel created should be checked for the possible performance limiters. After
the performance inhibitor is found, different techniques are considered to overcome the problem.
Note that there can be a trade-off between different techniques. In the next Subsection, we
present an iterative process to optimize the performance of the application in the GPU.

4.2 Iterative optimization process

The first version of a CUDA program is mostly not the optimal one. Therefore, we should
access and identify the bottlenecks. There are three main limiting factors, memory bound, com-
pute bound and latency bound. Therefore, we need to focus on efficient use of GPU memory
bandwidth, compute resources and hiding of instruction and memory latency. To identify these
factors, one can use CUDA profiling tools (NVIDIA Command-line Profiler or nvprof and Vi-
sual NVIDIA profiler or nvvp). Profile-driven optimization is an iterative process to optimize
the program based on profile information. We have used the following iterative approach:

1. Apply profiler to the application to gather information

2. Identify application hotspots

3. Determine performance inhibitors

4. Optimize the code

5. Repeat the previous steps until desired performance is achieved

11
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The nvprof profiling tool enables the collection of a timeline of CUDA-related activities on both
CPU and GPU, including kernel execution, memory transfers, memory set, CUDA API calls and
events or metrics for CUDA kernels. Profiling options are provided through command-line. It is
used for the first and second step of profile optimization process. The nvvp is a graphical tool
with two main features, a timeline to display CPU and GPU activity and automatic perfor-
mance analysis to help in identifying optimization opportunities. It provides a guided analysis,
and guides one step-by-step through analysis in the entire application. In this mode, it helps
on understanding of the likely performance limiters and optimization opportunities, including
CUDA application analysis, performance-critical kernels, compute, bandwidth or latency bound
and compute resources. It is used for the third profile optimization process.

After that the performance inhibitor is found, we consider different techniques to overcome
the problem (step 4). The techniques usually are related with exposing sufficient parallelizm,
optimizing memory access and optimizing instruction execution. There are two ways to increase
parallelism: keeping more concurrent warps active within an Streaming Multiprocessor (SM) and
assigning more independent work to each thread or warp. To keep more concurrent warps, we
change the grid configuration (e.g. by decreasing the block dimension, one can have more blocks
per SM etc.). To assign more independent work, we use unrolling techniques (an operation is
split into multiple operations). Note that an increase of parallelism can be limited by compute
resources such as shared memory and registers. A 100% occupancy can’t be reached in such case.
Therefore, a trade of must be found. The goal of memory access optimization is to maximize
memory bandwidth utilization, with the focus on memory access patterns (maximize the use of
bytes that travel on the bus) and sufficient concurrent memory accesses (hide memory latency).
The best access pattern to global memory is aligned and coalesced access. There are several ways
to optimize instruction execution, including hiding latency by keeping sufficient active warps or
assigning more independent work to a thread and avoiding divergent execution paths within a
warp. For the first two, we can use the same techniques as in exposing sufficient parallelism. For
diverges branches, CUDA has compiler optimization features that replaces branch instructions
(which cause actual control flow to diverge) with predicated instructions. However, for a long
code path, the warp divergence will happen. We should use the branches as less as possible and
recall the SIMT execution type used by GPU.

In the next Section, we present some numerical examples to show the high effectiveness and
accuracy of the numerical scheme using GPU computing.

5 Numerical results

The first example is a linear BSDE with the driver function f that does not depending on
the process z. The second one is a non-linear example. Furthermore, we consider the Black
Scholes BSDE as an application of BSDEs in finance. Finally, we test our algorithm with a
2-dimensional example. We implement the parallel algorithm using CUDA C programming.
The parallel computing times are compared with the serial ones on a CPU. Furthermore, the
speedups are calculated. The CPU is Intel(R) Core(TM) i5-4670 3.40Ghz with 4 cores. The
GPU is a NVIDIA GeForce 1070 Ti with a total 8GB GDDR5 memory.

Example 5.1. Consider the linear BSDE1{
−dyt =

(
−y3

t + 5
2y

2
t − 3

2yt
)
dt− zt dWt,

yT = exp(WT+T )
exp(WT+T )+1 .

(22)

1Taken from [Zhao et al., 2010].
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The analytic solution is yt = exp(Wt+t)
exp(Wt+t)+1 ,

zt = exp(Wt+t)(
exp(Wt+t)+1

)2 . (23)

The exact solution with T = 1 is (y0, z0) =
(

1
2 ,

1
4

)
. In Table 3, we show the importance of

working in a uniform domain. Note that the computation time is in seconds.

Table 3: Preliminary results for N = 256,Ky = Kz = 3.

M tnon−optimalCPU toptimalCPU speedup

8192 2041.89 11.02 185.31

In Table 4, we present the naive results using 256 threads per block with K = Ky = Kz, t0 = 0,
T = 1, x ∈ [−16, 16], L = 32 and p2 = 30. For an easier understanding, the same results are
plotted and presented in Figure 1. It can be easily observed the increase of accuracy when

Table 4: Naive results for Example 5.1.

K N M |y0,0 − y0
0| |z0,0 − z0

0 | tCPU tGPU speedup

1 128 364 9.36E-07 2.78E-05 0.14 0.91 0.15

1 256 512 3.89E-07 1.40E-05 0.37 1.73 0.21

1 512 726 1.74E-07 7.04E-06 1.06 3.57 0.30

1 1024 1024 8.22E-08 3.53E-06 2.91 6.96 0.42

2 128 1218 8.01E-08 8.61E-06 0.64 1.05 0.61

2 256 2048 2.03E-08 4.00E-06 2.06 1.88 1.10

2 512 3446 5.02E-09 1.92E-06 7.18 3.21 2.24

2 1024 5794 1.25E-09 9.41E-07 23.93 5.83 4.10

3 128 4096 1.44E-11 2.77E-08 2.71 1.04 2.61

3 256 8192 1.70E-12 3.50E-09 11.02 1.82 6.06

3 512 16384 1.87E-13 4.41E-10 44.86 3.68 12.19

3 1024 32768 2.05E-14 5.53E-11 180.30 10.08 17.89

4 128 4096 1.06E-11 1.69E-08 3.28 1.05 3.13

4 256 8192 1.20E-12 2.13E-09 13.57 1.84 7.36

4 512 16384 2.57E-13 2.68E-10 55.16 3.84 14.35

4 1024 32768 1.29E-14 3.34E-11 223.28 10.68 20.91

5 128 4096 1.46E-12 1.90E-08 3.86 1.06 3.63

5 256 8192 1.12E-12 2.40E-09 16.23 1.88 8.65

5 512 16384 3.46E-14 3.02E-10 65.80 3.97 16.57

5 1024 32768 9.77E-15 3.78E-11 267.79 11.33 23.64

6 128 4096 6.94E-12 1.84E-08 4.53 1.10 4.11

6 256 8192 7.71E-13 2.32E-09 18.97 1.93 9.84

6 512 16384 1.07E-13 2.92E-10 77.64 4.23 18.35

6 1024 32768 1.03E-14 3.65E-11 311.87 11.97 26.06

considering a higher-step scheme. Since we have more time layers to consider, more work can be
assigned to the GPU and therefore the speedup of the application is increased. That is why the

2Number of Picard iterations.
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(a) Plot of y error as a function of time layers
N for K = 1, · · · , 6.

(b) Plot of z error as a function of time layers
N for K = 1, · · · , 6.

(c) Plot of speedup as a function of time layers
N for K = 1, · · · , 6.

Figure 1: Plots of naive results for Example 5.1.

highest speedup (26×) is for a 6-step scheme. Also the highest accuracy is of O
(
10−15

)
for the

y process, since it has 4-th order of convergence.

Example 5.2. Consider the non-linear BSDE3{
−dyt = 1

2

(
exp

(
t2
)
− 4tyt − 3 exp

(
t2 − yt exp

(
−t2
)))

dt− zt dWt,

yT = ln (sin (WT ) + 3) exp
(
T 2
)
.

(24)

The analytic solution is {
yt = ln (sin (Wt) + 3) exp

(
t2
)
,

zt = exp
(
t2
) cos(Wt)

sin(Wt)+3 .
(25)

The exact solution with T = 1 is (y0, z0) =
(
ln (3) , 1

3

)
. The naive results using 256 threads per

block with K = Ky = Kz, t0 = 0, T = 1, x ∈ [−16, 16], L = 32 and p = 30 are presented in
Table 5 and plotted in Figure 2. We can observe that the accuracy for this example is smaller
than the previous one. This is due to the convergence order of maximum 3, since the driver
function depends on the z process. Furthermore, we get higher speedup compared with previous

3Taken from [Teng et al., 2018].
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Table 5: Naive results for Example 5.2.

K N M |y0,0 − y0
0| |z0,0 − z0

0 | tCPU tGPU speedup

1 128 364 7.85E-04 3.52E-03 0.32 1.17 0.27

1 256 512 3.77E-04 1.76E-03 0.88 2.13 0.41

1 512 726 1.85E-04 8.78E-04 2.52 4.04 0.62

1 1024 1024 9.15E-05 4.39E-04 6.98 7.80 0.89

2 128 1218 1.85E-04 8.37E-04 1.52 1.24 1.23

2 256 2048 9.13E-05 4.29E-04 5.13 2.51 2.04

2 512 3446 4.54E-05 2.17E-04 17.47 5.11 3.42

2 1024 5794 2.26E-05 1.09E-04 58.93 10.65 5.53

3 128 4096 1.92E-07 8.34E-07 6.61 1.53 4.31

3 256 8192 2.41E-08 1.06E-07 26.81 2.97 9.03

3 512 16384 3.02E-09 1.33E-08 108.92 6.62 16.46

3 1024 32768 3.77E-10 1.67E-09 435.23 18.35 23.71

4 128 4096 1.10E-07 4.86E-07 8.06 1.53 5.28

4 256 8192 1.42E-08 6.28E-08 32.82 3.02 10.87

4 512 16384 1.80E-09 7.99E-09 133.26 6.47 20.61

4 1024 32768 2.27E-10 1.01E-09 538.13 19.33 27.84

5 128 4096 1.20E-07 5.40E-07 9.48 1.54 6.14

5 256 8192 1.58E-08 7.04E-08 38.68 2.97 13.05

5 512 16384 2.02E-09 8.99E-09 156.63 6.67 23.48

5 1024 32768 2.55E-10 1.14E-09 635.01 19.55 32.48

6 128 4096 1.11E-07 5.08E-07 10.91 1.54 7.07

6 256 8192 1.49E-08 6.71E-08 44.77 3.09 14.48

6 512 16384 1.93E-09 8.63E-09 182.74 7.15 25.57

6 1024 32768 2.45E-10 1.09E-09 735.15 20.97 35.05

example due to the more complicated driver function (i.e. more data are accessed, more special
functional unit is used etc.). The naive speedup is 35×.

Furthermore, we optimized the kernels created for the this Example. We used the iterative
optimization process described in Subsection 4.2 for the case with N = 1024 and Ky = Ky = 3.

In the first iteration, we gathered the application information using nvprof . The results are
presented in Table 6a. The application hotspot is nrm2 kernel kernel, which calculates the
second norm in the BiCGSTAB algorithm. This is already optimized. Therefore, to overcome
this bottleneck, we used the dot kernel dot kernel. The computation time is reduced from 8.04
s to 0.86 s. The new speedup after the first iteration is 57×.

In the second iteration, the new bottleneck for the application is the kernel that calculates the
non-grid values for process y and z (sp inter non grid d no for) after each time layer backward.
The performance of the kernel is limited by the latency of arithmetic and memory operations.
Therefore, we considered loop interchanging and loop unrolling techniques. This reduced the
computation time of the corresponding kernel and other kernels related with it, as shown in
Table 6b. We reduced the computation time from 2.48 s to 1.16 s for sp inter non grid d no for.
By default, we have reduced the computation time from 2.28 s to 1.46 s for calc f and c exp
(the kernel in the third point of Subsection 3.3) because we needed to change the way how
the non-grid points are stored and accessed and also reduction for calc c exp d (calculates the
conditional expectation) from 0.22 s to 0.04 s. The new speedup is 69×. It can be observed from
Table 6c that again the application bottleneck is the same kernel. Therefore, it is not worth
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Table 6: Results of iterative optimization process for Example 5.2.

(a) Performance of the main naive kernels.

Time(%) Time(s) Kernel name

48.35 8.04 nrm2 kernel

14.94 2.48 sp inter non grid d no for

13.70 2.28 calc f and c exp d

6.17 1.03 csrMv kernel

3.60 0.60 calc y

3.53 0.89 dot kernel

1.98 0.33 reduce 1Block kernel

1.56 0.26 axpby kernel val

1.34 0.22 calc c exp d

(b) Performance after first iteration of optimization process.

Time(%) Time(s) Kernel name

27.88 2.49 sp inter non grid d no for

25.53 2.28 calc f and c exp d

11.35 1.01 csrMv kernel

9.64 0.86 dot kernel

6.74 0.60 calc y

5.22 0.47 reduce 1Block kernel

2.65 0.24 axpby kernel val

2.50 0.22 calc c exp d

1.76 0.16 step 3

(c) Performance after second iteration of optimization process.

Time(%) Time(s) Kernel name

22.23 1.46 calc f and c exp d

17.67 1.16 sp inter non grid d no for

15.58 1.02 csrMv kernel

12.86 0.84 dot kernel

9.05 0.60 calc y

7.21 0.47 reduce 1Block kernel

3.41 0.22 axpby kernel val

2.38 0.16 step 3

2.12 0.14 copy d
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(a) Plot of y error as a function of time layers
N for K = 1, · · · , 6.

(b) Plot of z error as a function of time layers
N for K = 1, · · · , 6.

(c) Plot of speedup as a function of time layers
N for K = 1, · · · , 6.

Figure 2: Plots of naive results for Example 5.2.

optimizing the application furthermore. Finally, we decreased the block dimension from 256
threads to 128 in order to increase parallelism. The final speedup is 70×.

In the following we consider an option pricing example, the Black-Scholes model. Consider a
security market that contains one bond with price pt and one stock with price St. Therefore,
their dynamics are described by: {

dpt = rtpt dt, t ≥ 0,

p0 = p,
(26)

{
dSt = µtStdt+ σtSt dWt, t ≥ 0,

S0 = x,
(27)

where rt denotes the interest rate of the bond, p is its current value, µt is the expected return on
the stock St, σt is the volatility of the stock, x is its current value and Wt denotes the Brownian
motion.

Suppose that an agent sells the option at price yt and then invests it in the market. Denote his
wealth on each time by yt. Assume that at each time the agent invests a portion of his wealth
in an amount given by πt into the stock, and the rest (yt−πt) into the bond. Now the agent has
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a portfolio based on the stock and the bond. Considering a stock that pays a dividend δ (t, St),
the dynamics of the wealth process yt are described by

dyt =
πt
St
dSt +

yt − πt
pt

dpt + πtδ (t, St) dt

=
πt
St

(µtSt dt+ σtSt dWt) +
yt − πt
pt

(rtpt dt) + πtδ (t, St) dt

= (rtyt + πt (µt − rt + δ (t, St))) dt+ πtσt dWt.

(28)

Let zt = πtσt, then

− dyt = −
(
rtyt + (µt − rt + δ (t, St))

zt
σt

)
dt+ zt dWt. (29)

For a call option, one needs to solve a FBSDE, where the forward part is given from the SDE
modelling of the stock price dynamics.

Example 5.3. Consider the Black-Scholes FBSDE4
dSt = µtStdt+ σtSt dWt, S0 = x, t ∈ [0, T ]

−dyt = −
(
rtyt + (µt − rt + δ (t, St))

zt
σt

)
dt+ zt dWt, t ∈ [0, T )

yT = (ST −K)+ .

(30)

For constant parameters (i.e. rt = r, µt = µ, σt = σ, δt = δ), the analytic solution is
yt = V (t, St) = St exp (−δ (T − t))N (d1)−K exp (−r (T − t))N (d2) ,

zt = St
∂V
∂S σ = St exp (−δ (T − t))N (d1)σ,

d1/2 =
ln
(
St
K

)
+
(
r±σ

2

2

)
(T−t)

σ
√
T−t ,

(31)

where N (·) is the cumulative standard normal distribution function. In this example, we consider
T = 0.33, K = S0 = 100, r = 0.03, µ = 0.05, δ = 0.04, σ = 0.2, with the solution (y0, z0)

.
=

(4.3671, 10.0950).

Note that the terminal condition has a non-smooth problem for the z process. Therefore, for
discrete points near the strike price (also called at the money region), the initial value for the z
process will cause large errors on the next time layers. To overcome this non-smoothness problem,
we considered smoothing the initial conditions, cf. the approach of Kreiss [Kreiss et al., 1970].
For the forward part of (31), we have the analytic solution

St = S0 exp
((
µ− σ2

2

)
t+ σWt

)
. (32)

Discretizing (32), the exponential term will lead to a non-uniform grid. Therefore, instead of
working in the stock price domain, we work in the log stock price domain. If we denote Xt = lnSt,
then the analytic solution of Xt reads

Xt = X0 +
(
µ− σ2

2

)
t+ σWt. (33)

The backward part is the same as in (30). In Table 7 we show the importance of using the log
stock price.
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Table 7: Preliminary results for N = 256,Ky = Kz = 3 for Black-Scholes Example.

M tnon−optimalCPU toptimalCPU speedup

24826 18531.23 47.54 389.80

Table 8: Naive results for Black-Scholes Example.

K N M |y0,0 − y0
0| |z0,0 − z0

0 | tCPU tGPU speedup

1 32 316 2.55E-04 1.11E-03 0.04 0.60 0.07

1 64 446 1.24E-04 5.70E-04 0.12 1.03 0.11

1 128 632 6.21E-05 2.89E-04 0.33 1.79 0.18

1 256 892 3.12E-05 1.45E-04 0.93 3.38 0.28

2 32 990 1.34E-05 3.12E-04 0.18 0.61 0.29

2 64 1664 6.88E-06 1.59E-04 0.64 1.04 0.61

2 128 2798 3.38E-06 8.04E-05 2.16 1.92 1.13

2 256 4704 1.69E-06 4.04E-05 7.34 3.73 1.97

3 32 3104 6.45E-09 3.98E-08 0.70 0.63 1.11

3 64 6208 6.88E-10 5.35E-09 2.93 1.14 2.58

3 128 12414 9.72E-11 6.85E-10 11.81 2.39 4.93

3 256 24826 1.15E-11 8.50E-11 47.54 5.79 8.21

4 32 3104 6.86E-09 2.73E-08 0.85 0.64 1.32

4 64 6208 4.78E-10 3.81E-09 3.47 1.15 3.00

4 128 12414 7.55E-11 4.71E-10 14.26 2.45 5.82

4 256 24826 6.36E-12 5.93E-11 57.54 6.07 9.48

5 32 3104 2.55E-09 2.85E-08 0.94 0.64 1.48

5 64 6208 4.73E-10 4.05E-09 4.04 1.14 3.56

5 128 12414 4.40E-11 5.04E-10 16.30 2.39 6.83

5 256 24826 6.22E-12 6.41E-11 67.33 6.22 10.83

6 32 3104 3.77E-09 2.71E-08 1.06 0.65 1.64

6 64 6208 3.56E-10 3.90E-09 4.50 1.18 3.80

6 128 12414 3.82E-11 4.89E-10 18.69 2.54 7.35

6 256 24826 6.16E-12 6.24E-11 77.53 6.47 11.99

The naive results using 256 threads per block withK = Ky = Kz, t0 = 0, T = 0.33, x ∈ [−16, 16],
L = 32 and p = 30 are presented in Table 8 and plotted in Figure 3. The highest accuracy is
achieved when considering a 6-step scheme, and having also the highest speedup of 12×.

We optimized the kernels created for the Black-Scholes BSDE for N = 256 and Ky = Kz = 6.
The optimization iteration process is the same as in Example 5.2. The final speedup is 31×.
Note that this speedup is for 256 time layers. In Example 5.2, we optimized for 1024 time layers.
If we consider the same time layers for Black-Scholes Example, we get strange results (errors
start to reduce tremendously), due to the non-smooth problem of z process.

Example 5.4. Consider the 2-dimensional BSDE5{
−dyt = (yt − ztA) dt− zt dWt,

yT = sin (MWT + T ) ,
(34)

4Taken from [Zhao et al., 2010].
5Taken from [Teng et al., 2018].
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(a) Plot of y error as a function of time layers
N for K = 1, · · · , 6.

(b) Plot of z error as a function of time layers
N for K = 1, · · · , 6.

(c) Plot of speedup as a function of time layers
N for K = 1, · · · , 6.

Figure 3: Plots of naive results for Example 5.3.

where Wt =
(
W 1
t ,W

2
t

)>
, zt =

(
z1
t , z

2
t

)
, A =

(
1
2 ,

1
2

)>
and M = (1, 1).

The analytic solution is {
yt = sin (MWt + t) ,

yT = (cos (MWt + t) , cos (MWt + t)
(35)

The exact solution with T = 1 is
(
y0,
(
z1

0 , z
2
0

))
= (0, (1, 1)). The naive results using 256 threads

per block with K = Ky = Kz, t0 = 0, T = 1, x ∈ [−8, 8], L = 8 and p = 30 are presented in
Table 9 and plotted in Figure 4. The highest speedup is 21×, which requires a 5 GB of memory.
Therefore, we did not consider more time layers as the maximum amount of memory for the
GPU is 8 GB and with N = 64, we could not get the results for K ≥ 3. We optimized the case
where N = 32 and Ky = Kz = 6.

In the first iteration, we gathered the application information using nvprof . The results are
presented in Table 10a. The application hotspot is sp inter non grid kernel, which calculates
the non-grid values for process y and z. The performance of the kernel is limited by the mem-
ory operations. Accessing and storing of data is not optimal. Therefore, we used loop inter-
changing to overcome this problem. We reduced the computation time from 15.28 s to 10.05
s for sp inter non grid kernel. By default, we reduced the computation time for the kernels
calc f and c exp and calc c exp from 4.05 s to 0.46 s and 0.16 s to 0.02 s respectively. The new
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Table 9: Naive results for Example 5.4.

K N M |y0,0 − y0
0| |z0,0 − z0

0 | tCPU tGPU speedup Used GPU Memory (GB)

1 8 46 1.32E-02 1.95E-03 0.18 0.01 21.95 0.20

1 16 64 6.46E-03 4.64E-03 0.68 0.02 32.21 0.21

1 32 92 3.18E-03 3.24E-03 2.82 0.11 25.20 0.22

2 8 78 5.90E-04 8.49E-03 0.82 0.03 23.66 0.23

2 16 128 8.31E-04 3.46E-03 4.73 0.22 21.16 0.30

2 32 216 5.84E-04 1.44E-03 27.85 1.42 19.58 0.48

3 8 3128 3.94E-04 1.43E-03 2.89 0.13 21.70 0.35

3 16 3256 6.75E-05 2.08E-04 27.78 1.33 20.92 0.80

3 32 512 9.72E-06 2.79E-05 252.17 11.52 21.88 2.61

4 8 128 1.90E-04 8.09E-04 3.17 0.15 21.53 0.40

4 16 256 3.78E-05 1.24E-04 33.79 1.64 20.63 1.01

4 32 512 5.69E-06 1.67E-05 321.05 14.87 21.60 3.41

5 8 128 1.39E-04 7.49E-04 3.21 0.15 21.71 0.45

5 16 256 3.65E-05 1.30E-04 39.07 1.90 20.56 1.20

5 32 512 6.00E-06 1.83E-05 381.17 17.93 21.26 4.20

6 8 128 8.13E-05 5.97E-04 2.91 0.13 21.77 0.50

6 16 256 3.07E-05 1.18E-04 43.04 2.08 20.68 1.39

6 32 512 5.49E-06 1.73E-05 441.70 20.67 21.37 4.99

Table 10: Results of iterative optimization process for Example 5.4.

(a) Performance of the main naive
kernels.

Time(%) Time(s) Kernel name

73.95 15.28 sp inter non grid

19.61 4.05 calc f and c exp

3.65 0.75 swap coeff

1.09 0.22 find coeff

0.79 0.16 calc c exp

(b) Performance after first iteration
of optimization process.

Time(%) Time(s) Kernel name

86.68 10.05 sp inter non grid

6.50 0.75 swap coeff

3.95 0.46 calc f and c exp

1.93 0.22 find coeff

0.40 0.05 calc y

(c) Performance after second itera-
tion of optimization process.

Time(%) Time(s) Kernel name

87.62 5.56 sp inter non grid

6.96 0.44 calc f and c exp

2.04 0.13 find coeff

2.02 0.13 swap coeff

0.34 0.02 calc y

speedup after first iteration is 38×.

In the second iteration, we checked the new bootleneck for the application and resulted again
the same kernel. However, we can’t optimize this kernel furthermore, so we considered the next
kernel, swap coeff . This kernel swaps the coefficients in order to reduce the unnecessary in-
terpolations (recall second point in Subsection 3.2). The performance of the kernel is limited
by the latency of arithmetic and memory operations. Therefore, we considered again loop in-
terchanging. This reduced the computation time of the corresponding kernel and other kernels
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(a) Plot of y error as a function of time layers
N for K = 1, · · · , 6.

(b) Plot of z error as a function of time layers
N for K = 1, · · · , 6.

(c) Plot of speedup as a function of time layers
N for K = 1, · · · , 6.

Figure 4: Plots of naive results for Example 5.3.

related with it, as shown in Table 10b. We reduced the computation time from 0.75 s to 0.13 s
for swap coeff kernel. By default, we reduced the computation time from 10.05 s to 5.56 s for
sp inter non grid because even here the loading of bicubic interpolation coefficients is changed
due to loop interchanging and therefore the memory access is optimized and also for find coeff
(a kernel that find the bicubic coefficients by applying a matrix vector multiplication) from
0.22 s to 0.13 s. The new speedup is 63×. It can be observed from Table 10c that again the
application bottleneck is the same kernel. Therefore, it is not worth optimizing the application
furthermore. Finally, we increased the block dimension from 256 threads to 1024 in order to
increase parallelism. The final speedup is 70×.

6 Conclusions and outlook

In this work we parallelized the multistep method developed in [Teng et al., 2018] for the nu-
merical approximation of BSDEs on GPU. Firstly, we presented an optimal operation to find
the location of the interpolated values. This was essential for the reduction of the computational
time. Our numerical results have shown that a high accuracy can be achieved with less computa-
tion times. For a further acceleration, we have investigated how to optimize the application after
finding the performance bottlenecks and applying optimization techniques. The proposed GPU
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parallel algorithm make the multistep schemes in [Teng et al., 2018] and [Zhao et al., 2010] be
really more useful in practice.

References

[Abramowitz and Stegun, 1972] Abramowitz, M. and Stegun, I. A. (1972). Handbook of math-
ematical functions dover publications inc. New York.

[Ankirchner et al., 2010] Ankirchner, S., Blanchet-Scalliet, C., and Eyraud-Loisel, A. (2010).
Credit risk premia and quadratic bsdes with a single jump. International Journal of Theoret-
ical and Applied Finance, 13(07):1103–1129.

[Bender and Steiner, 2012] Bender, C. and Steiner, J. (2012). Least-squares monte carlo for
backward sdes. In Numerical methods in finance, pages 257–289. Springer.

[Bouchard and Touzi, 2004] Bouchard, B. and Touzi, N. (2004). Discrete-time approximation
and monte-carlo simulation of backward stochastic differential equations. Stochastic Processes
and their applications, 111(2):175–206.

[Crisan and Manolarakis, 2012] Crisan, D. and Manolarakis, K. (2012). Solving backward
stochastic differential equations using the cubature method: application to nonlinear pric-
ing. SIAM Journal on Financial Mathematics, 3(1):534–571.

[Dai et al., 2010] Dai, B., Peng, Y., and Gong, B. (2010). Parallel option pricing with bsde
method on gpu. In 2010 Ninth International Conference on Grid and Cloud Computing,
pages 191–195. IEEE.

[El Karoui et al., 1997] El Karoui, N., Peng, S., and Quenez, M. C. (1997). Backward stochastic
differential equations in finance. Mathematical finance, 7(1):1–71.

[Eyraud-Loisel, 2005] Eyraud-Loisel, A. (2005). Backward stochastic differential equations with
enlarged filtration: Option hedging of an insider trader in a financial market with jumps.
Stochastic processes and their Applications, 115(11):1745–1763.

[Fahim et al., 2011] Fahim, A., Touzi, N., Warin, X., et al. (2011). A probabilistic numerical
method for fully nonlinear parabolic pdes. The Annals of Applied Probability, 21(4):1322–1364.

[Gobet et al., 2005] Gobet, E., Lemor, J.-P., Warin, X., et al. (2005). A regression-based monte
carlo method to solve backward stochastic differential equations. The Annals of Applied
Probability, 15(3):2172–2202.
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