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The copula technique is an essential quantitative method employed in the
assessment of financial and econometric risks. This work will conduct a com-
parative analysis of the effect of pricing portfolio credit derivatives using vari-
ous copula models. We shall utilise the Gaussian and the Student as elliptical
models, as well as the Clayton, the Gumbel, and the Frank as Archimedean
copulas, to model the corresponding default times. The Monte-Carlo sim-
ulations will be the benchmark in the estimation of the default times, the
payment legs of the derivatives, and finally the cumulative swap premium.
The research concludes by analysing inherent model risks through the con-
duction of some sensitivity analysis on the impact of swap parameters on the
fair prices of the nth-to-default swaps. Finally, the numerical experiments
which will be presented will clearly show that the choice of the copula model
hugely affects the quantitative risk analysis of the portfolio.
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1 Introduction

Over the years, financial institutions and industries have investigated certain avenues
for increasing returns and at the same time, diversifying credit risks. To attain this
objective, the class of multi-name portfolio credit derivatives (PCD), such as the Col-
lateralized Debt Obligations (CDOs) and the Basket credit default swaps (BCDS) [35]
have seemed to be suitable and practical, owing to their increased liquidity and speedy
growth. A basket or portfolio of default swaps payoff when there is a credit event, such
as restructuring, downgrade, bankruptcy, or any situation which affects the creditwor-
thiness of an entity, in a portfolio of several entities. Depending on the seniority or
the rank of the default protection, BCDS can be classified into first-to-default (F2D),
second-to-default (S2D), or generally, the nth-to-default (n2D) basket swaps. Investors
that trade the BCDS encounter correlation risk, or the likelihood of simultaneous de-
faults in the basket of entities, and these credit securities help in the transfer of credit
risks amongst the participants. The prices of these BCDS are dependent on the de-
fault correlations of the entities in the portfolio. The credit default swaps (CDS), on
the hand, restrict the default to only one entity. Investors have effectively utilised the
market of credit derivatives because of the crucial roles these securities play in hedging
and speculation, together with credit risk diversification. Furthermore, the valuation of
multi-named credit derivatives entails the knowledge of the joint distribution of the de-
fault times, which poses a problem during the modelling, but the introduction of copulas
had made it feasible.

With regards to the methodologies, the copula model has been in existence to mit-
igate the inconsistencies, inefficiencies, as well as, the computational costliness of the
widespread structural models and the reduced form models, typically employed in the
valuation of multi-name PCD. The default correlation factor, which is a crucial param-
eter in the PCD modelling, has motivated market participants to model credit events
using the factor copula techniques. This default correlation estimates the likelihood of
two entities to experience a simultaneous default. In the financial and insurance sec-
tor, copula models have been fully utilised in ensuring efficient and flexible modelling
of dependence structures. Peng and Qi (2017) stated that the copula and the survival
copula models had been recommended in Basel III and Solvency II, for both the banking
sectors and the insurance industries, respectively. There are lots of copula models, but
not all of them are applicable in modelling PCDs. As one significant drawback, Watts
(2016) explained that for independent variables with a correlation of +1 or -1, the cor-
responding copula used to model the variables are inherently inappropriate for real-life
applications.

An increased amount of research has been channelled to the valuation of financial
credit derivatives, primarily the CDOs and the basket default swaps, in the field of copula
models. The first implementation of copula functions in the modelling of financial credit
derivatives was by Li (2000), who used the market prices of CDS to model the default
dependency structures. Practically, he focused on pricing the CDS and the F2D swaps
using the Gaussian copula model. Fathi and Nader (2007) further focused on the impact
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of dependency structure and the choice of simulation methodology to value the n2D swap
and CDO. Mashal and Naldi (2002) considered the n2D and the CDOs pricing using
a hybrid of the structural and the reduced form techniques as default models. They
further studied the student-t copula, which is a class of elliptical copulas with larger
tail dependency structure. In the presence of stochastic recovery rates, the student-
t copula has been employed by Goegebeur et al. (2007) in the modelling of default
time dependencies and thus, they applied the concept to the valuation of the synthetic
CDOs. Hull and White (2004) and Andersen et al. (2003) both developed analytical
methodologies which are based on copula functions, to value credit derivatives. The
former incorporated a recursion method to value n2D swaps and the latter introduced
an improved recursion-based technique which derives the portfolio loss distribution.

Furthermore, Choe and Jang (2011b) proposed an importance sampling algorithm, in
connection with the nested Gumbel copula and the exchangeable Archimedean copulas,
to value the BDS. To achieve this, they established a multi-level dependence structure
in the case of nested copulas, to model the credit risks of a portfolio which consists
of sub-portfolios. Importance sampling techniques were also employed by Schröter and
Heider (2013b) to quantify the credit model risk of a given portfolio, and they further
presented an analytical formula to value the n2D swaps [31]. Burtschell et al. (2005)
compared different copula functions such as, Gaussian, student-t, double-t, Clayton and
Marshall-Olkin copulas, to model the structure of the joint default of default times which
is based on the factor model. They compared the concept of semi-analytical pricing to
the approximation techniques associated with large portfolio securities, and subsequently
estimated the premiums of the BCDS and CDOs. However, the appropriate choice of
copula model remains an unavoidable question in financial modelling, as Durrleman et
al. (2000) presented few methodologies for the right choice within the family of the
Archimedean copulas. In each family, they considered the estimation of parameters,
like the maximum likelihood, information matrix systems, dependence measures for the
parametric families; together with the non-parametric estimation, which are all rooted
on the Deheuvels or the empirical copula models. They concluded by proposing an
appropriate selection criteria for the optimal copula to be considered.

Our research, nonetheless, is prompted by the interplay of various copula models and
the default time modelling with regards to their tangible applications in PCD valuations.
It is vital to have substantial knowledge of the effects of different copula modelling to the
pricing of the basket credit derivatives. Hence, this research will focus on a comparative
methodology on the valuation of the BCDS, and will further discuss the impact of
modelling the default time parameter using different elliptical and Archimedean copula
methods. To ensure clarity and simplicity in the comparative study, we will focus on a
set of homogeneous basket, and further assume that parameters such as the hazard rate,
concordance measures (ρ and θ), time to expiration, recovery rate, and interest rate, are
all kept constant irrespective of the copula models employed. The study will also present
some numerical experiments, in accordance with the same Kendall’s tau (τ) concordance
structure to estimate the prices of the n2D swaps. We will equally mention the concept
of ordered statistic employed by Choe and Jang (2011a), to numerically compute the
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corresponding payment legs associated with the pricing of BDS. Furthermore, we will
conclude the study by estimating the prices of the n2D swaps based on the Monte-Carlo
methods, as well as conducting some sensitivity analysis with regards to the default swap
parameters.

This structure of this study is as follows: In Section 1, we introduce a brief description
of the topic and outline some of the recent related studies on the pricing of basket
credit derivatives. Section 2 introduces the structure of the model, which is the copula
model and highlights its applicability in the derivatives pricing. Section 3 introduces
the concept of the valuation of BCDS, explains how default time can be modelled via
different copula methods, and outlines how the swap premium can be obtained. It further
introduces the payment legs associated with swap spread, and then discussed the Monte-
Carlo method, as the simulation technique employed in the research. Section 4 focuses
on results obtained in the numerical experiments of the BCDS pricing, together with
some sensitivity analysis on the default swap spreads. Section 5 concludes our research
study.

2 Model Structure

In this section, we introduce and employ the copula method, together with the Monte-
Carlo simulations to model default time parameters. Copulas are generally classified
into one-factor and two-factor models. The former consists of the Gaussian and the
Archimedean copula, whereas the latter comprises of student-t, Frechet and Marshall
Olkin models. This study will consider five copula models: Gaussian, Archimedean
(Clayton, Gumbel and Frank), and the student-t copula.

2.1 Introduction to copula models

A copula function joins the univariate distributions and thus, generates multivariate
distribution functions.

Definition 2.1 (d-copula, [14, 34]) A copula C = C(u1, u2, . . . , ud) is a multivariate
probability distribution, possessing uniform marginals in a unit interval. Mathematically,
it is defined by C : [0, 1]d → [0, 1], having the following properties:

• C(u1, u2, . . . , ud) = 0 if uj = 0, for any j ≤ d.

• C(1, 1, . . . , 1, uj , 1, . . . , 1) = uj, for every j ≤ d and for all uj ∈ [0, 1];

• C(u1, u2, . . . , ud) is d-increasing.

In the analysis of financial and insurance risks, the concept of quantifying depen-
dence has been a significant issue, and this had sparked the interest of developing copula
models. An essential mathematical theory in connection with the copula models is the
Sklar’s theorem, which essentially explains that any multivariate probability distribu-
tion can be disintegrated into the components of a copula and its univariate margins.
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Conversely, a combination of some given margins together with a corresponding copula
can be integrated back into a multivariate distribution.

Theorem 2.2 (Sklar’s Theorem, [30]) Let F = (F1, F2, . . . , Fd) be a d-dimensional
probability distribution function having marginals F1, F2, . . . , Fd. Then there exists a
d-copula function C, with uniform marginals such that for all x ∈ Rd,

F(x1, x2, . . . , xd) = C
(
F1(x1), F2(x2), . . . , Fd(xd)

)
.

Moreover, if the marginal distribution functions F1, F2, . . . , Fd are continuous then the
copula function C is unique.Thus, instead of specifying a multivariate distribution F,
the dependency structure can be modelled by identifying the marginal function Fd and
a copula C. It should be noted, however, that Sklar’s theorem only guarantees that the
copula exists, but the main issue lies on the specific choice of a suitable copula function.

A consequence of this is that copulas enable multivariate distribution to be expressed
in terms of their marginal distributions, and it has contributed immensely in capturing
correlation structures. Many copula models are implemented in practice; the following
subsection will graphically discuss the structures of some copula models, as well as, their
tail dependencies.

2.2 Copula Models

In this section, we introduce a graphical description of the random variables generated
by various copula models. This part will also show the effect of using the copula models
in analysing the tail dependency structures of random variables. The tail dependency is
noteworthy to be included because they are significant factors in measuring the proba-
bility of simultaneous extreme losses, specifying the quantity of joint dependence in the
tail of the distribution function, and ignoring them will underestimate the default risk
premium [26].

2.2.1 Elliptical copula

Definition 2.3 (Elliptical copula, [11]) A d-variate family of copula is said to be
elliptical if it is written in the form

C(u1, u2, . . . , ud; Σ) = Ψd
Σ

(
Ψ−1(u1),Ψ−1(u2), . . . ,Ψ−1(ud)

)
,

where Ψd
Σ is a d-dimensional multivariate ζ distribution with Σ as the correlation matrix;

and Ψ−1 denotes an inverse of the univariate ζ distribution. The distribution ζ corre-
sponds to either standard normal distribution or the Student-t distribution (tβ), with
β degrees of freedom (df). The elliptical copulas are also known as inversion-method
copulas.
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(a) The Gaussian copula: 5000 random numbers, with 0.8 correlation.

The Gaussian copula is given by CΣ
ρ (u) =

1

2π
√
|Σ|

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

(
−x

2
1 − 2ρx1x2 + x2

2

2|Σ|

)
dx ,

where u = (u1, u2), x = (x1, x2), ρ ∈ (−1, 1)
is the correlation parameter in the 2×2 ma-
trix Σ, and Φ−1 is the inverse of a univariate
standard normal distribution [34, 28]. For
any correlation parameter, the tail depen-
dency is zero [33, p. 176], as can be seen in
the corresponding figure.

(b) Student-t copula: 5000 random points with 0.8 correlation, and 1 degree of freedom.

The student-t copula is given by CΣ
ρ,β(u) =

1

2π
√
|Σ|

∫ t−1
β

(u1)

−∞

∫ t−1
β

(u2)

−∞

(
1 +

x21 − 2ρx1x2 + x22
β|Σ|

)− β+2
2

dx ,

where u = (u1, u2), x = (x1, x2), ρ ∈ (−1, 1)
is the correlation parameter in the 2×2 ma-
trix Σ, and t−1

β is the inverse of a univari-
ate tβ with β df [34, 28]. The upper and
lower tail dependency are symmetric, given

by 2tβ+1

(
−
√

(β + 1)
(

1−ρ
1+ρ

))
.

2.2.2 Archimedean copula

Definition 2.4 (Archimedean copula, [28]) A d-variate copula family is said to be
Archimedean if it is written in the form

C(u1, u2, · · · , ud) = ψ−1
(
ψ(u1) + ψ(u2) + · · ·+ ψ(ud)

)
,

with the generator of the copula ψ(x), satisfying the following conditions:

• ψ(0) =∞ and ψ(1) = 0.

• The inverse function ψ−1(x) corresponds to a probability, such that ψ−1 : [0,∞]→
[0, 1].

• The function ψ(x) is convex and decreasing, such that x ∈ [0,∞).
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(a) Clayton copula: 5000 Clayton random points with θ = 2.8820 dependence parame-
ter.

Denote the generator function as ψ(c) =
θ−1(c−θ − 1), where θ ∈ [−1,∞) \ {0}, then
the bivariate Clayton copula is defined as

Cθ(u1, u2) = max{[u−θ1 + u−θ2 − 1]−
1
θ , 0} ;

for θ > 0, we have Cθ = [u−θ1 + u−θ2 − 1]−
1
θ .

The upper and lower tail dependencies are
given as λU = 0 and λL = 2−

1
θ respectively.

The Clayton model is beneficial for mod-
elling data points, which are strongly cor-
related at the lower values and weakly cor-
related at the upper values.

(b) Gumbel copula: 5000 Gumbel random points with θ = 2.4410 dependence parame-
ter.

Denote the generator function as ψ(c) =
(− log c)θ, where θ ≥ 1, then the bivariate
Gumbel copula is defined as

Cθ(u1, u2) = exp{−[(− log u1)θ+(− log u2)θ]
1
θ },

for θ > 0. The upper and lower tail de-
pendencies are given as λU = 2 − 2

1
θ and

λL = 0 respectively. The Gumbel model is
beneficial for modelling data points, which
are strongly correlated at the upper values
and weakly correlated at the lower values.

(c) Frank copula: 5000 Frank random points with θ = 7.6762 dependence parameter.
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Denote the generator function as ψ(c) =
− log[(e−θc − 1)(e−θ − 1)−1], where θ ∈ R \
{0}, then the bivariate Frank copula is de-
fined as

Cθ(u1, u2) = −1

θ
log

(
1 +

(e−θu1 − 1)(e−θu2 − 1)

(e−θ − 1)

)
.

The upper and lower tail dependencies
are zero, and they are the only strict
Archimedean copula with the so-called ra-
dial symmetry [12]. For further Further on
Frank copula as radially symmetric we refer
the reader to [16].

2.2.3 Concordance structures

The measures of dependence such as the Kendall’s τ, the Spearman’s rho, and the tail
dependence coefficients are all bivariate concordance measures which are copula-based
[1]. We employed the Kendall’s τ concordance measure to describe the correlation among
the portfolio entities, and this is because they are flexible for non-linear correlations. The
Kendall’s τ and their corresponding domains are given in Table 1, and the parameter
θ for both the Gaussian and the Student-t copulas are the correlation coefficients. The
θ parameter in the models influences the dependency structures, as an increase in θ
results to the increment of the dependence. Furthermore, it is possible to have the same
concordance measure for different copula models, and subsequently different n2D basket
prices. In all the numerical results of this study, we used the Kendall’s τ concept to
estimate the θ-parameters of the Archimedean copulas, which in turn, are employed in
valuing the n2D swaps.

Table 1: Concordance structure of different copula models [33, 36].

S/N Copula type τ = g(θ) Domain τ ∈ Ω

1 Gaussian 2
π sin−1(θ) [−1, 1]

2 Student-t 2
π sin−1(θ) [−1, 1]

3 Clayton θ
θ+2 (0, 1]

4 Gumbel 1− 1
θ [0, 1]

5 Frank 1− 4
θ

(
1− 1

θ

∫ θ
0

q
eq−1dq

)
[−1, 1] \ {0}
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3 Pricing basket credit default swaps

This section will introduce and discuss the concept of basket credit default swaps (BCDSs)
and default time modelling, as well as the Monte-Carlo methods used in the result section
of this study.

3.1 Basket credit default swaps

Basket default swap is a financial derivative contract between the protection buyer and
the protection seller which promises a payoff in the event of a credit default among the
portfolio of entities. This contractual agreement ensures the transfer of credit exposure of
securities from one person to another. A periodic payment (spread) is made at specified
regular intervals to the protection seller till a credit event occurs, or till the contract’s
expiration. Basket default swaps are generally classified into all-to-default, n2D, and
n-out-of-m-to-default. This study will focus on n2D basket swaps. The intuition behind
the construction of BCDS can be linked with the approach of redistributing the financial
credit risk of a basket of CDS. The mechanism of both CDS and BCDS are essentially
the same, but the difference lies in the trigger of the credit event. Consider for example
the F2D swaps, a contingent payment made to the protection buyer by the seller is
triggered only when a basket of underlying credit experiences a first credit event, and in
this way, the buyer is only protected against the first default.

In the valuation of the spread for the BCDS, defined in a given homogeneous portfolio,
the following notations will be used: The portfolio consists of N number of reference
entities, with A as the notional value of the contract. Let the time to maturity of the
contract be T = tk, with current time t0 = 0, and define the deterministic discount factor
by f(t) = e−r(t−t0), with r as the risk-free interest rate. R = R(j), for j = 1, 2, . . . , N is
the homogenized recovery rate, and the rank of the swap or the seniority level is defined
by n, such that upon nth default at time τ(n) with τ(1) < · · · , < τ(n) < · · · < τ(N), a
default payment will be received by the protection buyer. Let DL denote the default leg,
which is the payment made by the protection seller in case of a default, and it is calculated
by the difference between the default payment (DP) and the accrued premium AP1. The
frequency of the payment dates2, payable in units of years is denoted by ∆ = ti − ti−1,
where i = 1, 2, . . . , N , and the time interval in which the nth default happened in the
case of AP is given by S = ti−1 < τ(n) ≤ ti. Furthermore, let PL be the premium leg
which involves the series of cash flows paid by the protection buyer until maturity or
before maturity, in the case of a credit event, and finally define γ(n) as the fair price of
the n2D swap.

Hence, according to Galiani (2003), the fair price under the risk-neutral pricing mea-
sure of the n2D swap is calculated by solving for γ(n) in the expression E[DL]=E[PL].

1The accrued premium is payable from the last date the payment was made prior to default, till the
time τ(n) of the nth default.

2The frequency ∆ = 1 corresponds to an annual frequency, ∆ = 1
2

for semi-annual frequency payment,
etc, assuming we are considering a 30

360
day count convention.
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The present value and the expected present value for the PL are given respectively
by:

PL = γ(n)A
N∑
i=1

∆f(ti)Iτ(n)>ti and E[PL] =
N∑
i=1

γ(n)A∆f(ti)[1− F(n)(ti)] .

The present value and the expected present value for the DP are given respectively by:

DP = A
N∑
j=1

(1−R)f(τ(n))I{τ(n)≤T} and E[DP] = A
N∑
j=1

(1−R)

∫ >
0
f(t)Fn

th=j
(n) dt .

The present value and the expected present value for the AP are given respectively by:

AP =

N∑
i=1

Aγ(n)

(
τ(n) − ti−1

)
f(τ(n))I{S} and E[AP] =

N∑
i=1

Aγ(n)

∫ ti

ti−1

(a− ti−1)f(a)F(n)(da) .

Under the assumptions that credit events occur at discrete dates and the outstanding
debts resulting from the DP are cleared promptly upon default, then Theorem 3.1 below
gives the price of the n2D swap premium:

Theorem 3.1 ([15, 13, 7]) The risk neutral pricing measure for the fair price of the
annualized n2D swap, in the presence of accrued premium, is given below:

γ(n) =

∑N
j=1(1−R)

∫ >
0 f(t)Fn

th=j
(n) dt∑N

i=1 ∆f(ti)[1− F(n)(ti)] +
∑N

i=1

∫ ti
ti−1

(a− ti−1)f(a)F(n)(da)
,

where F(n)(t) = P(τ(n) ≤ t) is the probability distribution function (PDF) of τ(n), and

Fn
th=j

(n) (t) is the PDF of the nth basket of default times which is relative to the jth default.

It is, however, pertinent to model the probabilities of these default times, and the next
subsection will introduce the various concepts of copula models in the generation of the
default times.

3.2 Default time modelling

In pricing portfolio derivatives, copulas are essential tools in modelling entities defaults,
which in turn facilitates the BCDS valuation. Define (Ω,F ,P) as a given probability
space, where Ω is the sample space of all possible events defined in a horizon of finite
time, F is the σ-algebra consisting of a set of events, and P is the probability measure,
which under the no-arbitrage principle, becomes risk-neutral [4]. Assume that τi, the
default time, is the time at which each entity i experiences a credit event. Let Fi(t) be
the risk-neutral cumulative probability distribution that each i entity will default before
a given time t, that is, Fi(t) = P(τi ≤ t), and let Si(t) = 1 − Fi(t) = P(τi > t) be the

10
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survival probability of the ith entity. According to Kijima (2000), the PDF of default
times is given by:

Fi(t) = P(τi ≤ t) = 1− exp

(
−
∫ t

0
λi(u)du

)
,

where λi is the instantaneous intensity rate for each entity. Laurent and Gregory (2005)
simulated the default time of each reference entities by using the following expression:

τi = − 1

λi
ln(1−Xi) , (3.1)

where Xi arises from the corresponding copula model.
This study will model default times using the five copula models listed in the intro-

ductory part of this work. We refer to Section 4 for some default time points of all the
models used in this study. First, Li (1999) considered the case of the Gaussian copula,
and he noted that the survival probability or the default probability can be employed to
estimate the default times, provided that the copulas are symmetric (Gaussian and stu-
dent t). Furthermore, the default times for the Gaussian copula model are calculated
as follows:

τi = F−1
i

(
Φ(si)

)
,

where Φ is defined as the cumulative distribution function of a standard Gaussian random

variable si, which in turn, is given by si = ρiV +
√

1− ρ2
i ηi. The correlation term

ρi ∈ [−1, 1], and the independent random variables V and ηi are the single common
factor and the error term respectively, which are generated from the standard Gaussian
distribution.

The corresponding default time for the student t-copula model, on the other hand,
follows a dual factor copula model, and it is given by [3]

τi = F−1
i

(
tβ(si)

)
,

where tβ is the cumulative distribution function of a student random variables si, which

in turn, is given by si =
√
V2(ρiV1 +

√
1− ρ2

i ηi), having β degrees of freedom. The

factors V1 and V2 are independent random variables, together with the error term ηi. The
parameter V1 follows a normal distribution and V2 follows an inverse gamma distribution,
with equal scale and shape parameters of β/2.

The default times modelled under the Archimedean copulas are quite different from the
elliptical copulas. The general form for obtaining their corresponding random variables
Xi, is shown in the works of[5, 18, 25] as:

Xi = ψ−1
(− ln(ki)

M

)
, (3.2)

where the uniform random variables ki are independent and identically distributed, i.e.
ki ∼ U([0, 1]). The function ψ−1(·) refers to the inverse generator associated with each
copula models.

11
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Consider the Clayton copula model, with θ > 0 parameter, as example, the random
variable Xi returns a uniformly distributed random variables. The positive random
variable M follows a standard gamma distribution having a unit scale parameter and
1/θ shape parameter. In other words, M ∼ Γ(1/θ, 1), and finally, the inverse generator
ψ−1(c) for the Clayton model is calculated as

ψ−1(c) = (1 + c)−1/θ, θ > 0 .

For the Frank copula model, with parameter θ, the random variable M follows a
Logarithmic series on N+ having a parametric value of α = 1 − e−θ ∈ (0, 1). In other
words, M ∼ Logarithmic(1− e−θ). The corresponding probability density function can
be defined discretely as

P(q) =
−αq

q ln(1− α)
, for q ∈ N .

Furthermore, the inverse generator ψ−1(c) for the Frank model is calculated as

ψ−1(c) = −1

θ
log
(
1 + e−c(e−θ − 1)

)
, θ ∈ R \ {0} .

On the other hand, the random variable M for the Gumbel copula model follows
an α − stable distribution, that is, M ∼ Stable(α, β, γ, δ). The distribution is also
known as the Lévy alpha-stable distribution, with parameters α ∈ (0, 2], as the stability
parameter; β ∈ [−1, 1], as the skewness parameter; γ ∈ (0,∞), as the scale parameter;
and δ ∈ R, as the location parameter. Specifically, the random variables follow

M ∼ Stable
(1

θ
, 1, cos

( π
2θ

)θ
, 0
)
.

The inverse generator ψ−1(c) for the Gumbel model is calculated as

ψ−1(c) = e−c
1
θ , θ ≥ 1 .

3.3 Algorithm for default time modelling

This subsection will outline the algorithms employed in the generation of the default
times for all the copula models applied in this study. The Gaussian and the student-t
copula models for generating the default times involve the use of the Cholesky decompo-
sition of the specified correlation matrix Σ, so as to obtain a lower triangular matrix L,
such that Σ = LL>. We employ the techniques of Scherer and Mai [33]. For the genera-
tion of an α-stable distribution used in the Gumbel copula, we employ the methodologies
proposed by Nolan[27] in Melchiori (2006). For generating random Logarithmic series
utilized in the Frank copula, we used the ipython numpy inbuilt function logseries(p),
with the parameter p = 1 − e−θ. Otherwise, consider the full algorithm proposed by
Melchiori (2006). Here, random variables, which are logarithmically distributed were
obtained from Kemp’s second generator with acceleration. For further details, we refer
to [9].
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(a) Gaussian copula:

• Obtain the Cholesky decomposition L of Σ, such that Σ = LL>.

• Generate independent random variates Z ∼ N (0, 1), where Z = (z1, z2, . . . , zn)>.

• Compute si = LZ, where si ∼ N (0,Σ).

• Return the vector Xi =
(
ψ(si)

)>
, with ψ denoting the distribution function

associated with univariate standard normal distribution.

• Finally compute τi = F−1
i (Φ(si)) with Xi = ψ(si) in equation (3.1).

(b) Student-t copula:

• Obtain the Cholesky decomposition L of Σ, such that Σ = LL>.

• Generate independent random variates Z ∼ N (0, 1), where Z = (z1, z2, . . . , zn)>.

• Simulate an independent random variate ri ∼ χ2(β), where β is the degrees of
freedom.

• Compute si =
√

β
ri
LZ.

• Return the vector Xi =
(
tβ(si)

)>
, with tβ denoting the distribution function

associated with univariate t-distribution, with zero mean.

• Finally compute τi = F−1
i (Φ(si)) with Xi = ψ(si) in equation (3.1).

(c) Clayton copula:

• Simulate a uniform random variable ki ∼ U([0, 1]).

• Generate gamma random variables M ∼ Γ
(

1
θ , 1
)
.

• Calculate Xi from the equation (3.2) and then, the default time from equation
(3.1).

(d) Gumbel copula:

• Set α = 1/θ, β = 1, γ = (cos(π/2θ))θ and δ = 0.

• Simulate a uniform random variable p ∼ U
(
−π

2 ,
π
2

)
.

• Simulate Q from an exponential distribution, with mean 1. Both Q and p must
be independent.

• Set Ψ = 1/α(arctan(β tan(πα)/2))

• Compute M ∼ Stable(α, β, γ, δ). Here, M = γY + δ, where

Y =
sinα(Ψ + p)

(cosαΨ cos p)
1
α

[
cos(αΨ + (α− 1)p

Q

] 1−α
α

, since α 6= 1 .

• Finally, calculate the random variables Xi from equation (3.2) and then the
default time τi follows from equations (3.1).
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(e) Frank copula:

• Simulate a uniform random variable ki ∼ U([0, 1]).

• Generate log-series random variables M ∼ Logarithmic(1− e−θ). Both M and
ki must be independent.

• Calculate Xi from the equation (3.2) and then, the default time from equation
(3.1).

Generally, this study employed the Monte-Carlo method in the generation of the
random numbers and the default times, which correspond to different copula models.
The present value of an n2D swap depends on the time in which the nth entity defaults,
and so, obtaining the nth default time suffices to obtain the default times of all the
entities in a given portfolio. In the valuation of an n2D BDS, the initial default time
results in an (M,N) matrix, where M is the number of simulations and N , the number
of reference entities. For a tabular representation of these default times, see Table 2. We
implemented the concept of order statistic (See Definition 3.2) to the unordered default
times of the individual entities. The implementation was achieved by categorising the
N -dimensional vector of the default times in their increasing sequence of order, and this
sorting is in connection to their rank of default. For instance, for the F2D swap pricing,
we selected the first coordinate. Using this ordered statistic, the corresponding values
for the PL, DP, AL, and finally, the fair spreads of the n2D were all computed.

Definition 3.2 (nth order statistic, [7]) Denote τ1, τ2, . . . , τn as independent and iden-
tically distributed (i.i.d.) random variables of sample size n from a continuous distribu-
tion. If τ1, τ2, . . . , τn are rearranged in ascending order of magnitude, with the minimum
τ1 = min

i
(τi) and the maximum τn = max

i
(τi), then the nth order statistic is given as

τ1 < τ2 < · · · < τN .

4 Numerical Experiments and Sensitivity Analysis

This research uses the ipython notebook in the numerical computations for the prices
of the n2D swaps, with respect to their varied parameters3.

4.1 Results

Let N be the number of entities; R, the recovery rate of entities; r, the deterministic
risk-free interest rate; dt, the frequency payment dates; df, the degree of freedom; M ,
the Monte-Carlo simulation points; mm, the number of sub-time steps within each dt
for integration; ρ, the correlation coefficient; θC , the theta parameter for the Clayton
model; θF , the theta parameter for the Frank model; θG, the theta parameter for the
Gumbel model; and λ, the intensity rate. For more consistent result, we used Kendall’s
τ to get a rho-theta equivalent in terms of the model parameters.

3The full ipython notebook code can be assessed at https://github.com/NnekaU/Codes/blob/

master/BDS%20pricing%20using%20Elliptical%20and%20Archimedean%20copulas.ipynb.
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We first generate 50000 data points of default times which correspond to the ap-
plicable models used in this work, and the results were obtained using the algorithms
in Section 3.3 above. We consider the other parameters: λ = 0.04, df = 1, ρ = 0.7,
θC = 1.9497, θF = 5.6212, and θG = 1.9749. Displayed in Table 2 are the outputs of
the first 5 simulations, for the first-to-default BCDS consisting of 10 reference entities
in each models. The results of the simulated default times for each of the five models
are in the form of an (M,N) matrix.
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Table 2: Simulation of default times corresponding from the copula models

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

G
a
u

ss
ia

n

[1, ] 23.10 7.96 16.34 9.92 4.63 21.21 16.32 33.61 3.96 17.25
[2, ] 31.92 16.16 11.03 27.22 21.47 24.88 26.95 42.79 17.74 79.85
[3, ] 74.10 25.75 8.49 12.13 14.82 33.24 15.22 9.80 20.46 22.05
[4, ] 85.77 56.25 46.85 48.93 101.04 32.29 33.28 89.99 56.65 36.64
[5, ] 38.37 41.06 95.49 38.03 82.34 28.16 53.00 72.06 23.36 95.13

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

S
tu

d
e
n
t-

t

[1, ] 8.34 3.33 2.89 16.02 4.96 4.03 0.81 2.24 0.60 4.28
[2, ] 18.47 5.26 16.21 14.81 10.45 5.73 0.60 35.43 1.32 8.89
[3, ] 16.05 26.23 34.99 40.35 32.36 31.75 83.85 26.34 75.26 35.62
[4, ] 42.73 44.37 50.13 42.55 35.64 40.09 50.97 66.74 101.81 15.58
[5, ] 9.48 5.35 5.61 5.02 6.75 6.68 1.19 3.18 0.37 4.04

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

C
la

y
to

n

[1, ] 15.85 11.48 18.98 14.65 6.37 16.47 12.44 43.91 18.75 22.73
[2, ] 86.01 40.70 64.92 48.02 118.37 35.74 80.50 80.37 60.87 49.09
[3, ] 6.83 0.64 6.32 0.95 1.26 2.97 2.76 1.58 3.34 0.89
[4, ] 0.23 1.66 0.36 1.64 0.55 0.80 1.79 0.88 0.55 2.59
[5, ] 4.33 6.77 12.43 23.87 4.41 5.49 3.42 6.85 6.74 6.59

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

G
u

m
b

e
l

[1, ] 55.87 39.76 30.02 53.88 54.85 48.49 39.11 50.29 41.25 41.15
[2, ] 23.50 9.18 34.41 4.43 11.62 12.57 4.26 22.16 16.55 8.53
[3, ] 8.86 6.01 12.80 7.53 1.32 9.68 1.66 27.56 10.66 12.50
[4, ] 15.04 17.19 6.18 17.29 9.30 11.66 11.12 8.93 26.62 16.78
[5, ] 26.09 29.51 44.83 38.42 28.11 65.95 66.55 45.22 39.59 54.65

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

F
ra

n
k

[1, ] 1.54 15.53 21.24 1.94 0.82 9.36 1.61 1.79 2.31 0.89
[2, ] 16.39 26.54 14.63 2.54 11.37 13.60 7.04 14.84 5.25 18.51
[3, ] 7.75 4.81 5.93 30.32 7.59 9.21 30.80 9.25 14.21 16.49
[4, ] 37.90 66.18 8.12 10.91 10.48 23.09 11.02 20.73 11.02 8.62
[5, ] 14.92 21.95 12.56 32.10 20.22 22.75 19.91 66.28 9.97 25.32

One of the major objectives achieved in this study is to model default times using
different copula models, and Table 2 above shows the discrepancies in the results ob-
tained. Default times are first estimated, and then incorporated in the valuation of the
n2D swaps.

The parameters in Table 3 will be used to output the values of the premium legs,
survival probabilities, as well as the actual premiums for different ranks of n2D swaps.
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Table 3: Parameters for the valuation of n2D swap using the same Kendall’s τ

N R r dt df M mm λ θC θF θG ρ
10 40% 5% 0.5 4 50000 10 5% 0.5895 1.2947 2.1393 0.35

Table 4: Premium legs (PL) & Survival probabilities (SP) for n2D swap using different
copulas

Rank Gaussian Student-t Clayton Gumbel Frank
SP PL SP PL SP PL SP PL SP PL

1 0.2698 2.1940 0.2653 2.1177 0.3575 2.6446 0.2884 2.1666 0.3422 2.2992
2 0.4792 3.0821 0.4887 3.0853 0.5307 3.2160 0.4479 2.9724 0.4733 2.9655
3 0.6361 3.5792 0.5843 3.4343 0.6551 3.5660 0.5897 3.5058 0.5858 3.4620
4 0.7548 3.8857 0.7501 3.8681 0.7434 3.7953 0.7280 3.8888 0.6985 3.8315
5 0.8445 4.0908 0.8240 4.0614 0.8127 3.9614 0.8453 4.1362 0.8177 4.1064
6 0.9026 4.2069 0.8943 4.2083 0.8707 4.0920 0.9253 4.2714 0.9088 4.2614
7 0.9446 4.2834 0.9481 4.2983 0.9114 4.1807 0.9726 4.3369 0.9674 4.3348
8 0.9715 4.3287 0.9791 4.3441 0.9471 4.2588 0.9923 4.3613 0.9925 4.3626
9 0.9888 4.3527 0.9946 4.3635 0.9737 4.3147 0.9981 4.3670 0.9987 4.3679
10 0.9968 4.3646 0.9978 4.3669 0.9905 4.3501 0.9998 4.3688 0.9999 4.3689

Table 4 shows the increasing sequence in terms of the ranks of the n2D swaps. Here,
we used five copula models to output the premium legs and the survival probabilities of
each of the n2D swaps. Notwithstanding the distinct values that all the models’ outputs,
they generally exhibit similar characteristics with regards to the observed values. With
an increase in the ranks, the survival probabilities become negatively correlated with
the premium legs. The survival probability is the likelihood of each entity or entities in
a portfolio to survive a credit event before a given time t. Considering the portfolio of
10 entities, for instance, the probability of having one entity out of the whole portfolio
to default is highly significant, and this, in turn, implies that the survival probability of
other non-defaulting entities becomes very slim. Thus, as the rank increases, there is a
higher chance for a few of the entities to survive, and hence, the protection buyer will
be entitled to pay higher premiums. Finally, we output the n2D swap premiums using
the parameters in Table 2, and the results will be displayed in Table 5 below:
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Table 5: Premiums for n2D swap using different copula models

Rank Gaussian copula Student-t copula Clayton copula Gumbel copula Frank copula

1 1649.8 1686.7 1251.1 1623.6 1417.0
2 885.5 866.2 762.9 977.9 944.6
3 532.2 638.2 507.5 611.8 630.0
4 327.8 336.5 354.4 359.6 405.2
5 195.6 222.7 247.8 189.4 224.0
6 118.4 123.9 165.7 87.5 106.3
7 65.7 60.7 111.0 31.4 37.0
8 33.1 23.9 65.1 8.7 8.4
9 13.0 6.1 31.9 2.1 1.5
10 3.7 2.4 11.4 0.2 0.0

In Table 5, we observe a sharp decline in the premiums of the n2D swaps using
different copula models, as the rank of the n2D swaps increases. For the F2D swap
price, the Clayton copula model outputs a significantly least value in comparison with
other models. However, the Clayton values far exceed the others when the rank moves
from fifth till tenth-to-default. In Burtschell, et al. (2005), it can still be argued that for
a specific value of θ, the outputs from the Clayton copula model are almost the same as
the Gaussian copula, but the reverse is the case when the Kendall’s τ equivalent is being
used. The degree of freedom for the student-t copula significantly affects the swap prices,
but when the degrees are increased, the student-t copula values tend to the Gaussian
copula values. Consider for instance, when the degree of freedom increases from 4 to
15, the student-t n2D swap premiums become 1650.7, 872.3, 534.9, 322.7, 191.5, 117.1,
66.3, 33.8, 15.1 and 3.7, as the rank increases.

Furthermore, we observe from Table 5, that the choice of the copula model has a
considerable effect on the value of the n2D swap. The swap prices differ using differ-
ent copula models, even if the modelling assumes the same concordance structure. We
note that in our case, we used the same Kendall’s τ equivalent. The θ parameters of
the Archimedean copula are equivalent to the ρ value in the elliptical copula. Thus,
in connection to this, Schröter and Heider (2013) asserted that the choice of the cop-
ula function should be considered as part of the modelling since the function plays a
determinant role in the risk profile of the BDS, and they should be chosen wisely in
connection to the regulatory requirements.

4.2 Sensitivity Studies

Sensitivity analysis plays a huge role in any model of derivative pricing, as they specify
which trading strategy hedges the security effectively. Several model factors affect the
riskiness of the portfolio and consider the F2D as an example. However, we note that
the following analysis depends on the rank to default in the portfolio. That is, whether it
is F2D, second-to-default (S2D), etc., The model factors include: concordance structure
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(ρ and θ) - the higher the concordance rate, the lower the probability of default; hazard
rates - the lesser the rates, the smaller the likelihood of default; time to maturity - the
longer the maturity time, the lesser the probability of default; recovery rate - higher
rate of recovery results to lower default probability; and number of entities - the bigger
the basket, the more the chances of default. In this work, we shall numerically consider
the variations of the F2D till tenth-to-default swap premiums against their respective
concordance structures, default rates and the times to expiration. Table 6 lists the
parameters used in the results:

Table 6: Parameters for the sensitivity analysis of the n2D swap using the same Kendall’s
tau

N R r dt df M mm λ θC θF θG ρ
10 45% 3% 0.25 7 50000 10 3% 1.0000 3.3057 1.5000 0.50

The graphical description of the sensitivity analysis are depicted in Figures 1 till 5.
The analysis are conducted with different default times arising from the corresponding
models been used, and the explanations follow in Sections 4.2.1, 4.2.2, and 4.2.3 below.

(a) ρ variations: n2D swaps vs n (b) λ variations: n2D swaps vs n (c) T variations: n2D swaps vs n

Figure 1: Gaussian copula: n2D swap prices versus the parameters ρ, λ and T respec-
tively.

(a) ρ variations: n2D swaps vs n (b) λ variations: n2D swaps vs n (c) T variations: n2D swaps vs n

Figure 2: Student-t copula: n2D swap prices versus the parameters ρ, λ and T respec-
tively.
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(a) θ variations: n2D swaps vs n (b) λ variations: n2D swaps vs n (c) T variations: n2D swaps vs n

Figure 3: Clayton copula: n2D swap prices versus the parameters ρ, λ and T respectively.

(a) θ variations: n2D swaps vs n (b) λ variations: n2D swaps vs n (c) T variations: n2D swaps vs n

Figure 4: Gumbel copula: n2D swap prices versus the parameters ρ, λ and T respectively.

(a) θ variations: n2D swaps vs n (b) λ variations: n2D swaps vs n (c) T variations: n2D swaps vs n

Figure 5: Frank copula: n2D swap prices versus the parameters ρ, λ and T respectively.

4.2.1 Sensitivity Analysis (w.r.t. concordance parameters)

The concordance structure is one of the essential parameters which affect the sensitivity
of the n2D swap prices. For the correlation factor, we observe that higher correlation
results in decline in the swap spread, and this is evident for the F2D and the S2D spread.
It could be said that if an investor takes a position of a short protection, then it will
be a long correlation; which obviously implies that the investor will stand to gain from
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an equivalent increase in the probability of no default. Furthermore, as the rank of the
default increases (as from the third-to-default (T2D)), we observe that an increase in
the correlation factor subsequently led to an increase in the swap premium.

The θ-parameters of the Archimedean copulas measure the tail dependency, as both
the parameters and the tail dependencies are positively correlated. When the default
time is modelled using the Clayton copula, we observe that as from the fourth-to-default
(Fo2D) upwards, the swap prices are increased owing to a consistent rise in the θ-
parameters. Similar results are seen from the T2D swap spreads when the default times
are modelled using both Frank and Gumbel copulas. However, as we increase the rank
further on, the swap spreads coincide at the tenth-to-default, since we considered a
portfolio of 10 entities. Hence, increasing the dependency structures in the tail of the
distribution, that is θ, leads to a remarkable increase in the probability of joint defaults,
and in turn, the default correlation.

In general, the concordance structures affect the tail dependencies of the models, and
hence, investors seeking to gain from this derivative security must choose the basket
swap type and the position strategically. For instance, the correlation sensitivity has
resulted in speculating the direction of the correlation in the credit derivatives market.
If the investor perceives that the default correlation of entities in a portfolio will rise,
then the investor can sell F2D default protection with the sole aim of making a profit
should default correlation eventually increase.

4.2.2 Sensitivity Analysis (w.r.t. hazard rate)

We observed similar trends in all the models, as default time values are estimated using
various copula models. A steep decline in the rank of default is observed with respect
to the n2D swap prices, and the swap prices are seen to coincide if the rank is increased
further to 10. There is a consistent increase in the swap spread as the default intensities
of all the copula models increase. Thus, this is intuitively right because the default
intensities measure the loss expectation for a greater specified dependency structure,
and this requires a higher premium [20]. Furthermore, as the hazard rate increases,
the chances of the entities to default become more likely, and this accounts to a more
substantial premium. The behaviour of the hazard rate and the correlation coefficient are
in sharp contrast because increasing both parameters result to a monotone decrease and
monotone increase of the swap spreads respectively when the F2D swaps are considered.

In general, when the default intensity is high, the likelihood of joint defaults become
exceedingly vast, resulting in larger spreads. On the other hand, at low default intensity
or as the limit of default intensity tends to zero, the dependency structure becomes
irrelevant, the spreads gradually decline, and no default will be experienced in the given
portfolio.

4.2.3 Sensitivity Analysis (w.r.t. time to expiration)

We finally showed the dependence of the n2D swap spread on time to maturity of the
basket. While the time to expiration of the contract increases, we observe a gradual
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reduction in the quarter-annual swap premium payments. This observation is evident
for the F2D basket swap only, and the reverse becomes the case when the seniority of
the default payment increases. Thus, for each of the models, the payments made by
the protection seller upon default and the regular premium payments by the protection
buyer are seen to increase simultaneously, with an increase in the contract’s expiration
time. This increment, in turn, lowers the cumulative swap value.

From the S2D swap and above, there will be more likelihood of joint defaults by
the entities in the portfolio, provided the time horizon is extended further. The results
obtained from the copula models equally showed some discrepancies, especially with
regards to the swap prices when the rank of default is between 2 and 6. For a year
n2D swap, the student-t copula, the Gumbel copula and the Frank copula exhibited a
sharp decline in the swap premium prices, whereas, the Gaussian and the Clayton copula
showed a steady decrease in the swap prices.

5 Conclusion

In this paper, we considered a comprehensive analysis of the effect of valuing portfolio
credit derivatives, especially the n2D basket swaps, using both elliptical and Archimedean
copula models. Copula models are essential tools in the modelling of correlated defaults,
which are evident in the pricing of a portfolio of credit derivatives. We employed the
Monte-Carlo simulation in connection to the swap premium prices using various copula
models, such as Gaussian, student-t, Clayton, Gumbel, and the Frank copula models to
estimate the default times first. Most credit default events are captured as tail events
by nature; we further compared the results obtained using both non-tail distributions
(Gaussian and Frank) and fat tail distributions (Gumbel, Clayton, and student-t). The
study summed up analysing the inherent model risks, and this was achieved by conduct-
ing some sensitivity analysis, with regards to the concordance structures, hazard rates
and time to expiration of the contract. We further showed some graphical illustrations
on how these model parameters hugely affect the prices of the swap contracts.

The significant contribution of this study lies in conducting comparative statics on
the estimation of n2D basket swap prices, using various copula models. Furthermore,
to ensure efficient comparative statics, we introduced the Kendall’s τ concordance mea-
sures to model the dependency structures of the underlying entities, even though the
corresponding results produced different swap values for the models used. Additionally,
having an in-depth knowledge of the sensitivity studies can assist investors and financial
participants in hedging and speculating the direction of the market. The concordance
measures of the portfolio should be utilised to determine the risk associated with the
choice of a specific copula, as this ensures the dependency or the joint dependencies
associated within the portfolio. In conclusion, we can infer that the choice of copula
used to model default time contributes immensely in the riskiness of a credit portfolio
of multiple entities.
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[3] Bastide, D., Benhamou, E. and Ciucă, M., 2008. A Comparative Analysis of Bas-
ket Default Swaps Pricing Using the Stein Method. ICFAI Journal of Derivatives
Markets, 5(2).
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[16] Genest, C. and Nes̆lehová, J.G., 2014. On tests of radial symmetry for bivariate
copulas. Statistical Papers, 55(4), pp.1107-1119.

[17] Goegebeur, Y., Hoedemakers, T. and Tistaert, J., 2007. Synthetic CDO pricing
using the Student-t factor model with random recovery. In: Third Brazilian Con-
ference on Statistical Modelling in Insurance and Finance.

[18] Hyrs̆, M. and Schwarz, J., 2015. Elliptical and archimedean copulas in estimation
of distribution algorithm with model migration. In: 2015 7th International Joint
Conference on Computational Intelligence (IJCCI), Vol. 1, pp. 212-219).

[19] Hull, J.C. and White, A., 2004. Valuation of a CDO and an nth-to-default CDS
without Monte-Carlo simulation. Journal of Derivatives 12(2), pp.8-23

[20] Jabbour, G.M., Kramin, M.V., and Young, S.D., 2008. Nth-to-default swaps: val-
uation and analysis. Managerial Finance, 35(1), pp.25-47.

[21] Kijima, M., 2000. Valuation of a credit swap of the basket type. Review of Deriva-
tives Research, 4(1), pp.81-97.

[22] Laurent, J.P., and Gregory, J., 2005. Basket default swaps, CDOs and factor copu-
las. Journal of Risk, 7(4), pp.103-122.

[23] Li, D.X., 2000. On Default Correlation: A Copula Function Approach. The Journal
of Fixed Income, 9(4), pp.43-54.

[24] Mashal, R., and Naldi, M., 2002. Pricing multiname credit derivatives: heavy tailed
hybrid approach. Available at SSRN 296402.

[25] Melchiori, M.R., 2006. Tools for sampling multivariate Archimedean copulas. Yield-
Curve. Available at SSRN: http://dx.doi.org/10.2139/ssrn.1124682.

24

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.5130&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.23.5130&rep=rep1&type=pdf
https://mpra.ub.uni-muenchen.de/6014/1/MPRA_paper_6014.pdf
http://dx.doi.org/10.2139/ssrn.1124682


P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt Elliptical & Archimedean copula models: an application to the price estimation of PCDs

[26] Naifar, N., 2011. Modelling dependence structure with Archimedean copulas and
applications to the iTraxx CDS index. Journal of Computational and Applied Math-
ematics, 235(8), pp.2459-2466.

[27] Nolan, J.P., 2018. Stable Distributions – Models for Heavy Tailed Data. Lecture
Notes, American University, http://fs2.american.edu/jpnolan/www/stable/

chap1.pdf

[28] O’Kane, D., 2011. Modelling single-name and multi-name credit derivatives (Vol.
573). John Wiley & Sons.

[29] Peng, L., and Qi, Y., 2017. Inference for Heavy-Tailed Data: Applications in Insur-
ance and Finance. Academic Press, Elsevier Ltd.
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