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Abstract

We present a systematic account of recent developments of the relativistic Lattice Boltzmann

method (RLBM) for dissipative hydrodynamics. We describe in full detail a unified, compact

and dimension-independent procedure to design relativistic LB schemes capable of bridging the

gap between the ultra-relativistic regime, kBT ≫ mc2, and the non-relativistic one, kBT ≪ mc2.

We further develop a systematic derivation of the transport coefficients as a function of the kinetic

relaxation time in d = 1, 2, 3 spatial dimensions. The latter step allows to establish a quantitative

bridge between the parameters of the kinetic model and the macroscopic transport coefficients.

This leads to accurate calibrations of simulation parameters and is also relevant at the theoretical

level, as it provides neat numerical evidence of the correctness of the Chapman-Enskog procedure.

We present an extended set of validation tests, in which simulation results based on the RLBMs

are compared with existing analytic or semi-analytic results in the mildly-relativistic (kBT ∼ mc2)

regime for the case of shock propagations in quark-gluon plasmas and laminar electronic flows in

ultra-clean graphene samples. It is hoped and expected that the material collected in this paper

may allow the interested readers to reproduce the present results and generate new applications of

the RLBM scheme.
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1. Introduction

Relativistic hydrodynamics and kinetic theory are comparatively mature disciplines, whose

foundations have been laid down more than half a century ago, with the seminal works of Catta-

neo, Lichnerowitz, Landau-Lifshitz, Eckart, Mueller, Israel and Stewart, to name but a few major

pioneers [1–7].

Relativistic hydrodynamics deals with the collective motion of material bodies which move

close to the speed of light, hence they have been traditionally applied mostly to large-scale prob-

lems in space-physics, astrophysics and cosmology [8, 9].

In the last ten-fifteen years, however, relativistic hydrodynamics and kinetic theory have wit-

nessed a tremendous outburst of activity outside their traditional context of astrophysics and cos-

mology, particularly at the fascinating interface between high-energy physics, gravitation and con-

densed matter, (for a very enlightening review, see the recent book by Romatschke&Romatschke

[10]).

In particular, experimental data from the Relativistic Heavy-Ion Collider (RHIC) and the Large

Hadron Collider (LHC), have significantly boosted the interest for the study of viscous relativis-

tic fluid dynamics, both at the level of theoretical formulations and also for the development of

efficient numerical simulation methods, capable of capturing the collective behaviour observed

in Quark Gluon Plasma (QGP) experiments (see [11] for a recent review), down to the ”smallest

droplet ever made in the lab”, namely a fireball of QGP just three to five protons in size [12].

Relativistic hydrodynamics has also found numerous applications in condensed matter physics,

particularly for the study of strongly correlated electronic fluids in exotic (mostly 2-d) materials,

such as graphene sheets and Weyl semi-metals (see [13] for a recent review). Last but not least,

gravitational wave observations from LIGO/VIRGO have added to the picture by providing mea-

surements of black-hole non-hydrodynamic modes, as well as neutron star mergers, will likely

play a key role in calibrating future relativistic viscous fluid dynamics simulations of compact

stars. Hence, we appear to experience a truly golden-age of relativistic hydrodynamics!

From the theoretical side, a major boost has been provided by the famous AdS/CFT duality,

which formulates a constructive equivalence between gravitational phenomena in d+1 dimensions

and an associated field theory, living on the corresponding d dimensional boundary [14].

More specifically, gravitational analogues of fluids have been discovered, which permit to for-

mulate strongly interacting d-dimensional fluid problems as weakly interacting (d+1)-dimensional

gravitational ones, and viceversa, whence the name of holographic fluid dynamics. Besides exper-

imental excitement for genuinely new, extreme and exotic states of matter, this state of affairs has

also raised very fundamental theoretical challenges.

On the one side, holographic fluids stand as the graveyard of kinetic theory, since they interact

strongly to the point of invalidating the very cornerstone of kinetic theory, namely the notion of

quasiparticles as weakly interacting collective degrees of freedom. Particles interact so strongly

that they are instantaneously frozen to local equilibrium, thereby bypassing any kinetic stage.

On the other side, different studies, especially quark-gluon plasmas experiments with small

systems, have highlighted the unanticipated ability of hydrodynamics to describe extreme nuclear

matter under strong gradients, hence far from local equilibrium, which we refer to as to the beyond-

hydro (BH)regimes [15].
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Both findings call for a conceptual extension of the notion of hydrodynamics, to be placed in

the more general framework of an effective field theory of slow degrees of freedom. This implies

a corresponding paradigm shift towards an effective kinetic theory, to be –designed– top-down

from the effective fields equations, rather than being –derived– bottom-up from an underlying

microscopic theory of quantum relativistic fields.

By fine-graining the macro-equations instead of coarse-graining the microscopic ones, one

can indeed enrich the hydrodynamic formulation with the desired BH features on demand, i.e

tailored to the specific problem at hand, without being trapped by obscure and often intractable

microscopic details.

Among others, a major bonus of the kinetic approach is that dissipation comes with built-in

causality, since, by construction, kinetic theory treats space and time on the same footing, i.e. both

first order. This stands in stark contrast with a straightforward extrapolation from non-relativistic

fluid dynamics, in which, to leading order, dissipation is represented by second order derivatives,

which imply infinite speed of propagation, hence breaking causality. The problem was of course

spotted since the early days of relativistic kinetic theory, and mended by replacing static consti-

tutive relations with first-order (hyperbolic) dynamic relaxation equations for the momentum-flux

and heat tensors, the Maxwell-Cattaneo formulation [1], possibly the most popular version being

the one due to Israel-Stewart [6, 7].

Nevertheless, such formulations remain empirical in nature, hence they leave some ambiguity

as to the actual relation between the relaxation time scales and the actual value of the transport

coefficients.

On the other hand, as we shall detail in this Review, kinetic theory is amenable to highly

efficient lattice formulations which allow to simulate complex relativistic flows, thereby providing

a numerical touchstone for the various analytical/asymptotic theories to compare with.

At this point, it is worth noting that the lattice kinetic program has been in action for nearly

three decades in the context of classical (non-relativistic) fluids, and with a rather spectacular

success across many scales of motion, from macroscopic turbulence, all the way down to micro

and nanofluids of biological interest [16, 17], the name of the game being Lattice Boltzmann (LB).

LB provides a computationally efficient instance of effective field theory, whereby the effective

degrees of freedom are selected by taking full advantage of the smoothness and symmetries of

momentum space.

Lattice kinetic theory has indeed been extended to the relativistic case through a series of

papers, starting with Mendoza et al. [18] and subsequently refined and extended in the last decade.

Yet, this is an unfinished program, and in this review, after discussing the historical develop-

ments of relativistic lattice Boltzmann (RLB), we shall outline future directions to go in order to

accomplish the task of turning RLB into an operational tool to advance knowledge in relativistic

hydrodynamics, the way that LB has been doing in the non-relativistic framework.

This work is structured as follows: after this Introduction, Sec. 2 introduces at a more technical

level the state-of-the-art and outlines the major results obtained in the last two decades. Sections 3

and 4 briefly review non-dissipative and dissipative relativistic hydrodynamics, with a close look

at the link between meso-scale parameters and transport coefficients; Sec. 5 describes in details

the construction of our relativistic RLBMs, at the theoretical and numerical level. This is followed

by Sec. 6, presenting more practical details on the development of RLBM codes. We then proceed
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with two sections discussing numerical results: Sec. 7 presents numerical evidence in favour of the

Chapman-Enskog approach, while 8 discusses several validation exercises in several application

areas and kinematic regimes. This is followed by concluding remarks and by several Appendices,

with detailed mathematical derivations and results. The bulkiest mathematical results are made

available as supplemental material.

2. Background

Following a standard approach, relativistic hydrodynamics can be formulated as a gradient

expansion of relativistic kinetic theory, whose zeroth-order corresponds to ideal hydrodynamics.

The formulation involving relativistic inviscid fluids is well established and widely used in astro-

physics, but is not adequate to explain the quantitative behaviour of e.g. experimental observables

in the QGP evolution for which, due to the ultra-high density conditions, dissipative effects need

to be taken into account. First-order dissipative theory, known as relativistic Navier-Stokes (RNS)

equations, are inconsistent with relativistic invariance, because second order derivatives in space

and first order in time imply superluminal propagation, hence non-causal and unstable behaviour.

These problems have long been recognised, and several attempts to cure the issues of the RNS

formulation have been proposed to this day. Historically, the hyperbolic formulation proposed by

Israel and Stewart (IS) [6, 7] has been the first and most widely used formalism able to restore

causal dissipation, and has served as the reference frame for several decades. However, recent

work has highlighted both theoretical shortcomings [19] of the IS formulation, as well as poor

agreement with numerical solutions of the Boltzmann equation [20–22]. As a result, in the recent

years intense work has been directed to the definition of complete and self-consistent relativistic

fluid-dynamic equations [19, 23–34]; the debate is still very much open, no unique model having

emerged to date.

In this context, the kinetic approach offers several advantages for the study of dissipative hy-

drodynamics in relativistic regimes. One of its key assets is that the emergence of viscous effects

does not break relativistic invariance and causality, because space and time are treated on the

same footing, i.e. both via first order derivatives (hyperbolic formulation). This overcomes many

conceptual issues associated with the consistent formulation of relativistic transport phenomena.

The second key aspect is that non-linear advection in configuration space is replaced by linear

streaming in phase space, an operation that can be implemented error-free in the lattice, with ma-

jor benefits for the numerical treatment of low-viscous regime, such as the ones characterizing

strongly-interacting fluids.

Relativistic Lattice Boltzmann schemes (usually referred to as Relativistic Lattice Boltzmann

Methods (RLBMs) ) enter the game as a conceptual path to the construction of specific instances

of kinetic models and as a computer-efficient numerical approach to the problem, meeting the

obvious need of developing efficient and accurate numerical relativistic hydrodynamic solvers.

These numerical tools are a clear must, as analytical methods suffer major limitations in describing

complex phenomena which arise from strong nonlinearities and/or non-ideal geometries of direct

relevance to experiments.

RLBMs have been developed in many variants starting from the beginning of the present

decade and have emerged as a promising tool for the study of dissipative hydrodynamics in rela-
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Figure 1: Sketch of the history of the universe as a function of time and temperature. As the universe evolves in time

away from the big-bang, typical values of ζ for the proton change from about 10−19 at the Planck time to 1012 at the

present day. Besides, a sequence of thermodynamic transitions takes place, starting from the electroweak transition

(∼ 10−9 s), followed by the QCD transition (∼ 10−6 s) and by the e+e− annihilation (∼ 102 s) [35].

tivistic regimes. In this approach, the time evolution of the system is described by the one-particle

distribution function, and macroscopic quantities are obtained as moments of this function.

The first model was developed by Mendoza et al. [18, 36] as an extension of the standard

LB equation. The model is derived basing on Grad’s moment-matching technique and uses two

different distribution functions, one for the particle number and one for energy and momentum.

Romatschke et al. [37] developed a scheme for an ultra-relativistic gas based on the expansion

on orthogonal polynomials of the Maxwell-Jüttner distribution, following a procedure similar to

the one used for non-relativistic LBM. This model is not compatible with a Cartesian lattice, thus

requiring interpolation to implement the streaming phase, but has the advantage of supporting the

description of systems in general space-time coordinates. Romatschke [38] has also shown that it

is possible to extend the method to support non-ideal equations of state.

Li et al. [39] have extended the work of Mendoza et al. by using a multi relaxation-time

collision operator. The model uses standard Cartesian lattices, and it is found that by independently

tuning shear and bulk viscosity it is possible to cure numerical errors and discontinuities present

in the original model. However, the model recovers only the first two moments of the distribution

function, and does not allow accurate simulations of flows at large values of β = u/c, where u is

the fluid speed and c the speed of light.

Mohseni et al. [40] have shown that it is possible to avoid multi-time relaxation schemes, still

using a D3Q19 lattice and properly tuning the bulk viscosity for ultra-relativistic flows, so as to

recover only the conservation of the momentum-energy tensor. This is a reasonable approximation

in the ultra-relativistic regime, where the first order moment plays a minor role, but leaves open
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the problem of recovering higher order moments. A further step was taken in [41], with a rela-

tivistic lattice Boltzmann method (RLBM) able to recover higher order moments on a Cartesian

lattice. This model provides an efficient tool for simulations in the ultra-relativistic regime in the

Minkowski space-time.

All these developments use pseudo-particles of zero proper mass m. The extension of the

model to account for massive particles was presented in [42], with the derivation of a unified

scheme, allowing to conceptually bridge the gap between the ultra-relativistic regime (β ≃ 1), all

the way down to the non-relativistic one (β→ 0).

Another significant algorithmic development was presented in [43], where the authors describe

a systematic procedure to define quadrature rules at high orders, giving the possibility to go well

beyond hydrodynamics and to handle flows from a strongly interacting near-inviscid regime, all

the way to the ballistic regime. The model is restricted to flows of massless particles and has been

so far applied only to one-dimensional flows. From a conceptual point of view, further extensions

of this model could be of great interest to analyse the transition between hydrodynamic and non-

hydrodynamic regimes in the framework of QGP.

Indeed QGP in possibly the most natural field of application for RLBM methods. In this

context it has been used to investigate several problems of shock waves propagation [18, 36, 39–

45] and other standard benchmarks, such as the 1-d Bjorken flow [37, 43, 46].

However, to the best of our knowledge, a fully-fledged implementation for simulating nuclear

collisions has not been reported, as yet.

Another related application for RLBM is the theoretical study of relativistic transport coeffi-

cients. Based on RLBM simulations, recent works [45, 47, 48] have reported an accurate anal-

ysis of the relativistic transport coefficients in the single-relaxation time approximation, present-

ing numerical evidence that the Chapman Enskog expansion accurately relates kinetic transport

coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics,

confirming recent theoretical results.

Finally, several authors have attempted to adapt RLBM schemes to the study of (2 + 1)-

dimensional relativistic hydrodynamics, motivated by the interest for the study of pseudo-relativistic

systems such as the electrons flow in graphene. A series of theoretical works have taken into

consideration the possibility of observing Rayleigh-Bénard instability [49, 50], Kelvin-Helmholtz

instability [51], current whirlpools [52], as well as preturbulent regimes [53, 54] in a electronic

fluid.

Most of these works and the results here summarized, have been based, with few exceptions,

on formulations in three spatial dimensions with focus on the ultra-relativistic regime, in that they

consider massless one-particle distribution functions; this is reflected at the macroscopic level by

the emergence of an ultra-relativistic equation-of-state (ǫ = 3P, with ǫ the energy density and P

the pressure). On the other hand, one would like to explore all kinematic regimes, as characterized

by the dimensionless parameter

ζ =
mc2

kBT
, (1)

(m is a typical particle mass and T a typical temperature). We shall make extensive reference

to this parameter throughout the paper; while in many high-energy astrophysics contexts ζ ≈ 0,
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mildly relativistic regimes (ζ ≈ 1 · · · 5), which are typical of the QGP physics, indicate that ultra-

relativistic treatments are not appropriate in this case. An interesting remark is that, as one follows

the history of the Universe ζ gradually increases from ζ ≈ 0 towards ζ → ∞ (see Fig. 1).

Another important area is the study of low-dimensional systems, as it has been recently realised

that “relativistic” fluid dynamics in 2d is relevant to the dynamics of electrons in graphene sheets

or wider classes of 2d “exotic” materials governed, to a good approximation, by the dispersion

relation ǫF = vF|p| (formally equivalent to that of a ultra-relativistic particle with c replaced by the

Fermi velocity vF).

A further open problem has been the lack of (conceptually and numerically)-accurate calibra-

tion procedures, relating the mesoscopic parameters (relaxation time) to the macroscopic transport

coefficients e.g., shear and bulk viscosity and thermal conductivity.

The latter is not only a computational problem but a conceptual one as well, since the time-

honored approaches to derive transport coefficients from the Boltzmann equation (such as Grad’s

method and the Chapman-Enskog expansion, see later for details) yield different results in the

relativistic regime.

These problems have been recently addressed in a series of papers [42, 45, 48, 52] that have:

i) extended the kinematic regime from ultra-relativistic, all the way to near non-relativistic, using

finite-mass pseudo-particles, ii) included the two-dimensional case as well and, iii) developed an

accurate calibration procedure of the mesoscopic vs. macroscopic transport coefficients.

The present paper builds on these results and considerably extends them as follows: i) collects

and summarizes in a structured way all the formal developments of early works; ii) extends algo-

rithmic developments to in principle any number of spatial dimensions (in practice, 1 ≤ d ≤ 3)

including external forcing as well, and using Gauss-type quadratures on space-filling Cartesian

lattices, preserving the computational advantages of the classic LBM; iii) recasts early results in

a more compact mathematical format; iv) extensively and accurately compares the relationship

between mesoscopic and macroscopic transport coefficients in 1− 2− 3 spatial dimensions, across

all kinematic regimes, and finally, v) presents a wider set of validation benchmarks.

For validation purposes, we consider several flows in which approximate analytical solutions

can be worked out and compared with numerical simulations based on the RLBMs described in this

paper. In detail, we present results of simulations solving the Riemann problem for a quark-gluon

plasma, showing good agreement with previous results obtained using other solvers present in the

literature. We also present simulation results of laminar flows in ultra-clean graphene samples;

we consider geometrical setups actually used in experiments, and provide numerical evidence of

the formation of electron back-flows (“whirlpools”, in the jargon of graphene practitioners) in the

proximity of current injectors.

3. Ideal Relativistic Hydrodynamics

In this section we introduce the hydrodynamic equations of an ideal relativistic fluid starting

from the basic principles of relativistic kinetic theory, which will serve as the stepping stone for

the derivation of the RLBM. A few fundamental references on the formulation of relativistic ki-

netic theory are the books by De Groot [8], Cercignani and Kremer [55], along with the recent

monograph of Rezzolla and Zanotti [9] and the review by Paul and Ulrike Romatschke [10].
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We consider an ideal non-degenerate relativistic fluid, consisting at the kinetic level of a system

of interacting particles of mass m. The particle distribution function f ((xα), (pα)), depending on

space-time coordinates (xα) = (ct, x) and momenta (pα) =
(

p0, p
)

= (E/c, p) (c is the speed

of light, E the particle energy, with E = cp0 =
√

|p|2 + m2c2, and x, p ∈ R
d), describes the

probability of finding a particle with momentum p at a given time t and position x. We adopt

Einstein’s summation convention over repeated indexes, and use Greek indexes to denote (d + 1)

space-time coordinates and Latin indexes for d dimensional spatial coordinates.

The particle distribution function obeys the relativistic Boltzmann equation, here taken in the

Anderson-Witting [56, 57] relaxation-time approximation:

pα
∂ f

∂xα
+ mKα

∂ f

∂pα
=

Uαpα

τc2
( f eq − f ) , (2)

with τ the relaxation (proper-)time, Uα the macroscopic relativistic (d + 1)-velocity (defined such

that UαUα = c2), and Kα the external forces acting on the system, assumed for simplicity not to

depend on the momentum (d+1)-vector. The local equilibrium f eq is given by the Maxwell-Jüttner

distribution:

f eq = B(n,T ) exp

(

−Uαpα

kBT

)

, (3)

with kB the Boltzmann constant and B a d-dependent normalization factor to be defined later in

the text.

The Anderson-Witting model ensures the local conservation of particle number, energy and

momentum, meaning that the particle four flow Nα and the energy momentum tensor Tαβ, defined

respectively as the first and second moment of f

Nα = c

∫

f pα
dd p

p0

, (4)

Tαβ = c

∫

f pαpβ
dd p

p0

, (5)

are conserved:

∂αN
α = 0 , (6)

∂βT
αβ = 0 . (7)

The conservation equations do not provide any dynamical property of the fluid until a specific

decomposition of Nα and Tαβ is specified. For an ideal fluid at the equilibrium it can be shown

that

NαE = nUα , (8)

T
αβ

E
= (ǫ + P)

UαUβ

c2
− Pηαβ , (9)

where ǫ (n) is the energy (particle) density, P the hydrostatic pressure and ηαβ the Minkowski

metric tensor. In the following we will use ηαβ = diag(1,−1), with 1 = (1, . . . , 1) ∈ Nd.
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The closure for the conservation equations is given by an appropriate Equation of State (EOS).

In order to derive the EOS for a perfect gas in (d + 1) space-time coordinates in a relativistic

regime, we first define the normalization factor B(n,T ) in Eq. 3 in order to satisfy the constraint

given by Eq. 8. Therefore we write:

c

∫

f eq pα
dd p

p0

= cB

∫

e
− pµUµ

kBT pα
dd p

p0

= c B Zα = nUα , (10)

and together with the analytical expression for the integral Zα (see Appendix B for details), we can

determine the correct normalization factor for the equilibrium distribution function

B(n,T ) =

(

c

kBT

)d
n

2
d+1

2 π
d−1

2 ζ
d+1

2 K d+1
2

(ζ)
; (11)

the relativistic parameter ζ = mc2

kBT
has been already defined in the previous section, and Ki(ζ)

is the modified Bessel function of the second kind of index i. Next, we take the definition of

the momentum-energy tensor (Eq. 4), and use the normalization factor B(n,T ) together with the

analytical expression for Zαβ (see again Appendix B), giving

c

∫

f eq pαpβ
dd p

p0

= c B Zαβ = PGd

UαUβ

c2
− nkBTηαβ , (12)

where we have introduced the dimensionless parameter

Gd =
ǫ + P

P
= ζ

K d+3
2

(ζ)

K d+1
2

(ζ)
. (13)

In order to identify the equation of state it is sufficient to match the terms with the same tensor

structure in Eq. 12 and Eq. 9; one finally obtains:

ǫ = P (Gd − 1) ,

P = nkBT .
(14)

For example, in (3 + 1) dimensions we have:

ǫ = P
(

ζ
K3(ζ)

K2(ζ)
− 1

)

= P
(

3 + ζ
K1(ζ)

K2(ζ)

)

.

P = nkBT .
(15)

a result already derived many years ago [58].

It is interesting to look at the asymptotic behaviour of Eq. 14: it is simple to show that taking

the limit ζ → 0, for which Gd → d + 1, we obtain the well known ultra-relativistic EOS:

ǫur = dP . (16)
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Figure 2: Ratio of kinetic energy density (normalized on the number of spatial dimensions d) and pressure for an ideal

gas. For better readability the coordinate on the horizontal axis is rescaled as ζ → log(ζ +
√

1 + ζ2). The correct

limiting value for kinetic energy density is recovered both in the classical and in the ultra-relativistic regime.

For the non-relativistic limit we define the kinetic energy density ǫc = ǫ − n mc2 and take the limit

for ζ → ∞ . Using the fact that (x Kα(x)/Kα−1(x) − x)→ α − 1/2 as x→ ∞ one recovers the well

known non-relativistic expression for the EOS of an ideal gas:

ǫc =
d

2
P . (17)

Finally, Fig. 2 plots the ratio of kinetic energy divided by pressure (and rescaled by the number of

spatial dimensions) for several values of d and in a wide kinematic range, showing a continuous

crossover from the ultra-relativistic to the classical regimes.

From the EOS it is straightforward to derive a few thermodynamic quantities which will be

useful in the coming sections, such as the specific heat per particle at constant volume cv :

cv =
∂(ǫ/n)

∂T
= kB

[

(2 + d)Gd + ζ
2 −G2

d − 1
]

, (18)

the specific heat per particle at constant pressure cP ( he = (ǫ + P)/n is the relativistic enthalpy per

particle) :

cP =
∂he

∂T
= kB

[

(2 + d)Gd + ζ
2 −G2

d

]

, (19)

and the adiabatic sound speed cs:

cs = c

√

P

ǫ + P

cp

cv

= c

√√

(2 + d)Gd + ζ2 −G2
d
− 1

Gd

(

(2 + d)Gd + ζ2 −G2
d

) . (20)
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4. Dissipative Effects and Transport Coefficients

When dissipative effects are taken into account, the definition of the non-equilibrium compo-

nent of Nα and Tαβ is ambiguous as it depends on the choice of the local rest frame, with the two

most common choices being the one suggested by Eckart [3] and by Landau and Lifshitz [5]. The

Anderson-Witting model is based on the Landau-Lifshitz decomposition, where the fluid velocity

Uα is defined such as to satisfy

TαβUβ = ǫ Uα , (21)

and for which, assuming a linear combination of the contribution due to the equilibrium and the

non-equilibrium part, it follows that

Nα = NαE −
1

he

qα , (22)

Tαβ = T
αβ

E
−̟∆αβ + π<αβ> , (23)

where qα is the heat flux, π<αβ> the pressure deviator, ̟ the dynamic pressure, and

∆αβ =
1

c2
UαUβ − ηαβ , (24)

is the (Minkowski-)orthogonal projector to the fluid velocity Uα (see Appendix A for complete

definition of all tensorial objects that we use and [55] for a full treatment of the problem).

The non-equilibrium contribution to Nα and Tαβ can be used to define the transport coefficients

which enter the linear relations between thermodynamic forces and fluxes:

qα = λ

(

∇αT − T

nhe

∇αP
)

, (25)

π<αβ> = η

(

∆αγ∆
β

δ
+ ∆αδ∆

β
γ −

1

d
∆αβ∆γδ

)

∇γUδ , (26)

̟ = −µ∇αUα ; (27)

λ is the thermal conductivity, η and µ the shear and bulk viscosities, and we have used the shorthand

notation
∇α = ∆αβ∂β ,
∆α
β
= ∆αγ∆γβ .

(28)

The transport coefficients provide the link between the kinetic and the macroscopic layer. In

non-relativistic regimes, the derivation of appropriate transport coefficients is typically obtained

with either Grad’s method of moments [59] or the Chapman-Enskog (CE) expansion [60]; both

techniques provide a consistent connection between kinetic theory and hydrodynamics, i.e. they

provide the same expressions for the transport coefficients. However, it is well known that the two

methods give different results in the relativistic regime.

In recent times, the problem has been extensively studied. Theoretical works and numerical

investigations seem to converge towards the results provided by the CE approach but the question

is still open to debate.
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Here we consider both the CE and Grad’s method of moments expansion in a general (d + 1)

space-time coordinate system, deriving all transport coefficients for the relativistic Boltzmann

equation in the RTA. Derivations of some of these coefficients have appeared sparsely in the lit-

erature, often for specific quantities and specific space dimensions [19, 27, 30, 61–68]. For this

reason, we consider it useful to gather here for reference the full set of results using both ap-

proaches. We follow closely the procedure presented in [55] for the (3 + 1)-dimensional case. In

the following we review the procedure used to derive these results, with full details and results

collected in Appendix C.

4.1. Chapman-Enskog expansion

The Chapman-Enskog expansion consists in splitting the particle distribution function f in two

additive terms: the equilibrium distribution f eq and a non equilibrium part f neq. When working

in a hydrodynamic regime, it is reasonable to approximate f neq with a small deviation from the

equilibrium:

f = f eq + f neq ∼ f eq(1 + φ) . (29)

with φ of the order of the Knudsen number Kn, defined as the ratio between the mean free path

and a typical macroscopic lenght scale. The general idea is to determine an analytical expression

for the deviation from the equilibrium f eqφ. We start from Eq. 2 (let us ignore for the moment the

forcing term), insert Eq. 29 and retain only terms O(Kn), giving:

pα
∂ f eq

∂xα
= − pαUα

c2τ
f eqφ . (30)

To derive the transport coefficients one then proceeds with the following steps:

1. Compute the derivative pα∂α f eq and derive the constitutive equations of a relativistic Eule-

rian fluid.

2. Use the balance equations for energy and momentum to eliminate the convective time deriva-

tives and derive the analytic expression of φ.

3. Use the now known expression for f eqφ to compute the first and second order tensors (via

their integral definitions), compare against their definition in the Landau frame and work out

the expression for the transport coefficients.

See Appendix C for a full discussion and full analytical expressions in an arbitrary number of

space dimensions. Here we only mention the ultra-relativistic limit:

λur =
d + 1

d
c2kBnτ , (31)

µur = 0 , (32)

ηur =
d + 1

d + 2
Pτ . (33)
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4.2. Grad’s moments method

The starting point for the derivation of Grad’s method of moments is similar to that of the

Chapman Enskog expansion, with the splitting of the particle distribution function into two terms,

the equilibrium and the non-equilibrium part. The way the non-equilibrium part is derived is

however significantly different; while the CE makes use of a small parameter of the order of the

Knudsen number, Grad’s method of moments is based on the maximization of the entropy density

s, defined as

s = −kB

nc
Uα

∫

pα f ln f
dd p

p0

. (34)

The derivation can be summarized in the following steps:

1. Using Lagrange multipliers method, find an expansion for f that extremizes the entropy

density s, with the constraints given by definition of NαUα, UαT
αβ and UαT

α<βγ> (see Ap-

pendix C).

2. Using Grad’s ansatz for f we compute the third order moment Tαβγ.

3. The above expression is then plugged into Eq 2 to determine the non-equilibrium compo-

nents of the energy-momentum tensor.

4. By applying appropriate projectors it is then possible to derive the constitutive equations for

the heat-flux, dynamic pressure and the pressure deviator. The expressions for the transport

coefficients are derived by comparison with Eq 25, Eq 26, and Eq 27.

Once again, detailed derivations and results are collected in Appendix C; in the ultra-relativistic

limit we have:

λur =
d + 1

d + 2
c2kBnτ , (35)

µur = 0 , (36)

ηur =
d + 1

d + 3
Pτ . (37)
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Figure 3: Comparison of the non-dimensional thermal conductivity, shear and bulk viscosity in 1, 2, 3-dimensions, ob-

tained applying the Chapman-Enskog expansion and Grad’s method of moments to the relativistic Boltzmann equation

in the relaxation time approximation. The black dotted line represents the limit for d → ∞; this result is the same

using both CE and Grad’s method, and shows that in this limit all transport coefficients are classical.
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As already remarked, the two methods give different results for the values of all transport

coefficients, even if they tend to agree as one approaches the non relativistic regime. This is clearly

shown in Fig. 3 where the behavior of η, µ and λ, as predicted by the two approaches, is shown

as a function of ζ. Lacking any realistic option for experimental verification, we will see in later

sections that our numerical experiments strongly point to the CE approach. A mathematically nice

result (although of little interest for physical purposes) is that, in the limit of an infinite number

of spatial dimensions, all coefficients remain constant at their non relativistic value over the full

kinematic range.

Finally, the behavior of the thermal conductivity needs a further explanation. It is well known,

and it can directly be seen from Eq. 25, that the heat flux present a significant difference between

the relativistic and the non-relativistic form; indeed for a relativistic iso-thermal fluid there could

be a non-zero heat-flux due to a pressure gradient. Looking at Fig. 3 one may be puzzled as λ

seems to go to 0 in the non-relativistic limit. This is so because, for later convenience, we plot
λ

τkBc2n
. If one recasts the expression as λ

kBPτ
and considers the limit for large ζ, one obtains

λ =
kB

m
Pτ

(

d + 2

2
− 3(d + 2)

2ζ
+ . . .

)

, (38)

whose first term is the well-known non-relativistic value.

5. Relativistic Lattice Boltzmann Methods

In recent times, numerical schemes based on the Lattice Boltzmann Method (LBM) have

emerged as a promising tool for the study of dissipative relativistic hydrodynamics [18, 37, 38, 41–

43, 47]. The advantage of this approach is that by working at a mesoscopic level viscous effects

are naturally included, with relativistic invariance and causality preserved by construction.

In this section we present in full details the algorithmic extension of the LBM to the study

of relativistic fluids, describing the derivation of a model which allows to cover a wide range of

relativistic regimes, in principle all the way from fluids of ultra-relativistic massless particles down

to non-relativistic fluids.

5.1. From continuum to the lattice

We here outline the procedure followed to derive the relativistic lattice Boltzmann equation,

following a procedure similar to the one used with non-relativistic [69–72] and earlier ultra-

relativistic LBMs [37, 41]. In this section, we use natural units, c = kB = 1, which helps write

many formulas in a more compact form.

1. We start by writing Eq. 2 in terms of quantities that can be discretized on a regular lattice,

by dividing the left and right hand sides by p0:

∂t f + vi∇i f =
Uαpα

τp0
( f eq − f ) − mKα

p0

∂ f

∂pα
, (39)

with vi = pi/p0 the components of the microscopic velocity. In Eq. 39 the time-derivative

and the propagation term are the same as in the non-relativistic regime; the price to pay is

an additional dependence on p0 of the relaxation (and forcing) term.
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2. Next, we expand f eq in an orthogonal basis; we adopt Cartesian coordinates and use a basis

of polynomials orthonormal with respect to a weight ω(p0) given by the Maxwell-Jüttner

distribution in the fluid rest frame (where U i = 0).

Following a Gram-Schmidt procedure one then derives a set of polynomials {J(i), i = 1, 2 . . . },
which are used to build the expansion:

f eq((pµ), (Uµ),T ) = ω(p0)

∞∑

k=0

a(k)((Uµ),T )J(k)((pµ)) , (40)

where a(k) are the projection coefficients defined as

a(k)((Uµ),T ) =

∫

f eq((pµ), (Uµ),T )J(k)((pµ))
dd p

p0
. (41)

The polynomials are derived in such a way that the coefficients a(k) coincide by construction

with the moments of the distribution function; as a result the quantity f
eq

N
((pµ), (Uµ),T ),

obtained truncating the summation in Eq. 40 to N, correctly preserves the moments of the

distribution up to the N-th order. Observe that until now the discussion holds its validity in

the continuum.

3. We now find a Gauss-like quadrature on a regular Cartesian grid able to reproduce correctly

the moments of the original distribution up to order N. We proceed in such a way as to

preserve exact streaming, meaning that all quadrature points vl
i
= pl

i
/p0 must sit on lattice

sites. At this point, the discrete version of the equilibrium function reads as follows:

f
eq

iN
= wi

∑

k

a(k)((Uµ),T )J(k)((p
µ

i
)) , (42)

with wi appropriate weights, (p
µ

i
) the linked abscissae, and the summation running on the

total number of orthogonal polynomials up to the order N.

4. Once a quadrature rule is defined, it is possible to write down the discrete relativistic Boltz-

mann equation:

fi(x + vi∆t, t + ∆t) − fi(x, t) = ∆t
pα

i
Uα

p0
i
τ

( f
eq

i
− fi) + Fext

i , (43)

where Fext
i

is the discretization of the total external forces acting on the system, more details

will be given in Section 5.4.

5.2. Polynomial expansion of the equilibrium distribution function

In this section we define the polynomial expansion of the Maxwell-Jüttner distribution in

(d + 1)-dimensions. It turns out that using non-dimensional quantities is very useful here; to

this purpose, we introduce a reference temperature (or energy) scale T0 and define the following

quantities: T̃ = T/T0, m̃ = m/T0, p̃α = pα/T0. T0 is in principle arbitrary; we will see in the
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following that T0 is needed to translate between lattice and physical units; for the moment the

reader may consider T0 as a typical temperature/energy scale of the system under study.

We start by constructing a set of polynomials in the variables p̃α, orthogonal with respect to a

weighting function given by the equilibrium distribution in the co-moving frame:

ω(p0,T0) = C(m̃,T0) exp
(

− p̃0
)

; (44)

C is a normalization factor, which deserves a further remark: while the normalization factor

B(n,T ) in Eq. 3 carries an important physical meaning (as discussed in Section 3), C can be cho-

sen in the most expedient way. In most cases we will find it convenient to take the normalization

factor C such to satisfy the condition
∫

ω(p0,T0)
dd p

p0
= T d−1

0

∫

ω(p0,T0)
dd p̃

p̃0
= 1 , (45)

implying

C(m̃,T0) =
1

2
d+1

2 π
d−1

2 m̃
d−1

2 K d−1
2

(m̃)

1

T d−1
0

. (46)

Starting from the set V = {1, p̃α, p̃α p̃β, . . . } we apply the Gram-Schmidt procedure to derive

the polynomials up to a desired order. We label the polynomials with the notation J
(n)
α1···αn

, where

n is the order of the polynomial and the α indexes corresponds to the components of (pα) they

depend upon. All integrals needed to carry out this procedure are computed in Appendix B. The

first polynomials (up to order 1) in (d + 1) dimensions are easily written:

J(0) = 1 ,

J
(1)

0
=

p̃0 − G̃d−2
√

m̃2 − G̃2
d−2
+ dG̃d−2

,

J
(1)

i
=

p̃i

√

G̃d−2

;

here we use the shorthand notation G̃d−2 = Gd−2(m̃), with Gd defined in Eq. 13. Their ultra-

relativistic limit 2 is given by:

J(0) = 1 ,

J
(1)

0
=

p̃0

√
d − 1

−
√

d − 1 ,

J
(1)

i
=

p̃i

√
d − 1

.

2Some of the expressions that we consider here become singular in the massless limit for d = 1; we will return to

this point later in this section
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The corresponding projection coefficients (defined through 41 and taking into account the normal-

ization of f eq given by Eq. 11) are given by:

a(0) =
n

T0

1

Gd−2T̃
,

a
(1)

0
=

n

T0

(

U0 − G̃d−2

T̃Gd−2

)

1
√

m̃2 + G̃d−2(d − G̃d−2)
,

a
(1)

i
=

n

T0

U i

√

G̃d−2

;

where Gd−2 (as opposed to G̃d−2) is again a shorthand for Gd−2 = Gd−2(m/T ) ≡ Gd−2(m̃/T̃ ). The

ultra-relativistic limit reads:

a(0) =
n

T0

1

(d − 1)T̃
,

a
(1)

0
=

n

T0

(
U0

√
d − 1

− 1

T̃
√

d − 1)
,

a
(1)

i
=

n

T0

U i

√
d − 1

.

Having derived both the polynomials and the projections we can then write down the first order

expansion version of the Maxwell-Jüttner distribution in (d + 1)-dimension:

f eq =
n

T0

ω( p̃0)

(

1

Gd−2T̃
+

(p̃0 − G̃d−2)

G̃d−2(d − G̃d−2) + m̃2

(

U0 − G̃d−2

T̃Gd−2

)

− 1

G̃d−2

piUi

)

.

The expression in the ultra-relativistic limit is slightly simpler:

f eq =
n

T0

ω( p̃0)
d/T̃ + U0 p̃0 − (d − 1)U0 − p̃iUi

d − 1
.

Expressions at higher orders are rather bulky and are therefore given as supplementary material

[73]. Here we only stress the general structure of the expansion:

• all polynomials are dimensionless and written in terms of p̃α and of m̃;

• all expansion coefficients are the product of an appropriate power of T0 and again an dimen-

sionless expression, that depends on Uα, T̃ and m̃;

• the resulting expressions for f eq are again the product of an appropriate power of T0 and an

dimensionless expression.
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Figure 4: Comparison of the analytic Maxwell Jüttner distribution in (2 + 1) dimensions against approximations

at various orders N, computed using an orthogonal polynomial basis. The distributions are shown as functions of

p = (px, 0), having fixed all the other parameters to m̃ = 0, T̃ = 1, n = 1 and β = |U i|/U0 = 0.5.

This structure will make it very simple to relate lattice-defined quantities with the correspond-

ing physical ones. See later on this point.

Fig. 4 shows the expansion of f eq up to the fifth order in (2 + 1) dimensions in the massless

limit and compares with the analytical expression. f eq is plotted as a function of p̃ = (p̃x, 0) with

n, T̃ and T all equal to unity and β = |U i|/U0 = 0.5.

The massless limit in (1 + 1) dimensions needs special care, as the normalization factor of

ω(p0,T0) defined by Eq. 46 is in this case proportional to 1/K0(m̃) and diverges when m̃ → 0, so

the weighting function is ill-defined. In this case, in order to define a valid kernel for the Gram-

Schmidt procedure, we use for ω(p0,T0) a normalization factor analogous to the one defined in

Eq. 11, that, in this case, writes

C(m̃,T0) =
1

T0

1

2m̃K1(m̃)
. (47)
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With this choice, the polynomials up to order 1 take the following form:

J(0) =
1

√

G̃1−2

m̃2

,

J
(1)

0
=

p̃0

√

− m̃2

G̃1−2
+ G̃1 − 1

− m̃2

(

G̃1 − 2
) √

− m̃2

G̃1−2
+ G̃1 − 1

,

J
(1)

i
= p̃i .

For the projections, we have:

a(0) =
n

T0

(G1 − 2)T̃

m̃2

√

G̃1−2

m̃2

,

a
(1)

0
=

n

T0

U0

√

− m̃2

G̃1−2
+ G̃1 − 1

− (G1 − 2)T̃
(

G̃1 − 2
) √

− m̃2

G̃1−2
+ G̃1 − 1

,

a
(1)

i
=

n

T0

U i .

One may now check that while the massless independent limit of polynomials and projections is

still divergent, the limit of the product of each polynomial with its corresponding projection is

convergent, so the limiting value for f
eq

N
(( p̃µ), (Uµ), T̃ ) is well-behaved:

f
eq

N
(( p̃µ), (Uµ), T̃ ) = ω(p0,T0)

N∑

k=0

lim
m̃→0

(

a(k)((Uµ), T̃ )J(k)(( p̃
µ

i
))
)

. (48)

Up to first order, one obtains:

f eq =
nω( p̃0)

T0

[

1 − p̃0

T̃
+ p̃0U0 + p̃xU x

]

(49)

This expression has the same structure as for the general case that we have discussed before. Note

however, that the fact that polynomials and projections do not have independent finite limits in the

massless case will require special care for the construction of Gaussian quadratures.

5.3. Gauss-type quadratures with prescribed abscissas

The discrete formulation is based on a Gauss-type quadrature on a Cartesian grid. In order to

ensure that all quadrature points lie on lattice sites, and to preserve the moments of a distribution

up to a desired order N, we need to determine the weights and the abscissas of a quadrature such

to satisfy the orthonormal conditions [74]:
∫

ω(p0,T0)Jl(( p̃µ))Jk(( p̃µ))
dd p̃

p̃0
=

∑

i

wiJl(( p̃
µ

i
))Jk(( p̃

µ

i
)) = δlk , (50)
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with (p̃
µ

i
) the discrete (d + 1) momentum vectors. A convenient parametrization of (p̃

µ

i
) writes as

follows:

( p̃
µ

i
) = p0

i (1, v0ni) , (51)

where ni ∈ Z
d are the vectors forming the stencil G = {ni | i = 1, 2, . . . , imax} defined by the (on-

lattice) quadrature points, v0 is a free parameter that can be freely chosen such that vi = v0||ni|| <
1,∀i, and p̃0

i
is defined as

p̃0
i = m̃γi = m̃

1
√

1 − |vi|2
. (52)

In order to determine a quadrature we proceed as follows: i) select a specific value for m̃, ii) choose

a set of velocity vectors G, containing a sufficient number of elements such that the left hand side

of Eq. 50 is a full ranked matrix, iii) look for a solution of Eq. 50 formed by non-negative weights

(wi ≥ 0,∀i).

Observe that while the parametrization in Eq. 51 is general and can be used to determine

quadratures for wide ranges of values of m̃, the limit case of massless particles requires a slightly

different approach, as Eq. 52 is not well defined for m̃ = 0; in this case we let p̃0
i

be free parameters

(as already suggested in [41]) to be determined such as to satisfy Eq. 50. We can have several

energy shells associated to each vector and therefore we add a second index to Eq. 51:

(

p̃
µ

i, j

)

= p̃0
j

(

1,
ni

||ni||

)

, (53)

where the index j labels different energy shells, and ||ni|| has to be the same for all the stencil

vectors since all particles travel at the same speed vi = c = 1,∀i. Examples of stencils in 2d for

the massive and massless case are shown in Fig. 5.

As a concrete example, we consider the (2+1) dimensional case and solve Eq. 50 with {J(i), i =

1, 2 . . . } the orthogonal polynomials in Appendix F, ( p̃
µ

i
) the three-momentum vectors following

the parametrization in Eq. 51 and wi suitable weights. We follow the procedure described in

[75, 76], building a stencil by adding as many symmetric groups as necessary to match the number

of linearly independent components of Eq. 50. For example, considering quadratures giving a

second-order approximation, the system of Eqs. 50 has 6 linearly independent components, so one

needs to build a stencil with (at least) 6 different symmetric groups. Likewise, at third order there

are 10 independent components, so we need 10 groups. Yet higher order approximations require

stencils with even larger numbers of groups.

Having selected a numerical value for the rest mass m̃, and a stencil G = {ni | i = 1, 2, . . . , imax},
Eq. 50 leads to a linear system of equations, parametric on v0:

A(v0)w = b . (54)

Here A is a l×k matrix (l being the number of possible combinations of the orthogonal polynomials,

k the number of groups forming the stencil), b is a known binary vector, and w is the vector of

unknowns. Since the Gaussian quadrature requires strictly positive weights in order to guarantee

numerical stability, we need to select values of v0 (if they exist) such that wi > 0 ∀i. For low-order

approximations it is possible to compute an analytic solution, writing each weight wi as an explicit
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Figure 5: Two examples of stencil compatible with a third order quadrature, respectively for m̃ = 5 (left) and m̃ = 0

(right). The points forming the stencil for m̃ = 0 lie on the intersection between the Cartesian grid and a circle of

radius 5.

function of the free parameter v0, but this become quickly very hard and, already at the second-

order, numerical solutions are necessary. A possible formulation of the problem writes as follows:

min

[

−c1

c2

]T [

w−

w+

]

,

s.t. A(v0)w = b ,

0 < v0 ≤ vmax .

(55)

The vector of unknowns w has been split into two sub vectors, respectively w+ formed by its

nonnegative components, and w− accounting the negative components. Vectors c1 and c2 are all-

ones vectors matching the dimensions of w− and w+. We also assume that A(v0) is a fully-ranked

matrix. This can be achieved applying a pre-processing phase where redundant rows are removed,

for example by applying a QR or LU factorization. Note that an implicit constraint on w is given by

normalization factor chosen for the weighting function ω( p̃0). For example, if the normalization

factor is taken such to satisfy Eq. 45 it follows directly that the weights will sum to unity:

∑

i

wi = 1 . (56)

Observe that in Eq. 55 we have not constrained w to be nonnegative. By allowing negative

values for w, it is simple to find solutions using, for example, a line search method to scan the fea-

sible region spanned by the admissible values for v0. Each solution of the minimization procedure

is then accepted only in the case wi ≥ 0 ∀i, as this requirement improves numerical stability and is

consistent with a (pseudo-)particle interpretation of the RLBM.
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In general, many different solutions to the quadrature problem exist. We have performed a

detailed exploration of the available phase-space, implementing a solver for Eq. 55 based on the

LAPACK library with several instances running in parallel on a cluster of CPUs. The solver takes

as input a stencil G and tries to find a solution for Eq. 55 by scanning several values of v0 with a

simple line search strategy.

To give an example, we look for a second order quadrature in 2d at m̃ = 5 using the sten-

cil G = {(0, 0)
⋃

(±1, 0)FS
⋃

(±1,±1)FS
⋃

(±2, 0)FS
⋃

(±2,±1)FS
⋃

(±2,±2)FS}, where FS stands for

full-symmetric. With this stencil, the longest displacement is given by the set of vectors with lenght

2
√

2, and therefore the range of validity of the parameter v0 is 0 < v0 < 1/(2
√

2) (this is due to

the requirement v0||ni|| ≤ 1,∀i, used in the definition of discrete momentum vectors in Eq. 51). A

visual representation of the solution for Eq. 55 is given in Fig. 6a, with the minimum found at v0 ∼
0.3005; in this case we cannot determine a solution for which all the weights of the quadrature are

positive. We then consider a different stencil G = {(0, 0)
⋃

(±1, 0)FS
⋃

(±1,±1)FS
⋃

(±2,±1)FS
⋃

(±2,±2)FS
⋃

(±3,

for which the parameter v0 takes values in 0 < v0 < 1/
√

10). From Fig. 6b we see that there is

a small range of values of v0 where all the weights take nonnegative values. Taking for example
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Figure 6: Visual representation of the parametric solution of Eq. 50, having chosen m̃ = 5. The left panel makes use

of the stencil G = {(0, 0)
⋃

(±1, 0)FS
⋃

(±1,±1)FS
⋃

(±2, 0)FS
⋃

(±2,±1)FS
⋃

(±2,±2)FS}. The panel on the right was

obtained using the stencil G = {(0, 0)
⋃

(±1, 0)FS
⋃

(±1,±1)FS
⋃

(±2,±1)FS
⋃

(±2,±2)FS
⋃

(±3,±1)FS}. In this second

case we can identify a region for which wi(v0) ≥ 0 ∀i (orange colored interval), giving a set of solutions that can be

used to build a numerically stable quadrature.

v0 = 0.2726, the corresponding weights for the quadrature are:

w1 = 0.2938928682119484 . . . , w2 = 0.00136644441345044 . . . ,

w3 = 0.0212650236700010 . . . , w4 = 0.07032872215612153 . . . ,

w5 = 0.0036974948602444 . . . , w6 = 0.00477018784553696 . . . .
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Particularly convenient values of v0 are those located at the boundaries of the orange colored

interval in Fig. 6b, since some weights become zero thus allowing the pruning of certain lattice

velocities. In our example one can reduce the full set of 29 velocities to 25 by setting either w2 to

zero (with v0 = 0.27259285465 . . . ), or w3 to zero (v0 = 0.27278322823 . . . ).

Typically, for a given value of m̃ several different stencils are possible; however, each stencil

works correctly only in a certain range of m̃. Still, a reasonably small set of stencils allows to treat

m̃ ≥ 0.5 at the second order and m̃ ≥ 1.2 at the third order, offering the possibility to cover a very

large kinematic regime, from almost ultra-relativistic to non-relativistic.

In general, the process of finding quadratures becomes harder and harder as the order is in-

creased and as m̃ takes smaller and smaller values. The reason is that for m̃ → 0 the pseudo-

particles tend to move all with similar velocities, close to the speed of light, making it difficult to

identify a stencil where all particles travel in one time step at different (yet very similar) distances,

and still hop from a point of the grid to a neighboring one.

For the limiting case where m̃ = 0 this translates in restricting to stencils whose elements sit at

the intersection between a Cartesian grid and a sphere of given radius. In this case we introduce

the parametrization presented in Eq. 53, where following [41] we associate several energy shells to

each momentum vector. To give an example, we consider a second order quadrature rule for m̃ = 0

and solve Eq. 50 by taking the stencil G = {(±3,±4)FS, (±5, 0)FS} (Fig. 5b) and the parametrization

in Eq. 53 where three different energy shells get associated to each momentum vector. The solution

reads as follows:

p̃0
1 = 0.41577455678 . . . w11 = 0 w21 = 0.08888662624 . . .

p̃0
2 = 2.29428036027 . . . w12 = 0 w22 = 0.03481471669 . . .

p̃0
3 = 6.28994508293 . . . w13 = 0.00175356541 . . . w23 = 0.00042187435 . . .

The procedure can be iterated at higher orders, although already at order 4 in 2 spatial dimensions

one needs to employ stencils with vectors of length 5
√

13, which is impractical from a computa-

tional point of view since implies using very large grids to achieve an adequate spatial resolution;

things become even more problematic in (3 + 1) dimensions. Higher orders would most probably

require different strategies, e.g. off-lattice schemes, which drastically improve the spatial resolu-

tion of the grid, but have as drawbacks the need for interpolation and the introduction of artificial

dissipation effects [43, 47, 77]; we do not consider these strategies in this paper.

A special treatment is needed in the (1+ 1) dimensional case for the massless limit. Indeed, as

already remarked in the previous section, in this case the massless limit of both polynomials and

projections diverges. It follows that we cannot derive the quadrature through Eq. 50. However, we

can exploit the fact that it is still possible to obtain an expression for the expansion of the equi-

librium distribution using Eq. 48. We can then express the quadrature problem via the following

system of equations:
∫

f eq(( p̃α), (Uα), T̃ ) p̃α . . . p̃ω
dp̃d

p̃0
=

∑

i

∑

j

wi j f
eq

N
(( p̃αi j), (U

α), T̃ ) p̃αi j . . . p̃
ω
i j, (57)

where we explicitly require the preservation of all the moments of the distribution up to a desired

order N and use all the techniques described before to look for the unknown weights wi j.
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A graphical view of (a subset) of all stencils that we have found at the 2-nd and 3-rd order is

shown in Appendix H, .

5.4. Forcing Scheme

The definition of force in relativity is subject to a certain degree of arbitrariness due to the lack

of certain general properties such as, for example, Newton’s third law. In the following we will

use the definition of Minkowski force [55]:

Kα =
dpα

dτ
, (58)

where dτ = 1
γ

dt is the proper time. From the definition it follows that the spatial components of

(Kα) obey

K = γ F , (59)

with F the non-relativistic force vector, whereas the time component is such to satisfy

Kαpα = K0 p0 − K · p = 0 . (60)

Starting from Eq. 39, our task consists in discretizing the term

Fext =
mKα

p0

∂ f

∂pα
. (61)

by taking into consideration the effects of external forces on the (pseudo)-particles used in our

description.

Following [78], we assume the distribution function to be not far from equilibrium,

∂ f

∂pα
≈ ∂ f eq

∂pα
; (62)

at this point, we use the polynomial expansion of the equilibrium distribution

∂ f

∂pα
≈ ∂ f eq

∂pα
= ω(p0)

∞∑

k=0

b(k)((Uµ),T )J(k)((pµ)) , (63)

with the projection coefficients defined as

b(k)((Uµ),T ) =

∫

∂ f eq((pµ), (Uµ),T )

∂pα
J(k)((pµ))

dd p

p0
; (64)

an even simpler approach starts from the observation that the derivative of the analytic Maxwell-

Jüttner distribution is given by
∂ f eq

∂pα
= −Uα

T
f eq , (65)

leading to

Fext ≈ −m

T

KαUα

p0

f eq , (66)
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which has the clear advantage of requiring one single evaluation of the equilibrium distribution.

Both approaches yield consistent results, as we show later on.

As a general remark, the use of the polynomial expansion of the equilibrium distribution is not

particularly useful in the relativistic case as it is non trivial to identify the relationship between the

coefficients a(k) and b(k) leading to cumbersome analytical form of the resulting expressions and

significant computational overheads in the evaluation of the external force; this is even more so, as

in our case it is not possible – as customary in non relativistic LB methods – to translate the effect

of an external force into a shift in the macroscopic variables of interest [79–82].

6. Numerical recipes

In this section we provide details on how to implement a RLBM simulation. We discuss the

conversion from physics to lattice units, the numerical scheme and a few practical aspects related

to implementations on modern parallel architectures.

6.1. From Physical to Lattice units

To relate physical space and time units with the corresponding lattice units, it is convenient to

start by assigning the physical length δx, corresponding to one lattice spacing. Suppose we use N

grid points to represent the physical length L, the corresponding lattice spacing δx is then:

δx =
L

N
. (67)

Time and space units are implicitly linked via Eq. 43, where at each time step pseudo-particles

move from position x to x + viδt. Since we constrain both source and destination positions to lie

on a Cartesian grid, it follows:

v0niδt = Niδx , (68)

with Ni ∈ Z
d. This, in turn, provides the following relation between time and space units in the

lattice:

v0 =
δx

δt
, (69)

The conversion of all mass and energy related quantities is performed by choosing a value for

the reference temperature T0, already introduced in the previous sections in the definition of non-

dimensional quantities on the lattice. While the choice of T0 is in principle arbitrary, a sensible

choice can have a major impact on the accuracy of the results. In fact one can expect better results

when T0 is chosen such that the numerical values of TL are ∼ 1, since such value was used as

expansion origin for the equilibrium distribution function.

At this point we have defined the translation of lengths, time and mass units between physics

and lattice. The conversion of other derived quantities follows straight. In the following, we pro-

vide a few examples, where we distinguish between physics and lattice units, indicating quantities

with a p or l subscript respectively. The conversion of the particle number density writes as

np = nl

1

(δx)d
. (70)
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Similarly, a generic velocity can be converted using

vp = vl

δx

δt
. (71)

As a final example we translate in lattice units the shear viscosity, for which we take the general

expression

ηp = f (ζ)Ppτp , (72)

with f (ζ) a function solely depending on the dimensionless relativistic parameter ζ. Using the

EOS of an ideal gas we can write:

ηp = f (ζ)npTpτp = f (ζ)
nl

(δx)d
TLT0τLδt = ηLT0

δt

(δx)d
. (73)

6.2. Relativistic Lattice Boltzmann Algorithms

The initial conditions for the RLBM algorithm consist in prescribing the values of fi(x, t0) at

the initial time t0. A typical choice is to prescribe the equilibrium distribution function with a

given initial profile for temperature, density and velocity, thus setting fi(x, t0) = f
eq

i
.

For each time step, the following operations are performed to evolve the distribution function

at each single grid point:

1. We start by computing the first and second moment of the distribution:

Nα =
∑

i

fi p̃
α
i ,

Tαβ =
∑

i

fi p̃
α
i p̃
β

i
.

2. The energy density ǫ and the four velocity Uα are obtained solving the eigenvalue problem:

ǫUα = TαβUβ ,

with ǫ corresponding to the largest eigenvalue of Tαβ, and Uα being the correspondent eigen-

vector.

3. Next, we compute the particle density from

n = UαN
α .

4. We then compute the temperature from the EOS (see Section 3).

5. We now have all the fields required to compute the equilibrium distribution function:

f
eq

iN
((p̃µ), (Uµ), T̃ ) = wi

N∑

k=0

a(k)((Uµ), T̃ )J(k)(( p̃
µ

i
)) .
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6. If present, we compute the Minkowski forcing term (see Section 5.4).

7. We determine the local value of the relaxation time τ (which typically is either a constant

or determined in such a way that the ratio of shear viscosity and entropy density η/s is

constant).

8. Finally, we evolve the system over one time step, via the discrete Boltzmann equation:

fi(x + vi∆t, t + ∆t) = (1 −Ω) fi(x, t) + Ω f
eq

i
(x, t) + Fext

i

where

Ω = ∆t
p̃
µ

i
Uµ

p̃0τ
.

is the dimensionless relaxation parameter controlling the transport coefficients.

6.3. Parallel implementation on GPUs.

One of the main reasons for the widespread resort to LBM algorithms is computational ef-

ficiency [83]. The strength of LBM is embedded in the stream-collide paradigm, which, being

numerically -exact- (zero roundoff), stands in contrast with the advection-diffusion scheme used

in a macroscopic fluid-flow representation.

The streaming phase consists in moving particles according to the discrete velocities defined

by the stencil, and thus, unlike advection, following a regular pattern regardless of the complex-

ity of the fluid flow. Moreover, streaming is exact in the sense that there is no round-off error

since it consists only of memory shifts, with no floating-point operations involved. We remark

that efficient memory access has become a main point of optimization in the modern large-scale

implementations [83–86].

Instead, the collide step performs all the floating-point operations required to implement the

collisional operator. The locality of the collisional operator makes it possible to update each grid

point in parallel, making LBM an excellent target for highly scalable implementations on modern

HPC architectures.

The relativistic formulation presented in the previous sections preserves all the computational

virtues of the classical algorithm. The complexities in the analytic expressions of the polynomial

expansion of the distribution, in the EOS (etc..), reflects in a significantly higher demand of floating

point operations required to update a single grid point, easily one or two orders of magnitude more

with respect to the classical LBM.

In Tab 1, we collect a few figures of merit regarding the performances of RLBM codes in 2

and 3 dimensions on a recent NVIDIA Pascal GPU. Thanks to the high arithmetic intensity of

the algorithm (defined as the ratio of total floating-point operations to total data movement), it is

comparatively simple to sustain a large fraction of the performance peak of the target architecture.

A detailed analysis on the GPU-porting and optimization of RLBM will be reported elsewhere.
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2D RLBM (ζ = 5) 3D RLBM (ζ = 5)

Stencil vectors 45 143

FLOP/site ∼ 66000 ∼ 210000

Arithmetic intensity 92 92

Collide MLUPS 55 14

Collide TFLOPS (Ec %) 3.7 (70 %) 3.1 (60 %)

Table 1: Overview of the performances of a NVIDIA Pascal P100 GPU (1792 cores for a performance peak of 5.3

TFLOPS in double precision arithmetics) running our RLBM codes in 2 and 3 space dimensions. We list the number

of floating point operations (FLOP) required to update one grid point, the arithmetic intensity and the performance of

the collide kernel, expressed both in MLUPS (Million Lattice Updates per Second) and TFLOP per second. Ec is an

estimate of the GPU sustained performance with respect to peak performance.

7. Numerical Results I: Calibration of Transport Coefficients

In section 4 we have summarized the steps needed to derive the analytical expressions for the

transport coefficients of an ideal relativistic gas in (d+1) dimensions, using both Chapman-Enskog

and Grad’s moments method. Unfortunately, to the best of our knowledge, no experimental setup

is available to discern which (if any) of the two methods gives the correct results. For this reason,

the lattice kinetic scheme developed in the previous pages can be used to tell the two methods

apart.

Here we summarize and extend the results presented in [45, 47, 48], which show that the

transport coefficients calculated following Chapman-Enskog’s approach are in better agreement

with numerical results than those obtained via using Grad’s method. We present numerical results

for the shear viscosity, thermal conductivity and, for the first time, of the bulk viscosity as well. In

addition, we extend previous results to 1, 2, 3 space dimensions.

7.1. Shear viscosity

As discussed in Section 4, the analytic form for the shear viscosity predicted by the Chapman-

Enskog expansion and Grad’s method of moments is different. Both methods provide results in

the form

η = f (ζ)Pτ , (74)

but with a different dependence on the relativistic parameter ζ, as expressed in the above equation

by the function f (ζ) (see Appendix C for the analytic expression of f (ζ) in the two cases and for

a full comparison).

Here, we describe the procedure followed to measure f (ζ) from simulations. We first consider

an almost divergence-free flow, which allows to neglect compressible effects, and to simplify the

energy-momentum tensor to

Tαβ = (ǫ + P)UαUβ − Pηαβ + π<αβ> . (75)

As a benchmark, we take the Taylor-Green vortex [87], a well known example of a decaying flow,

exhibiting an exact solution for the classical Navier-Stokes equations, and for which we can derive
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an approximate solution in the relativistic regime. We start from the following initial conditions,

in a d > 1 periodic domain,

ux = v0 cos(x) sin(y) x, y ∈ [0, 2π] , (76)

uy = −v0 cos(y) sin(x) ,

uz = uw = · · · = 0 .

with v0 a given value for the initial velocity, and assume that the time dependent solution takes the

same form as in the classical case:

ux = v0 cos(x) sin(y)F(t) x, y ∈ [0, 2π] , (77)

uy = −v0 cos(y) sin(x)F(t) ,

uz = uw = · · · = 0 .

In order to determine the analytic expression of F(t), we solve the conservation equations by

inserting Eq. 77 into Eq. 75. By performing a first order expansion of the resulting expression, we

obtain the following differential equation:

2ηF(t) + (P + ǫ)F
′
(t) = 0 . (78)

Under the assumption of an (approximately) constant value of P + ǫ, this delivers:

F(t) = exp

(

− 2η

P + ǫ
t

)

F(0) . (79)

Next, it is expedient to introduce an observable ū,

ū2 =

∫ 2π

0

∫ 2π

0

(

u2
x + u2

y

)

dx dy , (80)

that is directly proportional to F(t), as easily seen from Eqs 77. We perform several simulations

of the Taylor-Green vortex, with small (yet, not negligible) values of v0 and by varying the meso-

scopic parameters, τ and ζ. In order to better characterise the numerical fit of f (ζ), we consider

a broad range of ζ values, smoothly bridging between ultra-relativistic to near non-relativistic

regimes.

In Fig. 7, we show a few example of simulations, featuring the time evolution of ū, which

exhibit a clear exponential decay.

For each set of mesoscopic values, we perform a linear fit of log(ū) extracting a corresponding

value of η via Eq. 79. Finally, by comparison with Eq. 74, we estimate the value of f (ζ) at different

values of ζ. In Table 2, we show a few results obtained following this procedure in the (3 + 1)-

dimensional case. One appreciates that, for each different value of ζ, measurements of η(τ) yield

a constant value of f (ζ).

Moreover, from the second column of Tab. 2, we obtain f (0) = 4/5 to very high accuracy,

which is consistent with the result of the Chapman-Enskog expansion in the ultra-relativistic limit
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Figure 7: Simulated time evolution of ū for selected τ values on a L = 400 square lattice. Simulation are performed

using a (3 + 1)-dimensional solver, with initial numerical parameters ζ = 0, u0 = 0.2, n = 1, T = 1. Dashed lines are

fits to the exponential decay predicted by Eq. 79. The inset shows non-linear effects in the early phases of the flow.

(see Eq. 31). In Fig. 8, we show that the CE prediction almost perfectly matches the results of the

simulations (and we remark that no free parameters are involved in this comparison) over a broad

range of values of ζ, in both (2 + 1) and (3 + 1)-dimensions. For the (1 + 1)-dimensional case,

we only show the analytic results since in this case we do not have a suitable benchmark with an

approximate analytic solution that can be used to numerically fit the curve.

7.2. Thermal conductivity

The numerical measurements of the thermal conductivity follow the same general steps de-

scribed in detail in the previous section. We consider a numerical setup for simulating two parallel

plates, kept at different constant temperatures Thi and Tlo, with ∆T = Thi − Tlo. For sufficiently

small values of ∆T , the flow can be approximated to be non-relativistic and as a consequence

Eq. 25 reduces to Fourier’s law:

qα = λ∇αT . (81)

Under these settings, simulations reach a steady state with an approximately constant temperature

gradient, and a constant heat flux qα which can be calculated in simulations using Eq. 22:

qα = he(N
α
E − Nα) . (82)
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f (ζ)

τ ζ = 0 ζ = 1.6 ζ = 2 ζ = 3 ζ = 4 ζ = 5 ζ = 10

0.600 0.8003 0.8319 0.8448 0.8587 0.8892 0.8994 0.9311

0.700 0.8002 0.8318 0.8447 0.8584 0.8888 0.8990 0.9302

0.800 0.8002 0.8318 0.8447 0.8583 0.8887 0.8989 0.9300

0.900 0.8002 0.8318 0.8447 0.8583 0.8887 0.8988 0.9299

1.000 0.8002 0.8317 0.8446 0.8582 0.8887 0.8988 0.9299

Table 2: Selected sample values for the estimate of the parameter f (ζ) for several values of τ and ζ. Statistical errors

for all entries are smaller than 1 in the last displayed digit.
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Figure 8: Comparison of the non-dimensional shear viscosity for a relativistic gas in (1+1), (2+1) and (3+1) di-

mensions, obtained using Chapman-Enskog and Grad’s methods. In (2+1) and (3+1) dimensions, a Taylor Green

Vortex benchmark was chosen to show the correctness of Chapman-Enskog analysis. The adopted benchmark was

not suitable for measuring the shear viscosity in (1+1) dimensions.

Combining the two equations above, it is possible to estimate the thermal conductivity λ and

discern between the expressions predicted respectively by Chapman-Enskog and Grad’s methods

(once again, refer to Appendix C for the d-dimensional analytical form of λ for the two cases).

Similarly to the case of shear viscosity η, we perform several simulations varying the meso-

scopic parameters τ and ζ. The results obtained are summarized in the plots in Fig. 9, showing

that in 1, 2 and 3 spatial dimensions, the numerics is in excellent agreement with the predictions

of the Chapman-Enskog expansion.

7.3. Bulk viscosity

The measurement of the bulk viscosity requires the analysis of a flow with sizable compress-

ibility effects. A popular example that serves our purpose is the Riemann problem and the gener-

ation of shock waves (which will be studied in detail in the forthcoming sections). However, the

presence of strong discontinuities makes the numerical analysis challenging and the error com-

mitted in our data-fits too large to discriminate between the predictions of the analytic form of the
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Figure 9: Comparison of the non-dimensional thermal conductivity for a relativistic gas in (1+1), (2+1) and (3+1)

dimensions, obtained using Chapman-Enskog and Grad’s methods. A thermal gradient benchmark was chosen to

show the correctness of Chapman-Enskog analysis.

bulk viscosity µ due to Chapman-Enskog and Grad’s method. We therefore turn to the analysis of

a time decaying sinusoidal wave, which still gives the possibility to observe compressible effects,

yet with the advantage of well behaved derivatives.

We consider a periodic domain with the following initial condition:

ux = v0 sin(x) x ∈ [0, 2π] , (83)

uy = uz = · · · = 0 .

with v0 a given initial velocity. Particle density and temperature are initially set to a constant value.

In the simulations we measure the dynamic pressure ̟ from the trace of the energy momentum

tensor (Eq. 23):

̟ = −1

d
(T µµ − TE

µ
µ) . (84)

By combining the above equation with Eq. 27 it is then possible to perform numerical measure-

ments of the bulk viscosity through

µ = − ̟∇αUα
. (85)

By performing several simulations with different values of the mesoscopic parameters τ and

ζ we measure – for the first time, to the best of our understanding – bulk viscosity to very good

precision; the results presented in Fig. 10 lead to the same conclusions as for η and λ, with clear

evidence that the Chapman-Enskog procedure is in excellent agreement with the numerical results.

8. Numerical Results II: Benchmark and Validation

In this section we provide a few validation tests together with example of applications of the

RLBM. We start with the validation of the forcing scheme which we use to reproduce the results
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Figure 10: Comparison of the non-dimensional bulk viscosity for a relativistic gas in (1+1), (2+1) and (3+1) di-

mensions, obtained using Chapman-Enskog and Grad’s methods. A sine wave benchmark was chosen to show the

correctness of Chapman-Enskog analysis.

of a simple non-relativistic Poiseuille-flow. We then consider the Riemann problem, a benchmark

commonly used in both non-relativistic and relativistic numerical hydrodynamics, in order to as-

sess the stability and the accuracy of numerical solvers. We validate the code in a nearly inviscid

regime, for which analytic solutions are available, then explore viscous regimes for fluid of both

mass-less and massive particles, comparing with other numerical solvers available in the literature.

Next, we give an example of simulation in three spatial dimensions, relevant for the study of

the early stage formation of the quark-gluon plasma.

We conclude by presenting simulations of the electrons flow in graphene, studying realistic

setups which have been recently used in actual experiments.

8.1. Validation of the forcing scheme

In Section 5.4 we have presented two approaches to introduce a generic Minkowski force Kα in

the numerical scheme. Due to the lack of a relativistic benchmark with a known analytic solution,

we test the correctness of the forcing scheme taking into consideration the effect of applying a

weak gravitational field to the (pseudo)-particles forming a relativistic fluid. In the non-relativistic

case, the most standard benchmark is given by the Poiseuille-flow, describing the motion of a fluid

between two parallel plates under the effect of gravity (or of a pressure gradient).

In the following, we will then directly compare with the analytic solution of the classical

Poiseuille-flow, assuming a sufficiently small gravity acceleration g. Starting from Eq. 59, we can

define the Minkowski force in terms of g as

K = γ F = γ mg =
p0

c
g . (86)

In Fig. 11 we validate the two different implementations of the forcing scheme described in

section 5.4: We call scheme ”A” the forcing term discretized using a polynomial expansion, while
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Figure 11: Validation of the forcing scheme for the RLBM algorithm by solving a non-relativistic Poiseuille flow.

In the left panel we show the parabolic velocity profile obtained using a RLBM scheme in two spatial dimensions,

working on a L × 64 grid, and considering two different implementations of the forcing scheme: In scheme ”A” the

forcing term is discretized using a polynomial expansion, while for scheme ”B” we compute explicitly the derivative

of the Maxwell-Jüttner distribution (see Section 5.4 for details). The panel on the right shows the relative percentage

error, compute with respect to the analytic solution. Both solution provide the same level of accuracy, with the error

decreasing as the grid size is increased.

scheme ”B” refers to the case where we compute explicitly the derivative of the Maxwell-Jüttner

distribution. We work in two spatial dimensions and perform simulations on grids of size L × 64.

Periodic boundary conditions are applied along the y-axis, while at x = 0 and x = L − 1 no-slip

boundary conditions are used to simulate two parallel plates. We apply a gravity-like force acting

parallel to the wall boundaries, of magnitude |g| = 10−8 in numerical units.

In the left panel in Fig. 11 we can see that both implementations of the forcing term correctly

reproduce the parabolic profile of the fluid flow. On the right panel we also show a more quantita-

tive comparison, with the relative error as a function of the number of points L used to represent the

box width. While the differences between scheme ”A” and ”B” appear to be negligible in terms

of precision, they are instead relevant in terms of computational requirements. Comparing the

execution time for the simulations used to produce the results in Fig. 11 we observe that scheme

”A” is 1.5 − 1.7 times more expensive than B, due to the necessity to compute the extra terms in

the polynomial expansion of the force term. These overheads can be even larger in 3-dimensions,

where the coefficients of the expansions depend on Bessel functions.

8.2. Relativistic Sod’s Shock tube

The 1-d Riemann shock tube test is a widely adopted benchmark for the validation of numerical

hydrodynamics methods. This benchmark has an exact time-dependent solution, both in the non-

relativistic [88] and in the relativistic [9, 89] regimes, and can be used to test the ability of a

numerical solver to evolve flows in the presence of strong discontinuities and large gradients.

From a physical point of view, the problem consists of a tube filled with a gas which initially is

in two different thermodynamical states on either side of a membrane placed at x = 0. As a result,

the macroscopic quantities describing the fluid present a discontinuity at the membrane. Once the

membrane is removed the discontinuities decay producing shock/rarefaction waves, depending on
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the initial configuration chosen for the two different chambers.
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0

βmax

L * C R

Figure 12: Example of analytic solution of the Sod’s shock tube problem in the inviscid limit, for an ultra-relativistic

equation of state in (3+1) dimensions. Region L and R have not been reached yet by the rarefaction wave and preserve

therefore their initial state; region ∗ contains the rarefaction wave. The shock wave is present in regions C(I) and C(II)

and the interface between these regions is associated to discontinuities in density and temperature. The blue dotted

lines represent the initial conditions while the green lines represent the solution at a certain time t > 0.

The Sod’s shock tube problem is a particular instance of the Riemann problem, with the fol-

lowing initial conditions:

(P, n, β) =






(PL, nL, 0) x < 0

(PR, nR, 0) x > 0
. (87)

Let us assume nL > nR and PL > PR, where the subscript L and R refer respectively to the left

and right sides of the membrane. With these initial conditions, the time evolution of the flow

is characterized by two distinct components: a rarefaction wave traveling from the initial field

discontinuity to the left, and a shock wave traveling from the initial field discontinuity to the right.

If we consider an inviscid fluid, it is possible to describe the time evolution of the system an-

alytically by solving the conservation equations. However, the derivation of a solution in regimes

other than the classical and ultra-relativistic one is a hard task which necessarily requires numeri-

cal integrations [89]. For this reason we restrict the first part of our analysis to the ultra-relativistic

regime.
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Figure 13: Sod’s shock tube for a gas of massless particles in (d+1)-dimensions (d=1,2,3,4), at t = 3.0 fm/c. Lines

represent the analytic solution, while dotted lines are result of RLBM simulations at η/s = 0.002. Top: left) temper-

ature profile right) pressure profile. Bottom: left) density profile right) β = |U i|/U0. All macroscopic quantities are

plotted in non-dimensional units by dividing for their correspondent initial values at x = −3.0 fm.

At a given time t > 0, the flow domain can be characterized by defining the different macro-

scopic quantities in the five regions shown in Fig. 12. Their definition, together with the general

d-dimensional analytical solution, is reported in Appendix D.

For testing the inviscid regime we consider the following initial setup: PL = 5.43 GeV/fm3

and PR = 1 GeV/fm3, with corresponding initial temperatures TL = 400 MeV and TR = 190 MeV.

In order to convert from physics to lattice units we follow the discussion in section 6.1. We start

by setting our reference temperature T0 equal to TL, thus T0 = TL = 400 MeV, which translates

the initial temperatures on the lattice to TL = 1 and TR = 0.475. We also choose the initial values

for the particle number density to be nL = 1 and nR = 0.39, which correctly reproduce the ratio

PL/PR.
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Figure 14: Sod’s shock tube for a gas of massless particles at t = 3.2 fm/c, for several values of η/s. The results

of simulations of the RLBM (green lines) at η/s = 0.1 and η/s = 0.5 are compared against the results provided by

BAMPS (blue lines). Top: left) density profile right) pressure profile. Bottom: left) temperature profile right) β =

|U i|/U0. Density, temperature and pressure are plotted in non-dimensional units by dividing for their correspondent

initial values at x = −3.2 fm.

We perform our tests on a grid of size Lx × 1× 1, half of which represents the physical domain

defined in the interval (−3.2 fm, 3.2 fm), while the other half forms a mirror image that allows

using periodic boundary conditions. Taking for example Lx = 6400, it follows that on our grid

6.4 fm corresponds to 3200 grid points, that is δx = 0.002 fm. The corresponding value of ∆t

is quadrature dependent; considering for example the third order quadrature for ζ = 0 in (3+1)-

dimensions given in Appendix F and having v0 = 1/
√

41, we obtain ∆t ≈ 0.013 fm/c. Since

RLBM algorithms cannot handle zero-viscosity flows, we approximate the inviscid regime using

the lowest sustainable ratio between the shear viscosity and the entropy density (η/s). In Fig. 13

we show a validation of the code in 1,2,3 and 4 spatial dimensions at t = 3.0 fm/c, where in all

simulations we have used η/s = 0.002. The macroscopic profiles compare well with the analytical

solution, and indeed we can clearly recognise the five different regions characterizing the flow.
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Figure 15: Sod’s shock tube for a gas of massive particles (m = 800 MeV) at t = 3.2 fm/c, at η/s = 1/2π. The results

of simulations of the RLBM (lines) are compared with those obtained solving the RBE with a Monte Carlo approach.

Left: pressure profile. Right) β = |U i|/U0.

When a non-zero viscosity is introduced, dissipation smoothens the interfaces between the

different regions. Since in the viscous regime it is not possible to provide an exact solution, we

compare with the results of other numerical solvers, such as the Boltzmann approach multi-parton

scattering program (BAMPS) [90, 91].

The initial conditions in this case are: PL = 5.43 GeV/fm3, PR = 0.339 GeV/fm3, TL =

400 MeV and TR = 200 MeV. We use a (3 + 1)-dimensional EOS, and the same relation for

the entropy density used in BAMPS: s = 4n − n ln (n/neq), where neq comes from the equilibrium

function, neq = dGT 3/π2, with dG = 16 the degeneracy of the gluons [92].

In Fig. 14 we present the results of simulations for a few selected values of η/s, corresponding

to different viscous regimes: η/s = 0.002 is the nearly inviscid hydrodynamic regime discussed

above, a highly viscous flow at η/s = 0.1 where an hydrodynamic approach is still justified,

and finally η/s = 0.5 where we enter a transition towards a ballistic regime (thus going beyond

hydrodynamics). For η/s = 0.1 the RLBM simulation is in excellent agreement with the results

provided by BAMPS. Here we can observe that as the viscosity is increased, the interfaces between

the different regions becomes smoother, and eventually cannot be distinguished anymore when we

move to η/s = 0.5: in this last example we are transitioning towards a ballistic regime, where the

hydrodynamic approach becomes questionable.

We conclude this section taking into consideration relativistic shock waves for fluids of mas-

sive particles. To the best of our knowledge this is the first time that shock waves are studied

under these settings. Lacking an analytical solution to the problem, we compare the results of

RLBM simulations against the results produced by another numerical solver, which solves the full

relativistic Boltzmann equation using a Monte-Carlo approach based on the test-particles method
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[93–96]. In Fig. 15 we show an example for a gas of particles of mass m = 800 MeV and the same

initial conditions used in the previous case: TL = 400 MeV, TR = 200 MeV, PL = 5.43 GeV/fm3

and PR = 0.339 GeV/fm3. The ratio η/s is kept fixed to the value 1/2π. We appreciate an excel-

lent agreement in both the pressure and velocity profiles. A more detailed analysis will be reported

elsewhere.

8.3. Quark-gluon plasma

The study of quark-gluon plasma is the most natural application ground for the RLBM. In this

section, we provide a very preliminary example in which we simulate the evolution of the initial

stages of heavy-ion collisions. We consider the same numerical setup used in [97], with an initial

Gaussian distribution for the temperature profile

T = Tr g(x, y, z), g(x, y, z) = exp (− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

) , (88)

and likewise for the particle density n = nr g(x, y, z). The initial temperature at the center of the
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Figure 16: Temperature profile of the system in the x − y plane at z = 0 fm, at three different time steps, from left to

right t = 0 fm/c, t = 0.35 fm/c, t = 0.7 fm/c. White lines represent the velocity streamlines of the fluid.

fireball is Tr = 200 MeV, with nr = 1.25 fm−3, and the particles mass m = 1 GeV. We also add

a background temperature of T = 100 MeV and density of nr = 0.625 fm−3 to avoid numerical

instabilities far from the center of the fireball, where we would have a zero temperature which

cannot be sustained by the RLBM solver.

The initial velocity profile is given by

Uα = γ (1,−h(r)y, h(r)x, 0) , h(r) =
1

r
tanh (

r

r0

) (89)

with r the distance from the center of the fireball, and r0 a parameter describing the strength of the

flow. We take r0 = 1 fm.

Under these initial conditions, the evolution of the system is triggered by an initial rotation

around the z axis. In Fig. 16 we show the temperature profile of the system in the x-y plane at

z = 0 fm, at three different time steps. We can see that the symmetry of the rotating ellipsoid
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is quickly broken, with the single source splitting into two separate hot spots. The evolution is

qualitatively similar to the one portrayed in [97], with a more quantitative analysis left to future

detailed work.

8.4. Hydrodynamic flow of electrons in graphene

We now take into consideration an “exotic” application of dissipative relativistic hydrodynam-

ics and apply the RLBM to the study of the dynamics of the electrons in graphene sheets. The

motivation for adopting these type of solvers comes from the fact that electrons in graphene sheets

follow an ultra-relativistic dispersion relation, so they can be regarded as a fluid of massless (quasi-

) particles whose energy depends on momentum as ǫF = vF|p|, with the Fermi speed vF ∼ 106m/s

mimicking the role of the speed of light in true relativistic systems.

In this section we provide a validation of this numerical approach by simulating steady-state

flows in the so-called ”vicinity-geometry”, which has been subject of several theoretical and ex-

perimental studies [98–100] to outline phenomena such as negative nonlocal resistance, current

whirlpools, and measuring the Hall viscosity of graphene’s electrons fluid. The geometrical setup

is sketched in Fig. 18, which represents a single-layer graphene sheet of dimension L×W (usually

encapsulated between one or more layers of dielectric materials, such as boron nitride), in which

two electrodes are used to inject and drain a constant current within the device.
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Figure 17: Electrochemical potential measured at several fixed distances from the side of the graphene sample, re-

spectively y1 = 0.1 µm, y2 = 0.2 µm, y3 = 0.4 µm. With Φs(x, y) we indicate the results of a numerical simulation,

which are compared with the analytic solution Φa(x, y) for the benchmark (Eq. 90).

Experimental measurements have shown voltage drops in the proximity of the injectors, which

are found to be dependent on the viscosity of the electron fluid [98]. An accurate analytic approx-

imation of the experimental results for the electrochemical potential is derived in the same paper:
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Φ(x, y) =
mνI

n̄e2W2

[

F2(x − x0, y) − F2(x + x0, y)
]

, (90)

where for single layer graphene the effective mass m is defined as m = ǫF/v
2
F
, I is the magnitude of

the injected current, n̄ the equilibrium density, W the width of the device, e the elementary charge,

ν the kinematic viscosity, and

F2(x, y) = π
1 + cosh(πx/W) cos(πy/W)
[

cosh(πx/W) cos(πy/W)
]2

. (91)

The expression above has been obtained by assuming an infinitely long sample. In our simu-

lations, we use a grid with aspect ratio L/W = 4. Regarding boundary conditions, current is set to

zero at the boundaries of the sample, while the equilibrium value of the distribution is imposed at

the grid points used to represent the contacts [17].

Since Φ is not a direct observable of our lattice formulation, we need to perform a parameter

matching procedure (see [54] for details) in order to compare with Eq. 90:

Φ(x, y) = ϕ(x, y) − δP(x, y)

en̄
, (92)

where ϕ(r, t) is the electrical potential self-induced by the electrons motion withing the 2d graphene

layer, and δP(x, y) ≈ T (x, y)(n(x, y) − n̄(x, y)) is the local pressure difference. Fig. 17 compares

our simulation against the analytical prediction of Eq. 90, showing very good agreement at several

distances from the boundary layer.

For a treatment of the problem closer to the experimental setup, it is important to include not

only effects due to electric forces but also interactions with phonons and impurities. To this end,

we have included an external forcing term:

F = −e∇ϕ − 1

τD

nu ; (93)

the first term is the contribution due to the electric field, which in principle would require the so-

lution of the full Poisson equation; since this approach is computationally expensive, we compute

ϕ(x, y) by employing a local capacitance approximation [101]:

ϕ(x, y) = − e

Cg

n̄(x, y) , (94)

with Cg the geometrical capacitance per unit area, depending on both the geometrical and per-

mittivity properties of the dielectric layer. The second term in Eq. 93 is used to parametrize

phonon-electron scattering as a friction term, with τD the single scattering time. Albeit very sim-

ple, this parametrization has proven successful in describing experiments in the linear-response

regime [102–104].
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Figure 18: a) Sketch of the ”vicinity-geometry” used in simulations: Two contacts are used to inject (red area) and

drain (green area) a current from a graphene sheet of width W. The current is zero at the boundaries of the sample

(black areas). b-d) Snapshot of three different simulations at the steady-state, all using W = 2µm, n̄ = 2 · 10−12 cm−2,

I = 10−7 A, ν = 0.005 m2/s and Cg/e
2 = 3.03 · 1035 J−1m−2, and for different values of τD. In b) τD = 1 ps, in c)

τD = 20 ps, in d) τD = 200 ps The color map describes the electrochemical potential. Lines represent the electrons

velocity streamlines.

In Fig. 18 we show a few examples which qualitatively summarize the results of the sim-

ulations. The simulations are conducted using the following physical parameter: W = 2µm,

n̄ = 2 · 10−12 cm−2, I = 10−7 A, ν = 0.005 m2/s and Cg/e
2 = 3.03 · 1035 J−1m−2. In panel b), we

show a simulation with τD = 1 ps, in which the interaction with phonons is sufficiently strong to

prevent the onset of a hydrodynamic regime. In panel c), we show the result of a simulation with
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τD = 20 ps, where we observe a weak signature of a hydrodynamic behavior in the proximity on

the current injector (note the formation of a negative potential). Finally in panel d) we show that

for τD = 200 ps we observe the formation of current whirlpools.

For the geometric setup here analyzed the authors in [99] predicted the formation of backflow

near the injectors for arbitrarily small values of the vorticity diffusion parameter Dν =
√
ντD.

However, for similar geometries they also found that the transition occurs when a specific threshold

is overrun, i.e. Dν > W/(
√

2π), which can be expressed in a more explicit form as

ν > ν∗ =
W2

2π2 τD

. (95)

The above expression is in good agreement with our simulations since for the parameters used

in panel b) we get ν∗ ≈ 0.2 m2/s, for panel c), where we observe the first signatures of the

hydrodynamic regime we have ν∗ ≈ 0.01 m2/s, thus a figure about the same order of magnitude

of the actual viscosity, and finally ν∗ ≈ 0.001 m2/s for the parameters used in the simulation

corresponding to panel d).

9. Conclusions

This paper has presented an exhaustive account of the conceptual and mathematical develop-

ment of a suite of Lattice Boltzmann methods capable of describing relativistic dissipative fluid

flows over a wide kinematic range, ranging from ultra-relativistic (ζ → 0) to near non-relativistic

(ζ → ∞), and – in principle – in any number of space dimensions. All these methods are based

on the expansion of the Jüttner distribution onto an appropriate basis of orthogonal polynomials

and on its discretization, via Gauss-like quadrature, on a regular and uniform lattice. Quadra-

tures have been studied up to the fifth order, even though – on computational efficiency grounds –

only the third order can be tackled in practice. While building largely on previous developments,

the present work considerably streamlines previous formulations with a uniform treatment of all

spatial dimensions.

The main advantage of the kinetic approach to relativistic hydrodynamics is to ensure built-in

relativistic covariance and causality also in the presence of dissipative effects. This is welcome but

still leaves an open question as to the connection between the meso-scale relaxation time and the

macroscopic transport coefficients. This problem is as practical as it is conceptual, since different

theoretical treatments yield different results in the relativistic regime; several recent developments

suggest that the Chapman Enskog expansion as the correct route. It would be obviously interesting

to have this result confirmed by a carefully planned experimental setup, hopefully to be available in

the coming years. Meanwhile, this work provides a neat numerical answer: we have compared in

detail the predictions of the CE approach and of Grad’s moment and gathered convincing numeri-

cal evidence that, in 1, 2 and 3 spatial dimensions, the CE approach is the one correctly linking all

macroscopic transport coefficients, λ, η and µ to the mesoscopic relaxation time τ. This solves the

problem in the relaxation-time approximation but, given the universal nature of the macroscopic

coefficients, strongly suggests that this is likely to offer the correct path also for more complex

formulations of the Boltzmann equation.
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In any case, the analysis described above provides a neat and accurate calibration procedure

that enables the present RLB scheme for the simulation of a variety of relativistic hydrodynamic

problems.

The computational framework derived from the present RLB method has been extensively val-

idated in several contexts where analytical results or semi-analytical approximations are available,

and over a broad range of kinematic regimes. Our tests also include an ”exotic” application to

the electron dynamics in graphene sheets, opening the way to accurate and realistic numerical

simulations of these materials.

We have made a specific effort to describe in detail all steps of our derivations and results, so

as to allow the interested reader to reproduce them.

The RLB method can hopefully find potential use for a wealth of different relativistic fluid

problems across scales, from astrophysics and cosmology to high-energy physics and material

science.

Much is left for the future. At the methodological level, new lines of development may include

– in the short time frame – comparison with different solvers, with a close eye on the trade-

off between computational efficiency and physical accuracy, development of accurate boundary

conditions, and – on a longer time frame – an analysis of the relevance of quantum effects, as

described for instance by quantum versions of the Maxwell-Jüttner distribution.

As to applications, the customization of the RLB scheme to the detailed study of quark-gluon

plasmas dynamics in current and future high-energy experiments, appears a very appealing topic

for future research.
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A. Notation

In this appendix we summarize the notation used throughout this work. We also introduce

useful projector operators, including some of their relevant properties, which have been often used

in the main text and on which we extensively rely for the calculation of the transport coefficients.

We work in a flat (d+1) dimensional space-time, parametrized by the coordinates

(xα) = (ct, x) , (A.1)

with the first component giving the time coordinate, while the second term represents the usual

spatial coordinates in a d dimensional Euclidean space.
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The notation (Aα) is used to represent a vector ∈ Rd+1 (for simplicity, we refer to these vectors

as four vectors in the text, even when d , 3) while the boldface notation A is used for vectors

∈ Rd. Greek indexes are used to denote (d + 1) space-time coordinates and Latin indexes for d di-

mensional spatial coordinates. Einstein’s summation convention over repeated indexes is adopted.

We use the metric tensor ηαβ = diag(1,−1), with 1 = (1, . . . , 1) ∈ Nd.

The Minkowski-orthogonal projector to the fluid velocity Uα is defined as

∆αβ = ηαβ − 1

c2
UαUβ , (A.2)

∆αβ = ηαβ −
1

c2
UαUβ . (A.3)

By construction, the product of ∆αβ with the quadri-velocity Uβ is therefore equal to zero, and

its trace equals the number of spatial dimensions:

∆αβUβ = ∆αβU
β = 0 , (A.4)

∆αα = d . (A.5)

It is useful to introduce the short-hand notation

∆αγ = ∆
αβ∆βγ = δ

α
γ −

1

c2
UαUγ , (A.6)

together with the following easily verifiable properties:

∆γα∆γβ = ∆αβ , (A.7)

∆αγ∆
γ

β
= ∆αβ . (A.8)

These projectors can be applied to express a generic quadri-vector Aα as the sum of two terms,

respectively orthogonal and parallel to Uα:

Aα = ∆αβAβ +
1

c2
UαUβAβ . (A.9)

Likewise, we can decompose a generic tensor Tαβ in order to identify the symmetric Uα-

orthogonal components T (αβ):

T (αβ) =
1

2

(

∆αγ∆
β

δ
+ ∆βγ∆

α
δ

)

T γδ =
1

2

(

∆αγ∆βδ + ∆βγ∆αδ
)

Tγδ , (A.10)

the antisymmetric Uα-orthogonal components T [αβ]:

T [αβ] =
1

2

(

∆αγ∆
β

δ
− ∆βγ∆αδ

)

T γδ =
1

2

(

∆αγ∆βδ − ∆βγ∆αδ
)

Tγδ , (A.11)

and the symmetric, traceless, Uα-orthogonal components T<αβ>:

T<αβ> = T (αβ) − 1

d
∆αβ∆γδT

(γδ) . (A.12)
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The following properties naturally follow from the definitions above:

UαT
(αβ) = 0 ηαβT

(αβ) = ∆µνT
µν ∆αβT

(αβ) = ∆µνT
µν , (A.13)

UαT
[αβ] = 0 ηαβT

[αβ] = 0 ∆αβT
[αβ] = 0 , (A.14)

UαT
<αβ> = 0 ηαβT

<αβ> = 0 ∆αβT
<αβ> = 0 . (A.15)

It is at times useful to introduce a decomposition also for the quadri-gradient ∂α, by defining

the convective time derivative D and its orthogonal component ∇α:

∂α = ∆αβ∂β +
1

c2
UαUβ∂β = ∇α +

1

c2
UαD , (A.16)

with the following useful properties:

Uα∇α = 0 , (A.17)

∇αUα = ∂αUα . (A.18)

B. Integrals of the Maxwell-Jüttner distribution

We compute here some integrals often used in the development of the numerical methods

presented in this work and in the definition of the transport coefficients.

B.1. Integrals Zα1...αn

Let

Z =

∫

e
− pµUµ

kBT
dd p

p0

(B.1)

Zα1...αn =

∫

e
− pµUµ

kBT pα1 . . . pαn
dd p

p0

. (B.2)

Zα1...αn is obtained via differentiation of Z with respect to Uα1
. . .Uαn

:

Zα1...αn = (−kBT )n ∂Z

∂Uα1
. . . ∂Uαn

. (B.3)

Z is a Lorentz-invariant quantity which depends only on UαU
α = c2; however, as we need to

compute derivatives with respect to Uα, we first derive the result for an unconstrained UαU
α and,

after performing the derivatives, evaluate the result for UαU
α = c2.

We write:

Z =

∫

e
− p0

√
UµUµ

kBT
dd p

p0

=

∫

e
−
√

UµUµ

kBT

√
m2c2+p2 dd p

√

m2c2 + p2
, (B.4)

and then switch to spherical coordinates:

dd p = pd−1dp dΩ with

∫

dΩ =
dπ

d
2

Γ
(

1 + d
2

) ,
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giving

Z =
dπ

d
2

Γ
(

1 + d
2

)

∫ +∞

0

e
−
√

UµUµ

kBT

√
m2c2+p2 pd−1dp

√

m2c2 + p2
.

Changing integration variable p = mc
√

t2 − 1 and defining ζ = mc2/kBT , we have

Z =
dπ

d
2

Γ
(

1 + d
2

) (mc)d−1

∫ +∞

1

(t2 − 1)
d−1

2
− 1

2 e−
ζt
c

√
UµUµdt .

Recalling one useful definition of the modified Bessel function of the second kind [105]:

Kν(z) =
π1/2(z/2)ν

Γ (ν + 1/2)

∫ +∞

1

e−zt(t2 − 1)ν−1/2dt ,

we finally obtain:

Z = π
d−1

2 2
d+1

2 ζ
d−1

2

(

kBT
√

c

)d−1 K d−1
2

(
ζ

c

√

UµUµ
)

(UµUµ)
d−1

4

.

All integrals can now be obtained using Eq. B.3; tedious but straightforward manipulations

yield a nice and regular structure. Indeed, defining the coefficients An:

An = 2
d+1

2 π
d−1

2 ζn+ d−1
2 Kn+ d−1

2
(ζ) , (B.5)

one obtains:

Z =

(

kBT

c

)d−1

A0

Zα =

(

kBT

c

)d

A1

Uα

c

Zαβ =

(

kBT

c

)d+1 [

A2

UαUβ

c2
− A1η

αβ

]

Zαβγ =

(

kBT

c

)d+2 [

A3

UαUβUγ

c3
− A2

(

ηαβUγ + ηγβUα + ηαγUβ

c

)]

. . .

Zα1α2...αn =

(

kBT

c

)d+n−1 ⌊ n
2
⌋

∑

k=0

(−1)kAn−k

≺ Un−2kηk ≻
cn−2k

Where

≺ Un−2kηk ≻= ηα1α2 . . . ηα2k−1α2k

︸             ︷︷             ︸

k terms

Uα2k+1Uα2k+2 . . .Uαn

︸                  ︷︷                  ︸

(n-2k) terms

+permutations of indexes.
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In the above, terms like ηαβ, ηβα and UαUβ, UβUα are counted only once. To give an example, for

n = 4, k = 1, we have:

≺ U2η1 ≻ = ηα1α2Uα3Uα4 + ηα1α3Uα2Uα4 + ηα2α3Uα1Uα4

+ ηα1α4Uα3Uα2 + ηα4α3Uα2Uα1 + ηα2α4Uα1Uα3 .

B.2. Integrals Kα1...αn

Let

Kα1...αn =

∫

f eq pα1 . . . pαs

pµUµ
dd p

p0

= B(n,T )

∫

e
− pµUµ

kBT
pα1 . . . pαs

pµUµ
dd p

p0

, (B.6)

with B(n,T ) defined in Eq. 11. We include this normalization factor as these integrals are only en-

countered in the derivation of the transport coefficients following the Chapman-Enskog expansion.

It immediately follows from the definition that:

Uαn
Kα1...αn = B(n,T )Zα1...αn−1 . (B.7)

The tensorial structure of Kα1...αn is similar to that of Zα1...αn:

Kα =
n

ckBT
a11Uα

Kαβ =
n

c

[

a21

UαUβ

c2
− a22η

αβ

]

Kαβγ =
nkBT

c2

[

a31

UαUβUγ

c3
− a32

(

ηαβUγ + ηγβUα + ηαγUβ

c

)]

. . .

Kα1...αn =
n(kBT )n−2

cn−3

⌊ n
2
⌋

∑

k=0

(−1)kan(k+1)

≺ Un−2kηk ≻
cn−2k

with (limiting ourselves to up to 4 Lorentz indexes):

a11 =
1

ζ2
(Gd − (d + 1))

a21 = 1 + χ a22 = χ

a31 = Gd + 2 a32 = 1

a41 =
3Gd − 3ζ2χ

d + 2
+ (d + 6)Gd + ζ

2 a42 =
(3d + 7)Gd − ζ2χ

d + 2
a43 =

Gd − ζ2χ

d + 2
;

Gd is defined in Eq. 13 and χ is:

χ =






1
d!!

∑⌊ d−1
4
⌋

k=0
ζ2k

(

g
(k+1)
d+1

2
−2k
−Gd g

(k+1)
d+1

2
−2k−1

+ (−1)
d+1

2 ζ
d−1

2
Ki1(ζ)

K d+1
2

(ζ)

)

for odd d

1
d!!

∑⌊ d−1
4
⌋

k=0
ζ2k

(

h
(k+1)
d
2
−2k
−Gd h

(k+1)
d
2
−2k−1

+ (−1)
d
2 ζ

d−2
2

√
π
2

Γ(0,ζ)

K d+1
2

(ζ)

)

for even d
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Finally, the coefficients g
(i)

j
and h

(i)

j
are defined as:

g
(i)

j
=






0

1

2 j g
(i)

j−1
+ (2 j − 3)!!

2( j + 2i − 2) g
(i)

j−1
+ g

(i−1)

j

h
(i)

j
=






0 for j = 0

1 for j = 1

2 j h
(i)

j−1
+ (2 j − 1)!! for i = 1

2( j + 2i − 3
2
) h

(i)

j−1
+ h

(i−1)

j
else

We write explicitly a few cases:

χ = 1 − Ki1

K1

d = 1

χ =
1

2

(

1 − ζ2 eζΓ(0, ζ)

1 + ζ

)

d = 2

χ =
1

3

(

5 −Gd + ζ
Ki1

K2

)

d = 3

χ =
1

8

(

5 −Gd + ζ
4 eζΓ(0, ζ)

ζ2 + 3ζ + 3

)

d = 4

In the above expressions

Kiα =

∫ ∞

0

e−ζ cosh(t) (cosh(t))−α dt ,

is the Bickley-Naylor function and

Γ(α, x) =

∫ ∞

x

yα−1e−y dy ,

is the upper incomplete gamma function.

C. Derivation of transport coefficients

In this appendix section we present the detailed derivation of the transport coefficients for the

relativistic Boltzmann equation in the relaxation time approximation. We present the analytical

derivation in a general (d + 1)-dimensional Minkowski space-time following both the Chapman

Enskog expansion and Grad’s method of moments. Useful for both cases are the constitutive

equations for the heat flux, the dynamic pressure and the pressure deviator, which can be identified

by applying suitable projectors, defined in Appendix A, to the non equilibrium components of the

first and second order tensors of the particles distribution function (Eq. 22 and Eq. 23). The

resulting expressions write as follows:

qα = −he∆
αβNα , (C.1)

̟ = −P − 1

d
∆αβT

αβ , (C.2)

π<αβ> = ∆<αµ ∆
β>
ν T µν =

(

∆αµ∆
β
ν −

1

d
∆αβ∆µν

)

T µν . (C.3)
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C.1. Chapman-Enskog expansion

The Chapman-Enskog expansion consists in splitting the particle distribution function f in two

additive terms: the equilibrium distribution f eq and a non equilibrium part f neq. When working

in a hydrodynamic regime, it is reasonable to approximate f neq with a small deviation from the

equilibrium:

f = f eq + f neq ∼ f eq(1 + φ) . (C.4)

with φ of the order of the Knudsen number Kn, defined as the ratio between the mean free path

and a typical macroscopic lenght scale. Before going in details, we briefly outline the conceptual

steps of the expansion. The general idea is to determine an analytical expression for the deviation

from the equilibrium f eqφ. We start from Eq. 2 (let us ignore for the moment the forcing term),

insert Eq. C.4 and retain only terms O(Kn), giving:

pα∂α f eq = − pαUα

c2τ
f eqφ . (C.5)

To derive the transport coefficients we will then proceed with the following steps:

1. Compute the derivative pα∂α f eq and derive the constitutive equations of a relativistic Eule-

rian fluid.

2. Use the balance equations for energy and momentum to eliminate the convective time deriva-

tives and derive the analytic expression of φ.

3. Use the now known expression for f eqφ to compute the first and second order tensors (via

their integral definitions), compare against their definition in the Landau frame and work out

the expression for the transport coefficients.

C.1.1. Constitutive equations of a relativistic Eulerian fluid

From Eq. 22 and Eq. 23 we infer the following constraints on the particle distribution function:

nc2 = UαNα = cUα
∫

f eq pα
dd p

p0

= cUα
∫

f pα
dd p

p0

, (C.6)

ǫc2 = UαUβTαβ = UαUβc

∫

f eq pαpβ
dd p

p0

= UαUβc

∫

f pαpβ
dd p

p0

. (C.7)

These conditions together with Eq. C.4 lead to the following constraints for the non-equilibrium

part of the distribution:

Uα

∫

pαφ f eq dd p

p0

= 0 , (C.8)

UαUβ

∫

pαpβφ f eq dd p

p0

= 0 . (C.9)
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Furthermore, we multiply Eq. C.5 by {1, pβ} and integrate in momentum space, getting:
∫

pα∂α f eq dd p

p0

= − 1

c2τ
Uα

∫

pαφ f eq dd p

p0

= 0 , (C.10)

∫

pβpα∂α f eq dd p

p0

= − 1

c2τ
Uα

∫

pβpαφ f eq dd p

p0

= 0 . (C.11)

We now use the definition of the Maxwell-Jüttner distribution (Eq. 3) to calculate pα∂α f eq:

pα∂α f eq = f eq pα
[

∂αn

n
+ (1 −Gd)

∂αT

T

]

+ f eq pαpβ

kBT

[
Uβ∂αT

T
− ∂αUβ

]

. (C.12)

Plugging Eq. C.12 into Eq. C.10 and Eq. C.11 gives
[

∂αn

n
+ (1 −Gd)

∂αT

T

]

Zα +
1

kBT

[
Uβ∂αT

T
− ∂αUβ

]

Zαβ = 0 , (C.13)

[

∂αn

n
+ (1 −Gd)

∂αT

T

]

Zαβ +
1

kBT

[
Uβ∂αT

T
− ∂αUβ

]

Zαβγ = 0 , (C.14)

with details on the calculation of integrals Zα1...αn given in Appendix B.

It is possible to rearrange the above equations as

0 = Dn + n∇αUα , (C.15)

0 = −∂β(nT ) + n
UβDT

c2

[

(2 + d)Gd + ζ
2 −G2

d

]

+GdnT
DUβ

c2
. (C.16)

The first equation above is immediately recognized as the relativistic counterpart of the continuity

equation, while the balance equations for energy and momentum stem from the second equation.

To summarize we get:

Dn + n∇αUα = 0 , (C.17)

ncvDT + P∇αUα = 0 , (C.18)

∇γP − (P + ǫ)
DUγ

c2
= 0 , (C.19)

where Eq. C.18 and Eq. C.19 have been derived by multiplying Eq. C.16 respectively by Uβ and

∆
γ

β
, using the EOS in Eq. 14, and having identified the general expression for the specific heat cv:

cv = kB

[

(2 + d)Gd + ζ
2 −G2

d − 1
]

. (C.20)

C.1.2. Approximation of the non-equilibrium term of the particle distribution function

Combining Eq. C.5 with Eq. C.12 it is possible to define an analytic expression for φ. The final

result reads as

φ = − c2τ

pµUµ
pα

[

∂αn

n
+ (1 −Gd)

∂αT

T
+ pβ

Uβ∂αT

kBT 2
−

pβ∂αUβ

kBT

]

. (C.21)

By knowing the deviation of the Maxwell-Jüttner distribution function it is now possible to deter-

mine the transport coefficients from the integral definition of the moments of the distribution. We

start by taking into consideration the thermal conductivity.
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C.1.3. Thermal Conductivity

In order to determine the analytic expression for the thermal conductivity we consider the

integral definition of the particle flow tensor together with Eq. C.4:

Nβ = c

∫

pβ f
dd p

p0

= c

∫

pβ f eq dd p

p0

+ c

∫

pβφ f eq dd p

p0

. (C.22)

We then insert Eq. C.21, giving

Nβ = cBZβ − c3τ

[

∂νn

n
Kνβ + (1 −Gd)

∂νT

T
Kνβ +

∂νT

kBT 2
BZβν − ∂νUδ

kBT
Kδνβ

]

. (C.23)

Next, we apply to the above equation the projector ∆α
β
, giving

∆αβN
β = −c2τ

[

−a22∇αn − a22 (1 −Gd)
n∇αT

T
− n∇αT

T
+

n

c2
DUα

]

, (C.24)

in which we have used the integrals Kα1...αn defined in Appendix B, together with the definition of

the normalization factor B(n,T ) from Eq. 11.

Using the balance equations C.17, C.19 and C.18 it is possible to rearrange Eq. C.24 as

∆αβN
β = −nc2τ

a22Gd − 1

T

[

∇αT − T

P + ǫ
∇αP

]

. (C.25)

To conclude, we combine Eq. C.25 with Eq. C.1, getting:

qα = −he∆
α
βN
β = c2kBnτGd (a22Gd − 1)

[

∇αT − T

P + ǫ
∇αP

]

, (C.26)

from which, by direct comparison with Eq 25, we conclude that the thermal conductivity λ is

defined as

λ = c2kBnτGd (a22Gd − 1) . (C.27)

To give a few examples:

λ = c2kBnτGd

(

Gd − 1 −Gd

Ki1

K1

)

d = 1

λ = c2kBnτGd

(

Gd

2
− 1 −Gd

ζ2eζΓ(0, ζ)

2(ζ + 1)

)

d = 2

λ = c2kBnτGd

(

Gd

3
(5 −Gd) − 1 +Gdζ

Ki1

3K2

)

d = 3

λ = c2kBnτGd

(

Gd

8
(5 −Gd) − 1 +Gd

ζ4eζΓ(0, ζ)

8(ζ2 + 3ζ + 3)

)

d = 4

In the ultra relativistic limit (ζ → 0), the above expression simplifies to

λur =
d + 1

d
c2kBnτ . (C.28)
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C.1.4. Bulk Viscosity

In order to determine the analytic expression for the bulk viscosity we take the integral defini-

tion of the energy-momentum tensor together with Eq. C.4:

Tαβ = c

∫

pαpβ f
dd p

p0

= c

∫

pαpβ f eq dd p

p0

+ c

∫

pαpβφ f eq dd p

p0

. (C.29)

next, we insert Eq. C.21, giving

Tαβ = cBZαβ − c3τ

[

∂νn

n
Kναβ + (1 −Gd)

∂νT

T
Kναβ +

∂νT

kBT 2
BZναβ − ∂νUδ

kBT
Kδναβ

]

. (C.30)

By applying the projector ∆αβ and using the results of the integrals Kα1...αn given in Appendix B,

we obtain:

∆αβT
αβ = −dP + τd

[

kBT Dn + (1 −Gd)nkBDT +GdnkBDT + Pa43(1 +
2

d
)∆νUν

]

. (C.31)

By comparing Eq. C.31 with Eq. C.2 we directly get

̟ = −τ
[

kBT Dn + (1 −Gd)nkBDT +GdnkBDT + Pa43

(

1 +
2

d

)

∆νUν

]

. (C.32)

We then use balance equations C.17, C.19 and C.18 to remove the convective derivatives Dn and

DT , leading to:

̟ = Pτ

[(

1 +
kB

cv

)

+ a43

(

1 +
2

d

)]

∆νUν , (C.33)

which implies, by direct comparison with Eq 27, the following expression for the bulk viscosity

µ:

µ = Pτ

[

a43

(

1 +
2

d

)

−
ζ2 −G2

d
+ (d + 2)Gd

ζ2 −G2
d
+ (d + 2)Gd − 1

]

. (C.34)

To give a few examples:

µ = Pτ

(
ζ4 +G3

d
− 4G2

d
+ 4Gd − ζ2G2

d
+ 2ζ2Gd

−ζ2 +G2
d
− 3Gd + 1

+ ζ2 Ki1

K1

)

d = 1

µ = Pτ





ζ4 + 3ζ2 + 2G3
d
− 12G2

d
+ 18Gd − ζ2G2

d
+ 2ζ2Gd

4
(

−ζ2 +G2
d
− 4Gd + 1

) +
eζζ4Γ(0, ζ)

4(ζ + 1)




d = 2

µ = Pτ





5ζ4 + 4ζ2 + 3G3
d
− 18G2

d
+ 30Gd + ζ

2G3
d
− 8ζ2G2

d
− ζ4Gd + 13ζ2Gd

9
(

−ζ2 +G2
d
− 3Gd + 1

) − ζ3 Ki1

9K2




d = 3

µ = Pτ





ζ4Gd − ζ2G3
d
+ 13ζ2G2

d
− 35ζ2Gd − 8G3

d
+ 80G2

d
− 200Gd − 7ζ4 − 25ζ2

32
(

−G2
d
+ 6Gd + ζ2 − 1

) +
eζζ6Γ(0, ζ)

32(ζ2 + 3ζ + 3)




d = 4
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The bulk viscosity of a monoatomic ultra-relativistic gas vanishes independently with respect to

the number of spatial dimensions:

µur = 0 . (C.35)

C.1.5. Shear Viscosity

In order to determine the analytic expression for the shear viscosity η we start from the defini-

tion of the pressure deviator given in Eq C.3:

(∆γα∆
δ
β −

1

d
∆γδ∆αβ)T

αβ = π<αβ> . (C.36)

We can determine the LHS of the above equation by using the same expression for Tαβ previously

identified in the calculation of the bulk viscosity (Eq C.30). We split the task in two parts and

start by considering the first term of the LHS, which consists in applying the projector ∆
γ
α∆
δ
β

to the

energy-momentum tensor:

∆γα∆
δ
βT
αβ = c∆γα∆

δ
βZ
αβ − c3τ

[

∂νn

n
∆γα∆

δ
βK
ναβ + (1 −Gd)

∂νT

T
∆γα∆

δ
βK
ναβ

+
∂νT

kBT 2
∆γα∆

δ
βZ
ναβ −

∂νUµ

kBT
∆γα∆

δ
βK
µναβ

]

. (C.37)

Using the integral definitions in Appendix B we obtain:

∆γα∆
δ
βT
αβ = −Pd∆γδ + τ

[

kBT Dn∆γδ + nkBDT∆γδ + Pa43(∇γUδ + ∇δUγ + ∆δγ∂νUν)
]

. (C.38)

By using the balance equations for energy and momentum we get

∆γα∆
δ
βT
αβ = −P∆γδ + Pτ

[(

a43 − 1 − kB

cv

)

∆δγ∇νUν + a43(∇γUδ + ∇δUγ)
]

(C.39)

= −P∆γδ + µ∆δγ∇νUν + Pτa43

[

−2

d
∆δγ∇νUν + (∇γUδ + ∇δUγ)

]

.

We now consider the second term on the LHS of Eq. C.36 and apply the projection − 1
d
∆γδ∆αβ

to the energy momentum tensor, giving:

−1

d
∆γδ∆αβT

αβ = ∆γδ(P +̟) = ∆γδ(P − µ∇µUµ) . (C.40)

Putting all the pieces together we get

π<γδ> = (∆γα∆
δ
β −

1

d
∆γδ∆αβ)T

αβ = Pτa43

[

∇γUδ + ∇δUγ − 2

d
∆δγ∇νUν

]

. (C.41)

To conclude, we expand the RHS of Eq. 26:

π<γδ> = 2η∇<γUδ> = η
[

∇γUδ + ∇δUγ − 2

d
∆δγ∇νUν

]

. (C.42)
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which we compare with Eq. C.41 to identify the analytical expression for the shear viscosity η:

η = Pτa43 . (C.43)

To give a few examples:

η =
Pτ

3

(

Gd − ζ2 + ζ2 Ki1

K1

)

d = 1

η =
Pτ

8

(

2Gd − ζ2 +
eζζ4Γ(0, ζ)

ζ + 1

)

d = 2

η =
Pτ

15

(

3Gd − 5ζ2 +Gdζ
2 − ζ3 Ki1

K2

)

d = 3

η =
Pτ

48

(

8Gd − 7ζ2 +Gdζ
2 +

eζζ6Γ(0, ζ)

ζ2 + 3ζ + 3

)

d = 4

In the ultra relativistic limit (ζ → 0), the above expression simplifies to

ηur =
d + 1

d + 2
Pτ . (C.44)

C.2. Grad’s Method of Moments

The derivation of the transport coefficients following Grad’s method is based on the moments

of the particle distribution function f . Likewise for the Chapman Enskog procedure, the starting

point consists in defining the non-equilibrium part of f , which follows from an expansion in the

Hilbert Space of momenta around the equilibrium:

f = f eq(1 + aαpα + aαβp
αpβ + . . . ) . (C.45)

Most of the analytical derivation revolves around determining the expansion coefficients aα1...αN

by imposing suitable constraints on the fields of interest; in the most standard approach one in-

cludes the fourteen fields n,Uα,T, qα, ̟, π<αβ> which are used in the decomposition of the tensors

Nα and Tαβ (Eq. 22 and Eq. 23).

We will follow the same procedure described in [55], where the constraints on the fourteen

fields stem from the maximization of the entropy density s, and consisting of the following steps:

1. Using Lagrange multipliers method, we find an expansion for f , in the form of Eq C.45, that

extremizes the entropy density s, with the constraints given by definition of NαUα, UαT
αβ

and UαT
α<βγ>.

2. Using Grad’s ansatz for f we compute the third order moment Tαβγ.

3. The above expression is then plugged into Eq 2 to determine the non-equilibrium compo-

nents of the energy-momentum tensor.

4. By applying the projectors ∆δ
β
Uγ, ∆βγ, and ∆

(δ

β
∆
ǫ)
γ − 1

d
∆βγ∆

δǫ is it then possible to derive the

constitutive equations for the heat-flux, dynamic pressure and the pressure deviator. The ex-

pressions for the transport coefficients are finally derived by comparison with Eq 25, Eq 26,

and Eq 27.
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C.2.1. Moments expansion of the particle distribution function

We start from the definition of the entropy per particle s [55]:

s[ f ] = −kB

nc
Uα

∫

pα f ln f
dd p

p0

. (C.46)

Next, we define the following constraints which follow from the definitions of UαN
α, UαT

αβ

and UαT
α<βγ>:

g[ f ] = UαN
α − cUα

∫

pα f
dd p

p0

, (C.47)

gβ[ f ] = UαT
αβ − cUα

∫

pαpβ f
dd p

p0

, (C.48)

g<γβ>[ f ] = UαT
α<βγ> − cUα

∫

pαp<βpγ> f
dd p

p0

. (C.49)

We then apply Lagrange multipliers method, and look for the expression of f that extremizes the

functional F[ f ], defined as

F[ f ] = s[ f ] − λg[ f ] − λβgβ[ f ] − λ<γβ>g<γβ>[ f ] , (C.50)

and from which follows

0 =
∂F

∂ f
= −

∫

pαU
α

[

kB

nc
(ln f + 1) + c

(

λ + λβp
β + λ<γβ>p<γpβ>

)
]

dd p

p0

, (C.51)

f = exp

(

−1 − nc2

kB

(λ + λβp
β + λ<γβ>p<γpβ>)

)

. (C.52)

Since we know that at the equilibrium the above expression needs to reduce to the Maxwell-Jüttner

distribution, we can split the coefficients into two parts, the equilibrium (which we label as (E)),

and the non-equilibrium part (which we label as (NE)):

λ = λ(E) + λ(NE) , (C.53)

λβ = λ
(E)

β
+ λ

(NE)

β
, (C.54)

λ<γβ> = λ
(E)

<γβ>
+ λ

(NE)

<γβ>
, (C.55)

to then write:

f = f eq exp

(

−nc2

kB

(λ(NE) + λ
(NE)

β
pβ + λ

(NE)

<γβ>
p<γpβ>)

)

. (C.56)

Under the assumption of processes not far from equilibrium (λ(NE) ≪ 1, λ
(NE)

β
≪ 1, λ

(NE)

<γβ>
≪ 1) it

is possible to linearly expand the exponential:

f ∼ f eq

[

1 − nc2

kB

(λ(NE) + λ
(NE)

β
pβ + λ

(NE)

<γβ>
p<γpβ>)

]

. (C.57)
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Applying the projectors defined in Appendix A, we can decompose the vector λ
(NE)

β
and the La-

grange coefficients tensor, λ
(NE)

γβ
in the following way:

λ
(NE)

β
= λ̃Uβ + λ̃γ∆

γ

β
, (C.58)

λ
(NE)

<γβ>
= ΛUγUβ +

1

2
Λα(∆

α
γUβ + ∆

α
βUγ) + Λαδ(∆

α
γ∆
δ
β −

1

d
∆αδ∆γβ) . (C.59)

The expression for Grad’s distribution function now reads as:

f = f eq

[

1 − nc2

kB

(

λ(NE) + λ̃Uβp
β + λ̃γ∆

γ

β
pβ + ΛUγUβp

γpβ

+Λα∆
α
γUβp

γpβ + Λαδ∆
<α
γ ∆

δ>
β pγpβ

)]

, (C.60)

where we have used the identity λ
(NE)

<γβ>
p<γpβ> = λ

(NE)

<γβ>
pγpβ.

The next step consists in finding the unknowns λ(NE), λ̃, λ̃γ, Λ, Λα, Λαδ. In order to do so, we

plug Eq. C.60 in the integral definition of Nǫ and T µν (Eq.4):

Nǫ = cBZǫ − B
nc3

kB

[

λ(NE)Zǫ + λ̃UβZ
βǫ + λ̃γ∆

γ

β
Zβǫ + ΛUγUβZ

ǫγβ

+Λα∆
α
γUβZ

ǫγβ + Λαδ∆
<α
γ ∆

δ>
β Zǫγβ

]

, (C.61)

T µν = cBZµν − B
nc3

kB

[

λ(NE)Zµν + λ̃UβZ
βµν + λ̃γ∆

γ

β
Zβµν + ΛUγUβZ

µνγβ

+Λα∆
α
γUβZ

µνγβ + Λαδ∆
<α
γ ∆

δ>
β Zµνγβ

]

, (C.62)

with integrals Zα1...αn computed in appendix B. Combining the above equations with Eq C.6, and

Eq C.7, and together with the constitutive equations Eq C.1, Eq C.2, Eq C.3 it is possible to obtain

the following linear system of equations for the Lagrange coefficients:






0 = λ(NE) + λ̃kBT (Gd − 1) + Λk2
B
T 2

(

dGd + ζ
2
)

0 = Λα∆
αǫk2

B
T 2

[

(d + 2)Gd + ζ
2
]

+ kBTGdλ̃γ∆
γǫ

0 = λ(NE)(Gd − 1) + kBT λ̃
(

dGd + ζ
2
)

+ k2
B
ΛT 2

[

d2Gd + d
(

ζ2 + 2Gd

)

+ ζ2(Gd − 1)
]

qµ = −kBc2n2T 2Gd

(

λ̃γ∆
γµ + Λα∆

αµGdkBT
)

̟ = −c2n2T
(

GdkBT λ̃ + k2
B
ΛT 2

[

(d + 2)Gd + ζ
2
]

+ λ(NE)
)

π<ǫλ> = −2n2k2
B
T 3GdΛ

<ǫλ>

60



The solution reads as:

λ(NE) = −
ζ2

(

d(Gd + 1) − (Gd − 1)2
)

+ dGd(d − 2Gd + 2) + ζ4

ζ2(d − 2Gd) +Gd(−d +Gd − 1)(−d + 2Gd − 2)

̟

c2n2T
, (C.63)

λ̃ = −
d
(

Gd(d −Gd + 3) + ζ2
)

ζ2(d − 2Gd) +Gd(−d +Gd − 1)(−d + 2Gd − 2)

̟

c2kBn2T 2
, (C.64)

Λ =
ω

(

Gd(d −Gd + 2) + ζ2 − 1
)

ζ2(d − 2Gd) +Gd(−d +Gd − 1)(−d + 2Gd − 2)

̟

c2k2
B
n2T 3

, (C.65)

λ̃ν∆νµ =
(d + 2)Gd + ζ

2

Gd(−(d + 2)Gd − ζ2 +G2
d
)

qµ

c2kBn2T 2
, (C.66)

Λν∆νµ =
1

(d + 2)Gd + ζ2 −G2
d

qµ

c2k2
B
n2T 3

, (C.67)

Λ<µν> = −
π<µν>

2Gdk2
B
n2T 3

, (C.68)

which together with Eq. C.60 completely determines Grad’s ansatz for the distribution function.

C.2.2. Third order moment

Having determined an expression for the particle distribution function f , we can now calculate

its third order moment directly from the integral definition

Tαβγ = c

∫

pαpβpγ f
dd p

p0

, (C.69)

Tαβγ = cBZαβγ − B
nc3

kB

[

λ(NE)Zαβγ + λ̃UµZ
µαβγ + λ̃µ∆

µ
νZ
ναβγ + ΛUµUνZ

µναβγ (C.70)

+Λǫ∆
ǫ
νUµZ

µναβγ + Λγδ∆
<γ
µ ∆

δ>
ν Zµναβγ

]

,

Tαβγ = (nC1 + ωC2)UαUβUγ + (nD1 + ωD2)(Uαηβγ + Uβηγα + Uγηβα) (C.71)

+C3

(

qγηαβ + qβηαγ + qαηγβ
)

+ D3

(

qαUγUβ + qγUαUβ + qβUγUα
)

+C4

[

Uαπ<βγ> + Uβπ<αγ> + Uγπ<αβ>
]

,
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with coefficients

C1 =((d + 3)Gd + ζ
2)

(

kBT

c2

)2

,

C2 =
(d + 3)Gd

(

d2 + (d + 6)G2
d
− (d + 2)(d + 6)Gd + 5d + 6

)

ζ2(d − 2Gd) +Gd(−d +Gd − 1)(−d + 2Gd − 2)

+
ζ2(−3dGd + d + 2(Gd − 5)Gd + 2) − 2ζ4

ζ2(d − 2Gd) +Gd(−d +Gd − 1)(−d + 2Gd − 2)

(

kBT

c4

)

,

C3 =
Gd

G2
d
− (d + 2)Gd − ζ2

(

kBT

c2

)

, C4 =
(d + 3)Gd + ζ

2

Gd

(

kBT

c2

)

,

D1 = −
c2

d + 3
(C1 − m2), D2 = −

c2

d + 3
C2, D3 =

−G2
d

(

d + ζ2 + 3
)

+ (d + 2)ζ2Gd + ζ
4

c2G2
d

C3 .

C.2.3. Grad’s transport coefficients

In order to determine the transport coefficients we now plug the third order moment, defined

in the previous section, into the relativistic Boltzmann equation, multiply left and right by cpβpγ

and integrate in momentum space, leading to:

c

∫

pβpγpα
∂ f

∂xα
dd p

p0

= −Uα

cτ

∫

pαpβpγ ( f − f eq)
dd p

p0

. (C.72)

Next, we take the derivative out the integral

Uα(T
αβγ − T

αβγ

E
) = −c2τ∂αT

αβγ , (C.73)

and use the Maxwellian iteration method so that only the equilibrium part of Tαβγ is left in the

derivative:

Uα(T
αβγ − T

αβγ

E
) = −c2τ∂αT

αβγ

E
. (C.74)

Note that the third order moment at the equilibrium, T
αβγ

E
, can be obtained directly from Eq. C.71

by setting to zero the non-equilibrium quantities qα = 0, ̟ = 0 and π<αβ> = 0:

T
αβγ

E
= nC1UαUβUγ + nD1(Uαηβγ + Uβηγα + Uγηβα) .

We now multiply both sides of equation Eq C.74 by respectively ∆δ
β
Uγ, ∆βγ, and ∆

(δ

β
∆
ǫ)
γ −

1
d
∆βγ∆

δǫ to obtain:

c2qδ(C3 + c2D3) = nc4τ(D1 + ζ∂ζD1)
∇δT

T
− c2τ

(

D1

kBT
+

n(c2C1 + D1)

P + ǫ

)

∇δP ,

−c4 d

d + 3
̟C2 = −nτc2

(

2D1 +
kB

cv

dζ∂ζD1

)

∇αUα ,

c2C4π
<δǫ> = −2c2nτD1∇<δUǫ> .
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By direct comparison of the above equations with respectively Eq 25, Eq 26, and Eq 27, we can

define the analytic form for the relativistic transport coefficients λ, µ, and η:

λ = −c2kBnτGd

(

(d + 2)Gd + ζ
2 −G2

d

)2

−G2
d

(

d + ζ2 + 2
)

+ (d + 2)ζ2Gd + ζ4
, (C.75)

µ = Pτ

(

ζ2(d − 2Gd) +Gd(−d +Gd − 1)(−d + 2Gd − 2)
)2

d
(

Gd(d −Gd + 2) + ζ2 − 1
) × (C.76)

1

G2
d

(

d2 + 8d − 2ζ2 + 12
) −Gd

(

d2 + d
(

5 − 3ζ2
) − 10ζ2 + 6

)

+ ζ2
(−d + 2ζ2 − 2

) − (d + 6)G3
d

,

η =
G2

d
Pτ

(d + 3)Gd + ζ2
. (C.77)

The ultra-relativistic limit (ζ → 0) of the above expressions writes as:

λur =
d + 1

d + 2
c2τnkB , (C.78)

µur = 0 , (C.79)

ηur =
d + 1

d + 3
Pτ . (C.80)

D. Sod’s shock tube: analytic solution in (d + 1) dimensions

In this appendix section, we present details on the derivation of a semi-analytical solution for

the Sod’s shock tube problem. We follow the same approach used in [89], where the analytical

solution to the special relativistic shock-tube problem was presented for the first time (see also [43]

for a comprehensive summary). We extend the original calculations to account for the evolution

of an inviscid ultra-relativistic gas in (d + 1)-dimensions.

The initial conditions of the benchmark write as follows:

(P, n, β) =






(PL, nL, 0) x < 0

(PR, nR, 0) x > 0
, (D.1)

where we assume nL > nR and PL > PR, with the subscript L and R referring respectively to the

left and right sides of a membrane placed at the origin. Once the membrane is removed the discon-

tinuities decay, and the time evolution of the flow is characterized by two distinct components: a

rarefaction wave traveling from the initial field discontinuity to the left, and a shock wave traveling

from the initial field discontinuity to the right. Therefore, at a generic time t > 0 we can identify

four distinct zones, portrayed in the example in Fig. 12 in the main text:

• The unperturbed left zone (L), where all fields keep their initial values.

• The rarefaction zone (*), with a rarefaction wave traveling to the left. We define xH as the

coordinate corresponding to the head of the rarefaction wave, separating zone (L) and (*),

while xT, corresponding to the tail of the rarefaction zone separates (*) from the shock zone

(C).
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• The shock zone (C), characterized by the presence of the shock wave. In this area some

fields present a discontinuity, such as for example the density and temperature fields. We

distinguish by labeling with I and II the different values at the two sides of the discontinuity,

thus writing nI and nII for the density, and TI , TII for the temperature. For fields that do

not exhibit a discontinuity, such as pressure and velocity, we have PI = PII = PC and

βI = βII = βC. The coordinate of the discontinuity is given by xC, while xS corresponds to

the front of the shock wave.

• The unperturbed left zone (R), where, again, all fields keep their initial values.

In what follows we will determine the unknown fields by solving the relativistic Euler equa-

tions, starting by taking into consideration the rarefaction zone.

D.1. Rarefaction wave

We start from the conservation equations, which we find convenient to rewrite here for the

specific case of a ultra-relativistic gas:

Dn + n∇αUα = 0 , (D.2)

∇βP − P + ǫ

c2
DUβ = 0 , (D.3)

DP + PΓ∇αUα = 0 . (D.4)

where

Γ =
cP

cv

=

(

1 +
kB

cv

)

,

cv = kB

[

(d + 2)(d + 1) − (d + 1)2 − 1
]

,

cP = kB

[

(d + 2)(d + 1) − (d + 1)2
]

,

and we recall the ultra-relativistic equation of state:

P = nkBT ,

ǫ = dnkBT .

The rarefaction wave is self-similar with respect to the variable w = x/t. We can therefore

express the conservation equations in terms of w, getting:

(

β − w

c

)

∂wn = −nγ2

(

1 − βw

c

)

∂wβ , (D.5)

(

β − w

c

)

∂wβ = −
1

(P + ǫ)γ2

(

1 − βw

c

)

∂w p , (D.6)

(

β − w

c

)

∂w p = −γ2Γ

(

1 − βw

c

)

∂wβ . (D.7)
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Combining the last two equations it is possible to eliminate the pressure derivative:

(

β − w

c

)2

=

(

1 − βw

c

)

c2
s , (D.8)

where

cs =

√

ΓP

P + ǫ
=

1
√

d
, (D.9)

is the (c normalized) speed of sound for an ultra-relativistic fluid.

It is then possible to calculate w:

w± = c

(

β ∓ cs

1 ∓ βcs

)

. (D.10)

In what follows we only take into account w+, since w− represents a rarefaction wave moving to

the right. We therefore plug w+ into equations D.5 and D.7, giving:

cs

∂wn

n
= −γ2∂wβ , (D.11)

1

(d + 1)cs

∂wP

P
= −γ2∂wβ . (D.12)

Next, we integrate both equations in dw, which allows to identify the following Riemann

invariant quantities:

n

(

1 + β

1 − β

) 1
2cs

= kn = cost. , (D.13)

P

(

1 + β

1 − β

) (d+1)cs
2

= kP = cost. . (D.14)

At the head of the rarefaction wave, where β = βL = 0, we have kn = nL and kp = PL. It

directly follows that along the rarefaction wave (we label quantities in this area with a ∗) density

and pressure are given by

n∗ = nL

(

1 − β∗
1 + β∗

) 1
2cs

, (D.15)

P∗ = PL

(

1 − β∗
1 + β∗

) (d+1)cs
2

, (D.16)

with

β∗ =

w+
c
+ cs

1 + w+
c

cs

. (D.17)
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D.2. Shock wave

In the shock wave zone the hydrodynamic fields present a discontinuity. It is useful to consider

a reference frame K′ in which the shock front is at rest. In what follows we label with a ′ quantities

evaluated in the reference frame K′. The conditions that relate the states on either side of the

shock are defined by the Rankine Hugoniot junction conditions [106]. These conditions stem from

imposing the continuity of the normal component of the energy momentum tensor Tαβ across the

interfaces.

The Rankine Hugoniot conditions applied on the C(II) − R interface write al follows:

nIIγ
′

Cβ
′

C = nRγ
′

Rβ
′

R , (D.18)

PC + (nIIǫC + PC)γ
′2
C β

′2
C = PR + (nRǫR + PR)γ

′2
R β

′2
R , (D.19)

(nIIǫC + PC)γ
′2
C β

′

C = (nRǫR + PR)γ
′2
R β

′

R . (D.20)

Simple manipulations allow to recast the above equations into

nIIγ
′

Cβ
′

C = nrγ
′

Rβ
′

R , (D.21)

γ
′2
C PC

[

1 + β
′2
C d

]

= γ
′2
R PR

[

1 + β
′2
R d

]

, (D.22)

Pcγ
′2
C β

′

C = Prγ
′2
R β

′

R , (D.23)

and by solving Eq. D.22 and Eq. D.23 for β
′

C
and β

′

R
we obtain:

β
′

C = −

√

PC + dPR

d(PR + dPC)
, β

′

R = −

√

PR + dPC

d(PC + dPR)
. (D.24)

The above expressions need to be converted back to the frame K in which the unperturbed fluid

is at rest. We do so by applying a Lorenz boost with velocity βs, where βs represents the shock

front velocity:
[

(U0
C
)
′

(Uz
C
)
′

]

=

[

γs −γsβs

−γsβs γs

] [

U0
C

Uz
C

]

,

[

(U0
R
)
′

(Uz
R
)
′

]

=

[

γs −γsβs

−γsβs γs

] [

U0
R

Uz
R

]

from which it follows

β
′

C =
βC − βs

1 − βsβC

, β
′

R =
βR − βs

1 − βsβR

. (D.25)

In the frame K the velocity at the right of the shock front is zero (βR = 0), therefore we have

βs = −β
′

R

βC =
β
′

C
− β′

R

1 − β′
R
β
′
C

and finally

βs =

√

PR + dPC

d[PC + dPR]
, βC =

√

d(PC − PR)2

[PR + dPC][PC + dPR]
. (D.26)
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From Eq. D.21 we can calculate nII:

nII = nr

γ
′

R
β
′

R

γ
′
C
β
′
C

= nR

√

PC[PR + dPC]

PR[PC + dPR]
. (D.27)

Next, we consider the contact point between zones ∗ and C(I), having spatial coordinate xT.

From Eq. D.16 determine the self-similarity variable wT = xT/t:

wT = c
1 − cs − (1 + cs)

(
PC

PL

) 2
(d+1)cs

1 − cs + (1 + cs)
(

PC

PL

) 2
(d+1)cs

. (D.28)

The pressure on the central plateau PC can be found by numerically solving the equation

β∗(wT) = βC, thus:

(
PL

PC

) 2
(d+1)cs − 1

(
PL

PC

) 2
(d+1)cs + 1

−

√

d(PC − PR)2

[PR + dPC][PC + dPR]
= 0 . (D.29)

Finally, the density field nI can be obtained from Eq. D.15:

nI = n∗(wT) = nL

(

PC

PL

) 1

(d+1)c2
s

. (D.30)

D.3. Full Solution

To conclude this section we summarize the full solution of the relativistic Sod’s shock tube for

a inviscid ultra-relativistic gas in (d + 1)-dimensions.






xH = −cs c t

xT =
βC−cs

1−csβC
c t

xC = βC c t

xS = βs c t

β(x, t) =






βL x < xH

β∗ =
w/c+cs

1+csw/c
xH < x < xT

βC =

√

d(PC−PR)2

[PR+dPC][PC+dPR]
xT < x < xS

βR x > xS

n(x, t) =






nL x < xH

n∗ = nL

(
(1−cs)(1−w/c)

(1+cs)(1+w/c)

) 1
2cs xH < x < xT

nI = nL

(
PC

PL

) 1

(d+1)c2
s xT < x < xC

nII = nR

√

PC[PR+dPC]

PR[PC+dPR]
xC < x < xS

nR x > xS
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P(x, t) =






PL x < xH

P∗ = PL

(
(1−cs)(1−w/c)

(1+cs)(1+w/c)

) (d+1)cs
2

xH < x < xT

PC xT < x < xS

PR x > xS

where

cs =
1
√

d

βs =

√

PR + dPC

d[PC + dPR]

w = c
1 − cs − (1 + cs)

(
PC

PL

) 2
(d+1)cs

1 − cs + (1 + cs)
(

PC

PL

) 2
(d+1)cs

and the pressure value PC can be found by numerically solving the equation β∗ = βC:

(
PL

PC

) 2
(d+1)cs − 1

(
PL

PC

) 2
(d+1)cs + 1

=

√

d(PC − PR)2

[PR + dPC][PC + dPR]
(D.31)

E. Numerical Evaluation of Bessel Functions

The implementation of a RLBM simulation in mildly relativistic regimes requires the evalua-

tion of several coefficients containing Bessel functions. An example is the quantity:

Gd = ζ
K d+3

2
(ζ)

K d+1
2

(ζ)
. (E.1)

For even dimensions, the above expression simplifies to ratios of well behaved polynomials,

since Bessel functions of fractional order reduce to reverse Bessel polynomials [107]. For odd

dimensions, we employ the approximations provided by Abramowitz and Stegun [105], which we

report here for completeness:

For 0 < x ≤ 2, with t = x/2

K0(x) = − log(t)I0(x) − 0.57721566 + 0.42278420t2 + 0.23069756t4 + 0.03488590t6

+ 0.00262698t8 + 0.00010750t10 + 0.00000740t12 + ǫ (E.2)

xK1(x) =x log(t)I1(x) + 1 + 0.15443t2 − 0.67278579t4 − 0.18156897t6

− 0.01919402t8 − 0.00110404t10 − 0.00004686t12 + ǫ (E.3)
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For x ≥ 2, with t = 2/x

x
1
2 exK0(x) =1.25331414 − 0.07832358t + 0.02189568t2 − 0.01062446t3 + 0.00587872t4

− 0.00251540t5 + 0.00053208t6 + ǫ (E.4)

x
1
2 exK1(x) =1.25331414 + 0.23498619t − 0.03655620t2 + 0.01504268t3 − 0.00780353t4

+ 0.00325614t5 − 0.00068245t6 + ǫ (E.5)

In the above I0 and I1 are modified Bessel function of the first kind, which can be approximated

for 0 ≤ x ≤ 3.75, with t = x/3.75

I0(x) =1 + 3.5156229t2 + 3.0899424t4 + 1.20674t6 + 0.2659732t8 + 0.03607t10

+ 0.00458t12 + ǫ (E.6)

I1(x)

x
=0.5 + 0.87890594t2 + 0.51498869t4 + 0.15084934t6 + 0.2658733t8 + 0.00301532t10

+ 0.00032411t12 + ǫ (E.7)

For x ≥ 3.75, with t = 3.75/x

x
1
2 exI0(x) =0.39894228 + 0.01328592t + 0.00225319t2 − 0.00157565t3 + 0.00916281t4

− 0.02057706t5 + 0.02635537t6 − 0.01647633t7 + 0.00392377t8 + ǫ (E.8)

x
1
2 exI1(x) =0.39894228 − 0.03988t − 0.00362018t2 + 0.00163801t3 − 0.01031555t4

+ 0.02282967t5 − 0.02895312t6 + 0.01787654t7 − 0.00420059t8 + ǫ (E.9)

Bessel functions of higher indexes can be calculated starting from K0 and K1 using the recur-

rence relation

Kν+1(x) = Kν−1(x) − 2ν

x
Kν(x) . (E.10)

We remark that since in general we are mostly interested in approximated ratios of Bessel

functions, the above expressions can be further optimized, allowing in particular to avoid the

calculation of exponential functions.

The calculation of transport coefficient requires the evaluation of Bickley-Naylor functions, in

odd dimensions, and of the incomplete Euler Gamma function, in even dimensions. We report a

few useful expressions for their numerical approximation:

For x > 4

Ki1(x) = e−x(1.253314x−3.5(−2.592773 + x(1.007812 + x(−0.625 + x)))) (E.11)

And for x < 4

Ki1(x) = 1.570796 − 1.115931x − 0.120772x3 − 0.005674x5 − 0.000129x7 (E.12)

− 1.740915 · 10−6x9 − 1.535233 · 10−8x11 − 9.574254 · 10−11x13

+ x log(x)(1 + 0.083333x2 + 0.003125x4 + 0.000062x6 + 7.535204 · 10−7x8

+ 6.165167 · 10−9x10 + 3.622694 · 10−11x12)
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For x < 2.27238:

Γ(0, x) = −8.193389712664089 · 10−13x14 + 1.2353110643708935 · 10−11x13

− 1.7397297489890083 · 10−10x12 + 2.27746439867652 · 10−9x11

− 2.755731922398589 · 10−8x10 + 3.0619243582206544 · 10−7x9

− 3.1001984126984127 · 10−6x8 + 0.0000283447x7 − 0.000231481x6 + 0.00166667

x5 − 0.0104167x4 + 0.0555556x3 − 0.25x2 + x − 1. log(x) − 0.577216 (E.13)

For 2.27238 < x < 7.43645

Γ(0, x) = 4.178709619181551 · 10−11x14 − 3.0381052760184365 · 10−9x13

+ 1.0237477782471583 · 10−7x12 − 2.121002724219454 · 10−6x11

+ 0.0000302179x10 − 0.000313651x9 + 0.00245114x8 − 0.0146941x7

+ 0.0681914x6 − 0.245306x5 + 0.67964x4 − 1.42611x3 + 2.18696x2 − 2.25643x + 1.22105

(E.14)

For x > 7.43645

Γ(0, x) = 0.1175e−x log

(

1

x
+ 1

)

+ 0.44125e−x log

(

2

x
+ 1

)

(E.15)
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F. Relativistic Orthogonal Polynomials

In this appendix we list the relativistic orthogonal polynomials, up to the second order in

(3 + 1), (2 + 1) and (1 + 1) dimensions. Third order polynomials are available as supplemental

material [73]. All polynomials have been derived following a Gram-Schmidt procedure starting

from the set V = {1, pα, pαpβ . . . } (α, β ∈ {0, x, y, z,w}), and using a weighting function ω, which

is specified for each case.

We label polynomials of order n using the notation J
(n)
m1...mn

, mi ∈ 0, x, y, z, with the subscript m

referring to the corresponding element of the generating basis V . Throughout in this appendix,

m̃ = m/T0, p̃α = pα/T0 and ζ = m/T .

F.1. (1+1) dimensions

We use the weighting function

ω(p0,T0) =
1

2K0(m̃)
exp

(

−p̃0
)

, (F.1)

and the shorthands

G = ζ
K1 (ζ)

K0 (ζ)
, G̃ = m̃

K1 (m̃)

K0 (m̃)
.

J(0) = 1

J
(1)

0
=

p̃0

√
−G̃2 + G̃ + m̃2

− G̃
√
−G̃2 + G̃ + m̃2

J(1)
x =

p̃x

√
G̃

J
(2)

00
=

(

p̃0
)2

√

G̃
(

3 − G̃

−G̃2+G̃+m̃2

)

+ 2m̃2

+
p̃0

(

m̃2 −
(

G̃ − 2
)

G̃
)

((

G̃ − 1
)

G̃ − m̃2
) √

G̃
(

3 − G̃

−G̃2+G̃+m̃2

)

+ 2m̃2

+
G̃m̃2 − G̃2

(

m̃2 + 1
)

+ m̃4

((

G̃ − 1
)

G̃ − m̃2
) √

G̃
(

3 − G̃

−G̃2+G̃+m̃2

)

+ 2m̃2

J
(2)

0x
=

p̃0 p̃x

√

− m̃4

G̃
+

(

G̃ − 1
)

m̃2 + 2G̃

+
p̃x

(

−2G̃ − m̃2
)

G̃

√

− m̃4

G̃
+

(

G̃ − 1
)

m̃2 + 2G̃

As discussed in the main-text, it can be useful to define the polynomials in the 1D case also in

terms of the weighting function

ω(p0,T0) =
1

2m̃K1(m̃)
exp

(

−p̃0
)

; (F.2)

in this case, we define:
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G = ζ
K2 (ζ)

K1 (ζ)
, G̃ = m̃

K2 (m̃)

K1 (m̃)
.

J(0) =
1

√

G̃−2
m̃2

J
(1)

0
=

p̃0

√

− m̃2

G̃−2
+ G̃ − 1

− m̃2

(

G̃ − 2
) √

− m̃2

G̃−2
+ G̃ − 1

J(1)
x = p̃x

J
(2)

00
=

(

p̃0
)2

√
G̃−2

−(G̃−3)G̃+m̃2−2
+ 2G̃ − 1

+
p̃0

(

m̃2 −
(

G̃ − 2
)

G̃
)

((

G̃ − 3
)

G̃ − m̃2 + 2
) √

G̃−2

−(G̃−3)G̃+m̃2−2
+ 2G̃ − 1

+
m̃2

((

G̃ − 3
)

G̃ − m̃2 + 1
)

(

−
(

G̃ − 3
)

G̃ + m̃2 − 2
) √

G̃−2

−(G̃−3)G̃+m̃2−2
+ 2G̃ − 1

J
(2)

0x
=

p̃0 p̃x

√

m̃2 −
(

G̃ − 3
)

G̃

− p̃xG̃
√

m̃2 −
(

G̃ − 3
)

G̃

F.2. (2+1) dimensions

For the polynomials in 2 space dimensions, we use the weighting function

ω(p0,T0) =
em̃

2π
exp

(

−p̃0
)

, (F.3)

and the shorthand

G = ζ + 1, G̃ = m̃ + 1 .
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J(0) = 1

J
(1)

0
= p̃0 − G̃

J(1)
x =

p̃x

√
G̃

J(1)
y =

p̃y

√
G̃

J
(2)

00
= p̃0 (−m̃ − 2) +

1

2
m̃ (m̃ + 4) +

(

p̃0
)2

2
+ 1

J
(2)

0x
=

p̃0 p̃x (m̃ + 1)

G̃

√

2m̃(m̃+3)+3

G̃

+
p̃x (−m̃ (m̃ + 3) − 3)

G̃

√

2m̃(m̃+3)+3

G̃

J(2)
xx = −

(

p̃0
)2

2
√

3G̃ + m̃2
+

( p̃x)2

√
3G̃ + m̃2

+
m̃2

2
√

3G̃ + m̃2

J
(2)

0y
=

p̃0 p̃y (m̃ + 1)

G̃

√

2m̃(m̃+3)+3

G̃

+
p̃y (−m̃ (m̃ + 3) − 3)

G̃

√

2m̃(m̃+3)+3

G̃

J(2)
xy =

p̃x p̃y

√
3G̃ + m̃2

F.3. (3+1) dimensions

In 3D we use the weighting function

ω(p0,T0) =
1

4πm̃K1(m̃)
exp

(

−p̃0
)

, (F.4)

and the shorthands

G = ζ
K2 (ζ)

K1 (ζ)
, G̃ = m̃

K2 (m̃)

K1 (m̃)
.
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J(0) = 1

J
(1)

0
=

p̃0

√

m̃2 −
(

G̃ − 3
)

G̃

− G̃
√

m̃2 −
(

G̃ − 3
)

G̃

J(1)
x =

p̃x

√
G̃

J(1)
y =

p̃y

√
G̃

J(1)
z =

p̃z

√
G̃

J
(2)

00
=

(

p̃0
)2

√

3G̃

(

3G̃

(G̃−3)G̃−m̃2
+ 5

)

+ 6m̃2

+

√
3p̃0

(

m̃2 −
(

G̃ − 4
)

G̃
)

((

G̃ − 3
)

G̃ − m̃2
)
√

G̃

(

3G̃

(G̃−3)G̃−m̃2
+ 5

)

+ 2m̃2

+
3G̃m̃2 − G̃2

(

m̃2 + 3
)

+ m̃4

((

G̃ − 3
)

G̃ − m̃2
)
√

3G̃

(

3G̃

(G̃−3)G̃−m̃2
+ 5

)

+ 6m̃2

J
(2)

0x
=

p̃0 p̃x

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

+
p̃x

(

−4G̃ − m̃2
)

G̃

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

J(2)
xx = −

(

p̃0
)2

2
√

3
√

4G̃ + m̃2
+

√
3 ( p̃x)2

2
√

4G̃ + m̃2
+

m̃2

2
√

3
√

4G̃ + m̃2

J
(2)

0y
=

p̃0 p̃y

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

+
p̃y

(

−4G̃ − m̃2
)

G̃

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

J(2)
xy =

p̃x p̃y

√
4G̃ + m̃2

J(2)
yy = −

(

p̃0
)2

2
√

4G̃ + m̃2
+

( p̃x)2

2
√

4G̃ + m̃2
+

( p̃y)2

√
4G̃ + m̃2

+
m̃2

2
√

4G̃ + m̃2

J
(2)

0z
=

p̃0 p̃z

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

+
p̃z

(

−4G̃ − m̃2
)

G̃

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

J(2)
xz =

p̃x p̃z

√
4G̃ + m̃2

J(2)
yz =

p̃y p̃z

√
4G̃ + m̃2
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G. Relativistic Orthogonal Projections

In this appendix we list the expressions of the orthogonal projections, up to the second order

in (3 + 1), (2 + 1) and (1 + 1) dimensions. Third order coefficients are available as supplemental

material [73].

The notation used for the projection coefficients is the same previously introduced for the

orthogonal polynomials; we write

ak = bk n

T0

G.1. (1+1) dimensions

For the polynomials derived using the weighting function

ω(p0,T0) =
1

2K0(m̃)
exp

(

−p̃0
)

, (G.1)

and with the shorthands

G = ζ
K1 (ζ)

K0 (ζ)
, G̃ = m̃

K1 (m̃)

K0 (m̃)
.

we have:

b(0) =
1

GT̃

b
(1)

0
=

U0

√
−G̃2 + G̃ + m̃2

− G̃

GT̃
√
−G̃2 + G̃ + m̃2

b(1)
x =

U x

√
G̃

b
(2)

00
=

(

U0
)2 (

2GT̃ 2 + m̃2
)

GT̃

√

G̃
(

3 − G̃

−G̃2+G̃+m̃2

)

+ 2m̃2

+
U0

(

m̃2 −
(

G̃ − 2
)

G̃
)

((

G̃ − 1
)

G̃ − m̃2
) √

G̃
(

3 − G̃

−G̃2+G̃+m̃2

)

+ 2m̃2

+
Gm̃2T̃ 2 + G̃

(

GT̃ 2 + m̃2
)

− G̃2
(

GT̃ 2 + m̃2 + 1
)

+ m̃4

GT̃
((

G̃ − 1
)

G̃ − m̃2
) √

G̃
(

3 − G̃

−G̃2+G̃+m̃2

)

+ 2m̃2

b
(2)

0x
=

U0U xT̃
(

m̃2

T̃ 2 + 2G
)

G

√

− m̃4

G̃
+

(

G̃ − 1
)

m̃2 + 2G̃

−
U x

(

2G̃ + m̃2
)

G̃

√

− m̃4

G̃
+

(

G̃ − 1
)

m̃2 + 2G̃

For the polynomials defined using the weighting function

ω(p0,T0) =
1

2m̃K1(m̃)
exp

(

−p̃0
)

, (G.2)

and using the shorthands
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G = ζ
K2 (ζ)

K1 (ζ)
, G̃ = m̃

K2 (m̃)

K1 (m̃)
.

we have:

b(0) =
(G − 2)T̃

m̃2

√

G̃−2
m̃2

b
(1)

0
=

U0

√

− m̃2

G̃−2
+ G̃ − 1

− (G − 2)T̃
(

G̃ − 2
) √

− m̃2

G̃−2
+ G̃ − 1

b(1)
x = U x

b
(2)

00
=

G
(

U0
)2

T̃
√

G̃−2

−(G̃−3)G̃+m̃2−2
+ 2G̃ − 1

+
U0

(

m̃2 −
(

G̃ − 2
)

G̃
)

((

G̃ − 3
)

G̃ − m̃2 + 2
) √

G̃−2

−(G̃−3)G̃+m̃2−2
+ 2G̃ − 1

−
T̃

(

−Gm̃2 + (G − 1)
(

G̃ − 3
)

G̃ + m̃2 +G
)

((

G̃ − 3
)

G̃ − m̃2 + 2
) √

G̃−2

−(G̃−3)G̃+m̃2−2
+ 2G̃ − 1

b
(2)

0x
=

GU0U xT̃
√

m̃2 −
(

G̃ − 3
)

G̃

− U xG̃
√

m̃2 −
(

G̃ − 3
)

G̃

G.2. (2+1) dimensions

We use the shorthands

G = ζ + 1, G̃ = m̃ + 1 .
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b(0) =
1

m̃ + T̃

b
(1)

0
= U0 − G̃

m̃ + T̃

b(1)
x =

U x

√
G̃

b(1)
y =

Uy

√
G̃

b
(2)

00
=

1

2

(

U0
)2

T̃

(

m̃2

GT̃ 2
+ 3

)

+
1

2

(

m̃ (m̃ + 4) + 2

m̃ + T̃
− T̃

)

+ U0 (−m̃ − 2)

b
(2)

0x
=

U0U x (m̃ + 1) T̃
(

m̃2

T̃ 2 + 3G
)

GG̃

√

2m̃(m̃+3)+3

G̃

− U x (m̃ (m̃ + 3) + 3)

G̃

√

2m̃(m̃+3)+3

G̃

b(2)
xx = −

(

U0
)2 (

3GT̃ 2 + m̃2
)

2GT̃
√

3G̃ + m̃2
+

(U x)2 T̃
(

m̃2

T̃ 2 + 3G
)

G
√

3G̃ + m̃2
+

3GT̃ 2 + m̃2

2GT̃
√

3G̃ + m̃2

b
(2)

0y
=

U0Uy (m̃ + 1) T̃
(

m̃2

T̃ 2 + 3G
)

GG̃

√

2m̃(m̃+3)+3

G̃

− Uy (m̃ (m̃ + 3) + 3)

G̃

√

2m̃(m̃+3)+3

G̃

b(2)
xy =

U xUyT̃
(

m̃2

T̃ 2 + 3G
)

G
√

3G̃ + m̃2

G.3. (3+1) dimensions

We use the shorthands

G = ζ
K2 (ζ)

K1 (ζ)
, G̃ = m̃

K2 (m̃)

K1 (m̃)
.
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b(0) =
1

GT̃

b
(1)

0
=

U0

√

m̃2 −
(

G̃ − 3
)

G̃

− G̃

G

√

m̃2 −
(

G̃ − 3
)

G̃T̃

b(1)
x =

U x

√
G̃

b(1)
y =

Uy

√
G̃

b(1)
z =

Uz

√
G̃

b
(2)

00
=

(

m̃2 + 4GT̃ 2
) (

U0
)2

G

√

6m̃2 + 3G̃

(

3G̃

(G̃−3)G̃−m̃2
+ 5

)

T̃

+
3
(

m̃2 −
(

G̃ − 4
)

G̃
)

U0

((

G̃ − 3
)

G̃ − m̃2
)
√

6m̃2 + 3G̃

(

3G̃

(G̃−3)G̃−m̃2
+ 5

)

+
m̃4 +GT̃ 2m̃2 + 3G̃

(

m̃2 +GT̃ 2
)

− G̃2
(

m̃2 +GT̃ 2 + 3
)

G
((

G̃ − 3
)

G̃ − m̃2
)
√

6m̃2 + 3G̃

(

3G̃

(G̃−3)G̃−m̃2
+ 5

)

T̃

b
(2)

0x
=

U0U x
(

m̃2

T̃ 2 + 4G
)

T̃

G

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

−
U x

(

m̃2 + 4G̃
)

G̃

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

b(2)
xx = −

(

m̃2 + 4GT̃ 2
) (

U0
)2

2
√

3G
√

m̃2 + 4G̃T̃
+

m̃2 + 4GT̃ 2

2
√

3G
√

m̃2 + 4G̃T̃
+

(U x)2
(

m̃2 + 4GT̃ 2
) √

3

2G
√

m̃2 + 4G̃T̃

b
(2)

0y
=

U0Uy
(

m̃2

T̃ 2 + 4G
)

T̃

G

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

−
Uy

(

m̃2 + 4G̃
)

G̃

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

b(2)
xy =

U xUy
(

m̃2

T̃ 2 + 4G
)

T̃

G
√

m̃2 + 4G̃

b(2)
yy = −

(

m̃2 + 4GT̃ 2
) (

U0
)2

2G
√

m̃2 + 4G̃T̃
+

(Uy)2
(

m̃2 + 4GT̃ 2
)

G
√

m̃2 + 4G̃T̃
+

(U x)2
(

m̃2 + 4GT̃ 2
)

2G
√

m̃2 + 4G̃T̃
+

m̃2 + 4GT̃ 2

2G
√

m̃2 + 4G̃T̃

b
(2)

0z
=

U0Uz
(

m̃2

T̃ 2 + 4G
)

T̃

G

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

−
Uz

(

m̃2 + 4G̃
)

G̃

√

− m̃4

G̃
+

(

G̃ − 3
)

m̃2 + 4G̃

b(2)
xz =

U xUz
(

m̃2

T̃ 2 + 4G
)

T̃

G
√

m̃2 + 4G̃

b(2)
yz =

UyUz
(

m̃2

T̃ 2 + 4G
)

T̃

G
√

m̃2 + 4G̃ 78



H. Quadratures

In this appendix we present a collection of Gauss-type quadratures that can be used to imple-

ment an RLBM on a Cartesian grid, in the massive and massless cases in (3+1), (2+1) and (1+1)

dimensions. Examples are given at several order N; the order of a quadrature coincides with the

maximum order of the polynomials for which the orthonormality conditions are satisfied:

∫

ω(p0,T0)Jl(( p̃µ))Jk(( p̃µ))
d p̃

p̃0
=

∑

i

wiJl(( p̃
µ

i
))Jk(( p̃

µ

i
)) = δlk , (H.1)

where J(k) are the orthogonal polynomials introduced in the previous appendix, (p̃
µ

i
) the discrete

(D + 1) momentum vectors, and wi the quadrature weights.

H.1. Mildly relativistic regime

We use the following parametrization of the momentum vectors:

( p̃
µ

i
) = m̃γi(1, v0ni) , (H.2)

where ni ∈ Z
D are the vectors forming the stencil G = {ni | i = 1, 2, . . . , imax} defined by the (on-

lattice) quadrature points, v0 is a free parameter that can be freely chosen such that vi = v0||ni|| <
1,∀i, m̃ is the non-dimensional rest mass in terms of a reference temperature T0, and γi is the

Lorentz factor associated to vi.

In the following we present a few selected stencils, alongside a graphical view of their corre-

spondent working range in terms of the parameter m̄, that can be used to build a numerically stable

quadrature at both 2nd and 3rd order. The list of weights for each specific stencil is available as

supplemental material [73].
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H.1.1. (3 + 1) dimensions

10−1 100 101 102

m̄

G
(o2)
E

G
(o2)
D

G
(o2)
C

G
(o2)
B

G
(o2)
A

10−1 100 101 102

m̄

G
(o3)
C

G
(o3)
D

G
(o3)
E

G
(o3)
B

G
(o3)
A

Order 2

G
(o2)

A
= {⋃ ni} G

(o2)

B
= {⋃ ni} G

(o2)

C
= {⋃ ni} G

(o2)

D
= {⋃ ni} G

(o2)

E
= {⋃ ni}

( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0)

(±1, 0, 0)FS (±2,±1,±1)FS (±1, 1, 0)FS (±1, 1, 0)FS (±2,±2, 0)FS
(±1, 1, 0)FS (±2,±2,±1)FS (±2,±2,±2)FS (±4,±4,±2)FS (±4,±4,±2)FS
(±1, 1, 1)FS (±3,±1, 0)FS (±3,±2,±1)FS (±5,±4, 0)FS (±5,±4, 0)FS
(±2, 0, 0)FS (±3,±2, 0)FS (±3,±3,±1)FS (±6,±2, 0)FS (±6,±2, 0)FS
(±2,±1, 0)FS (±3,±1,±1)FS (±4, 0, 0)FS (±4,±4,±3)FS (±6,±2,±1)FS

Order 3

G
(o3)

A
= {⋃ ni} G

(o3)

B
= {⋃ ni} G

(o3)

C
= {⋃ ni} G

(o3)

D
= {⋃ ni} G

(o3)

E
= {⋃ ni}

( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0) ( 0, 0, 0)

(±1, 0, 0)FS (±1, 0, 0)FS (±1, 0, 0)FS (±2,±1,±1)FS (±2,±1,±1)FS
(±1, 1, 0)FS (±1, 1, 1)FS (±4, 0, 0)FS (±3,±3,±1)FS (±3,±3,±1)FS
(±1, 1, 1)FS (±2, 0, 0)FS (±4,±1, 0)FS (±4,±4, 0)FS (±4,±1,±1)FS
(±2, 0, 0)FS (±2,±2, 0)FS (±4,±4, 0)FS (±4,±1,±1)FS (±4,±3,±1)FS
(±2,±1, 0)FS (±2,±1,±1)FS (±4,±3,±2)FS (±4,±3,±1)FS (±4,±3,±2)FS
(±2,±2, 0)FS (±2,±2,±1)FS (±4,±3,±3)FS (±4,±3,±2)FS (±4,±4,±2)FS
(±2,±1,±1)FS (±2,±2,±2)FS (±5,±1, 0)FS (±4,±3,±3)FS (±5,±2,±1)FS
(±2,±2,±1)FS (±3, 0, 0)FS (±5,±3, 0)FS (±5,±3, 0)FS (±5,±3,±1)FS
(±2,±2,±2)FS (±3,±2, 0)FS (±5,±2,±1)FS (±5,±2,±1)FS (±5,±2,±2)FS
(±3, 0, 0)FS (±3,±1,±1)FS (±5,±2,±2)FS (±5,±2,±2)FS (±6, 0, 0)FS

Table H.3: Example of stencils that can be used to construct a numerically stable quadrature, both at the second and

third order, for a RLBM in (3 + 1) dimensions. In the figure horizontal bars represent the working range of values m̄

of each quadrature.
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H.1.2. (2 + 1) dimensions

10−1 100 101 102

m̄

G
(o2)
E

G
(o2)
C

G
(o2)
D

G
(o2)
B

G
(o2)
A

10−1 100 101 102

m̄

G
(o3)
A

G
(o3)
B

G
(o3)
C

G
(o3)
D

G
(o3)
E

Order 2

G
(o2)

A
= {⋃ ni} G

(o2)

B
= {⋃ ni} G

(o2)

C
= {⋃ ni} G

(o2)

D
= {⋃ ni} G

(o2)

E
= {⋃ ni}

( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0)

(±1, 0)FS (±1, 0)FS (±3,±3)FS (±3,±1)FS (±5,±2)FS
(±1,±1)FS (±1,±1)FS (±4,±2)FS (±4,±2)FS (±5,±3)FS
(±2, 0)FS (±2,±2)FS (±4,±3)FS (±4,±3)FS (±5,±4)FS
(±2,±1)FS (±3,±2)FS (±5, 0)FS (±5, 0)FS (±6, 0)FS
(±2,±2)FS (±4, 0)FS (±5,±1)FS (±5,±1)FS (±6,±2)FS

Order 3

G
(o3)

A
= {⋃ ni} G

(o3)

B
= {⋃ ni} G

(o3)

C
= {⋃ ni} G

(o3)

D
= {⋃ ni} G

(o3)

E
= {⋃ ni}

( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0) ( 0, 0)

(±1,±1)FS (±1,±1)FS (±1, 0)FS (±1, 0)FS (±1, 0)FS
(±4,±2)FS (±2,±2)FS (±2, 0)FS (±1,±1)FS (±1,±1)FS
(±5,±4)FS (±4,±3)FS (±2,±2)FS (±2, 0)FS (±2, 0)FS
(±5,±5)FS (±5, 0)FS (±3, 0)FS (±2,±1)FS (±2,±1)FS
(±6,±2)FS (±5,±5)FS (±3,±2)FS (±3,±1)FS (±2,±2)FS
(±6,±3)FS (±6,±2)FS (±3,±3)FS (±3,±2)FS (±3, 0)FS
(±6,±4)FS (±6,±3)FS (±4, 0)FS (±3,±3)FS (±3,±1)FS
(±7,±1)FS (±6,±4)FS (±4,±1)FS (±4, 0)FS (±3,±2)FS
(±7,±2)FS (±7,±1)FS (±4,±2)FS (±4,±2)FS (±3,±3)FS

Table H.4: Example of stencils that can be used to construct a numerically stable quadrature, both at the second and

third order, for a RLBM in (2 + 1) dimensions. In the figure horizontal bars represent the working range of values m̄

of each quadrature.
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H.1.3. (1 + 1) dimensions

10−1 100 101 102

m̄

G
(o2)
D

G
(o2)
E

G
(o2)
C

G
(o2)
B

G
(o2)
A

10−1 100 101 102

m̄

G
(o3)
E

G
(o3)
D

G
(o3)
C

G
(o3)
B

G
(o3)
A

Order 2

G
(o2)

A
= {⋃ ni} G

(o2)

B
= {⋃ ni} G

(o2)

C
= {⋃ ni} G

(o2)

D
= {⋃ ni} G

(o2)

E
= {⋃ ni}

( 0) ( 0) ( 0) ( 0) ( 0)

(±1) (±1) (±1) (±13) (±14)

(±2) (±2) (±2) (±16) (±15)

(±3) (±3) (±3) (±17) (±17)

(±7) (±4) (±5) (±18) (±18)

Order 3

G
(o3)

A
= {⋃ ni} G

(o3)

B
= {⋃ ni} G

(o3)

C
= {⋃ ni} G

(o3)

D
= {⋃ ni} G

(o3)

E
= {⋃ ni}

( 0) ( 0) ( 0) ( 0) ( 0)

(±1) (±1) (±1) (±11) (±12)

(±2) (±2) (±5) (±13) (±13)

(±3) (±4) (±6) (±15) (±15)

(±4) (±5) (±8) (±16) (±16)

(±5) (±6) (±9) (±17) (±17)

(±6) (±7) (±10) (±18) (±18)

Table H.5: Example of stencils that can be used to construct a numerically stable quadrature, both at the second and

third order, for a RLBM in (1 + 1) dimensions. In the figure horizontal bars represent the working range of values m̄

of each quadrature.
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H.2. Ultra relativistic regime

For the special case of massless particles we have an extra degree of freedom given by the fact

that in this case velocity does not depend on energy. We then associate several energy shells to

each vector, thus adding a second index in the definition of the discrete momentum vectors:

( p̃
µ

i, j
) = p̃0

j(1,
ni

||ni||
) , (H.3)

where the index j labels different energy shells, and it is clear that ||ni|| has to be the same for all

the stencil vectors since all the particles travel at the same speed vi = c = 1,∀i.

In the following tables we list the stencil vectors, the energy shells and the quadrature weights

defining Gauss-type quadratures up to order 5, in both (3 + 1), (2 + 1) and (1 + 1) dimensions. In

the third column of the tables, weights are listed for all energy shells of the first stencil, followed

by all shells of the second stencil and so on.

H.2.1. (3 + 1) dimensions

Order 2

G = {⋃ ni} p̄0
j

wi j

(±2,±1,±1)FS 3.3054072893322786 0.0245283950433191

(±3, 0, 0)FS 0.9358222275240878 0

7.7587704831436335 0.0163006691342629

0

0.0003891858228425

0.0017936666649682

Order 3

G = {⋃ ni} p̄0
j

wi j

(±4,±4,±3)FS 0.7432919279814314 0

(±5,±4, 0)FS 2.5716350076462784 0

(±6,±2,±1)FS 5.7311787516890996 0.0093098040253911

10.953894312683190 0.0085195569675087

0

0.0056909667738262

0.0013041770173120

0

0.0008932820065742

0.0000029126213348

0.0000338363537565

0.0000090390475856

Order 4
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G = {⋃ ni} p̄0
j

wi j

(±6,±6,±3)FS 0.6170308532782703 0.0035940787317887

(±7,±4,±4)FS 2.1129659585785241 0

(±8,±4,±1)FS 4.6108331510175324 0.0054532635512587

(±9,±0,±0)FS 8.3990669712048421 0

14.260103065920830 0.0051872438667849

0

0.0078705587777011

0

0.0023465096932558

0

0.0014234434124415

0.0027124005098564

0.0001406124343838

0

0.0000921239034238

0.0001538745394240

0.0000004165349753

0.0000006474891627

0.0000008063189502

0.0000007889057767

Order 5

G = {⋃ ni} p̄0
j

wi j

(±9,±7,±4)FS 0.5276681217111288 0.0021976619314893

(±9,±8,±1)FS 1.7962998096434089 0

(±11,±4,±3)FS 3.8766415204769122 0.0035867160274663

(±11,±5, 0)FS 6.9188165667047218 0

(±12,±1,±1)FS 11.234610429083115 0

17.645963552380712 0.0030360121467997

0.0011645316435194

0.0060892600232298

0

0

0.0018738906904627

0.0011933134012061

0

0

0.0023241041809842

0.0001734349866413

0.0000829805751350

0.0002171069160008
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0

0.0000808225598283

0.0000073565421488

0.0000007284387015

0

0.0000125232075787

0.0000031002793646

0.0000000245062369

0.0000000077527228

0.0000000187275854

0.0000000173590551

0.0000000104611619

Table H.6: Definition of quadratures up to the fifth order for a ultra-relativistic RLBM in (3+1) dimensions, following

the parametrization for the discrete momentum vectors introduced in Eq. 53.

H.2.2. (2 + 1) dimensions

Order 2

G = {⋃ ni} p̄0
j

wi j

(±3,±4)FS 0.4157745567834790 0

(±5, 0)FS 2.2942803602790417 0.0888866262411466

6.2899450829374791 0

0.0348147166961551

0.0017535654166088

0.0004218743543938

Order 3

G = {⋃ ni} p̄0
j

wi j

(±3,±4)FS 0.3225476896193923 0

(±5, 0)FS 1.7457611011583465 0.0753942630427042

4.5366202969211279 0.0410206173754781

9.3950709123011331 0.0241670278669858

0.0044457884155769

0.0026380943565871

0.0000616926157132

0.0000365655303385

Order 4

G = {⋃ ni} p̄0
j

wi j

(±15,±10)FS 0.2635603197181409 0.0378774109856788
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(±17,±6)FS 1.4134030591065167 0

(±18,±1)FS 3.5964257710407220 0.0273420403371722

7.0858100058588375 0.0289416469003179

12.640800844275782 0

0.0208917044850790

0.0055131239981112

0

0.0039796822121021

0.0002621995147262

0

0.0001892703202640

0.0000007577431574

0.0000020654153959

0.0000000980879948

Order 5

G = {⋃ ni} p̄0
j

wi j

(±15,±10)FS 0.2228466041792606 0.0333190352542491

(±17,±6)FS 1.1889321016726230 0

(±18,±1)FS 2.9927363260593140 0.0240515489894963

5.7751435691045105 0.0302726248231082

9.8374674183825899 0

15.982873980601701 0.0218524790234068

0.0032794546554440

0.0108922181038115

0

0.0006330401002278

0.0002681818675293

0.0003986777138864

0.0000146443834593

0.0000094697718432

0.0000085129950491

0.0000000530695690

0.0000000267552665

0.0000000324936526

Table H.7: Definition of quadratures up to the fifth order for a ultra-relativistic RLBM in (2+1) dimensions, following

the parametrization for the discrete momentum vectors introduced in Eq. 53.

H.2.3. (1 + 1) dimensions

Order 2
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G = {⋃ ni} p̄0
j

wi j

(±1) 3.414213562373095048 0.042893218813452475

0.585786437626904951 1.457106781186547524

Order 3

G = {⋃ ni} p̄0
j

wi j

(±1) 6.289945082937479196 0.001651724516604877

0.415774556783479083 1.710285053107483686

2.294280360279041719 0.121396555709244769

Order 4

G = {⋃ ni} p̄0
j

wi j

(±1) 1.869968763544262523 0.322547689619392311

0.008571999852268322 4.536620296921127983

0.000057401877068880 9.395070912301133129

0.204735168059733606 1.745761101158346575

Order 5

G = {⋃ ni} p̄0
j

wi j

(±1) 0.26356031971814091020 1.97964401902679930651

3.59642577104072208122 0.02111608983931054815

1.41340305910651679221 0.28206165857260368669

7.08581000585883755692 0.00050971712153383997

12.6408008442757826594 0.00000184877308595198

Table H.8: Definition of quadratures up to the fifth order for a ultra-relativistic RLBM in (1+1) dimensions, following

the parametrization for the discrete momentum vectors introduced in Eq. 53.
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