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SIR-BASED MATHEMATICAL MODELING OF

INFECTIOUS DISEASES WITH VACCINATION AND

WANING IMMUNITY

MATTHIAS EHRHARDT, JÁN GAŠPER AND SOŇA KILIANOVÁ

Abstract. In this paper we will derive an SIR model describing vacci-
nation as well as waning immunity and propose a finite difference scheme
for its solution together with some qualitative results. For the model-
ing of the waning immunity we assume a statistical distribution for the
level of antibodies depending on the time lapsed since individual’s full
recovery or vaccination.

We arrive at a system of two ODEs and two PDEs that we reduce
to a model of just two ODEs and a few algebraic equations. Next,
we propose and implement an efficient numerical scheme to solve this
reduced model, based on finite differences. To illustrate our findings we
provide graphical results and discuss some qualitative properties of the
solutions. Additionally, we derive formulas for the basic reproduction
number R0 and the effective reproduction number R(t) of the reduced
model and show the behavior of solutions for examples with R0 > 1 and
R0 < 1.

Keywords. SIR model, measles, waning immunity, vaccination strategy,
ordinary-integral differential equation, discrete model, finite difference scheme,
basic reproduction number, effective reproduction number.

1. Introduction

Susceptible-infectious-recovered (SIR) types of mathematical models are
used to model the spread of an infectious disease. They are compartmental
models, with the following standard compartments into which a population
is divided: the group S of individuals who are susceptible to the disease
and can become infected, the group I of individuals who are infectious and
can infect other susceptible individuals during encounter, and the group
R of recovered individuals who gained life-long immunity at recovery and
cannot get infected anymore (this assumption can be relaxed). An SIR
model was firstly proposed by Kermack and McKendrick [19] and it has been
subject to various investigations, modifications and extensions since then.
The basic homogeneous model can be extended for other compartments
(SEIR, SEIS, MSIR, MSEIR, MSEIRS and other models), vaccination (e.g.
Sinha, Misra and Dhar [26], Zaman, Kang and Jung [32]), regional, age
or other heterogeneity of population (e.g. Zibolenová, Ševčovič et al. [34],
Shuai and Driessche [27], David [8], Song, Jiang and Liu [28], Zibolenová et
al. [35]), disease parameters heterogeneity (e.g. Gou and Jin [16]).
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Another option for extending SIR types of models is taking waning or
boosting immunity into account. The duration of resistance against a dis-
ease after overcoming it naturally or after vaccination can differ for different
diseases as well as over time. For infectious diseases like measles, one often
assumes that immunity is long or even life-long after recovery or vaccination,
but in reality it may be subject to waning with subsequent loss of immunity.
There are a few different approaches to SIR models with waning immunity
in the literature. Some authors utilized exponential waning profile/function
[6], other authors used so-called renewal equations (e.g. Nakata et al. [24]).
Dafilis et al. [7] studied a SIRS model, in which one can transfer from the
compartment of recovered back to susceptible and consequently oscillatory
dynamics appear. Rouder et al. [25] considered optimal vaccination ages
in one-dose and two-dose vaccination schedules, in regard to waning and
boosting immunity. Barbarossa and Röst [2] provided an extensive theoret-
ical study of a general model with waning and boosting immunity.

Estimating the real process of waning immunity is not easy, as it is hardly
measurable. Mossong et al. [23] studied the decay in vaccine-induced im-
munity over time and assume that the level of antibodies has a log-normal
distribution. Heffernan and Keeling [17] focused on investigating a mecha-
nistic within-host model of the immune system, corresponding epidemiologi-
cal transmission and the consequences of long-term vaccination. Some other
authors have used delay differential equations to model waning immunity or
other tools, see e.g. [1] or [3, 18, 29, 30]. Vaccination coverage has been
studied by Chladná and Moltchanová in [4], asking questions if and how it
can be modeled, from perspective of measles incidence in previous years.

A detailed overview of literature on this topic is provided in already men-
tioned paper [2] by Barbarossa and Röst. The authors also provide a gen-
eral model for vaccination, waning as well as boosting immunity, in which
individuals from the compartment of recovered or vaccinated are subject
to waning (and boosting) immunity and after their immunity level drops
below a certain critical threshold, they transfer back to a compartment of
susceptibles. The authors cover a general case of an infectious disease model
consisting of a system of ordinary differential equations (ODEs) coupled with
two partial differential equations (PDEs) and investigate analytic properties
of the solution like existence, uniqueness, non-negativity, equilibrium, sta-
bility, and they also discuss the connection of their general model to other
models based on ODEs, PDEs or DDEs (delay DEs). Even though they
provide an extensive theoretical study, they do not provide any suggestions
for solving the dynamical system numerically. As far as analytic solutions
are considered, the authors solve the system of two ODEs (for the com-
partments S, I) and one PDE (for the compartment of recovered) for three
immunity levels only – high, intermediate, low – and do so by method of
lines, which turns the PDE into a system of stiff ODEs.

In this paper, we will suggest an alternative model with vaccination as
well as waning immunity and we shall also propose a numerical scheme for
its solution together with providing some qualitative results. The difference
to the general model of Barbarossa and Röst [2] is the modelling of wan-
ing immunity. While in [2], the authors considered a given function g(z)
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describing the change of the immunity level, in our paper, we will adopt
the approach of Mossong et al. [23] who assumed a statistical distribution
for the level of antibodies depending on the time lapsed since individual’s
full immunity. We shall deal with a system of two ODEs (for S, I) and
two PDEs (for recovered and vaccinated), which we shall reduce to just two
ODEs and a few algebraic equations. Subsequently, we propose and imple-
ment an efficient numerical scheme to solve this reduced model, based on
finite differences. We provide graphical results and discuss some properties
of the solutions. We also derive formulas for the basic reproduction num-
ber R0 and the effective reproduction number R(t) implied by the reduced
model and illustrate the behavior of solutions for examples with R0 > 1 and
R0 < 1.

The paper is structured as follows. In Section 2, we recall the known
basic SIR model and one with vaccination for the sake of readers’ comfort.
Section 3 summarizes the main points of modeling waning immunity, fol-
lowing Mossong et al. [23] and Zibolenová et al. [33]. We include this model
of waning immunity into the SIR model in Section 4. Here we derive a sys-
tem of ODEs and PDEs describing the dynamics of the system. Due to the
complexity of the dynamics which cannot be ”seen” right away, we start by
evaluating the system balance in a discrete setting and then transfer it to
a continuous model. Section 5 is dedicated to the reduction of the model
from two ODEs and two families of PDEs to only two ODEs with a memory
term and a few algebraic equations. We also derive formulas for the ba-
sic reproduction number and the effective reproduction number implied by
this model. Finally, Section 6 contains the proposed numerical scheme and
shows the results from two examples. We compare the results of our model
with results of the known SIRS model in Section 7 and finally we conclude
our work with a brief discussion.

2. Basic homogeneous SIR models

For the comfort of the readers, we recall the basic SIR model, firstly
proposed by Kermack and McKendrick [19] and subsequently used, modified
or investigated by many authors. The model’s idea is to distinguish between
three types of individuals with respect to their relationship to the disease:
susceptible (S) who can get infected, infectious (I) who transmit the disease
during encounters with susceptible individuals, and recovered (R) who are
immune against the disease and cannot get infected. A basic SIR model
describing the interactions between the compartments S, I and R reads

dS(t)

dt
= −β I(t)S(t)

N
+ µN − µS(t),

dI(t)

dt
= β

I(t)S(t)

N
− γI(t)− µI(t),(1)

dR(t)

dt
= γI(t)− µR(t),

where S(t) is the number of susceptible individuals in the population at
time t, I(t) the number of infectious, R(t) the number of recovered, N =
S(t) + I(t) + R(t) denotes the total (conserved) population, µ is the birth
rate as well as mortality rate (the equality of these two rates ensures a
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constant size of population over time: N(t) = N), γ is the rate of recovery.
The parameter β is the transmission coefficient reflecting the ”strength” of
disease in terms of probability that a susceptible individual becomes infected
during an encounter with an infectious one on one hand, and the number of
contacts of each individual on the other hand (we recall that in this simple
model, the population is assumed to be homogeneous, i.e. all individuals
have the same number of contacts as well as social habits and conditions).
This model does not consider any age or spatial structure or vaccination or
waning immunity.

For the ease of understanding the more complicated model presented in
the next section easier, we first demonstrate incorporating vaccination in the
basic model (1). If individuals get vaccinated right after birth as newborns
and if x denotes the so called actual vaccination coverage (percentage of new
vaccinated children per unit of time), and if we use different notation for
birth rate (ν) and mortality rate (µ), the homogeneous model becomes

dS(t)

dt
= −β I(t)S(t)

N(t)
+ ν(1− x)N(t)− µS(t),

dI(t)

dt
= β

I(t)S(t)

N(t)
− γI(t)− µI(t),(2)

dR(t)

dt
= γI(t) + νxN(t)− µR(t),

where N(t) = S(t) + I(t) +R(t) denotes again the total size of population,
which, in general, is non-constant if ν 6= µ. In this simple case, we assume
that vaccines have 100% effectiveness, meaning they do not fail and they
provide complete and life-long immunity, same as recovery from natural
infection does. Alternatively, we could interpret x as the rate of successful
(effective) vaccination.

3. Modeling waning immunity

Following the works [20, 23, 33], we denote by SV F (τ) (stands for sec-
ondary vaccine failure) the probability that the level of antibodies of an
immune person with time τ since the last immunization (vaccination or re-
covery after natural infection) drops below a critical threshold Ccrit. Next,
we denote by

GMT (τ) = GMT (0) e−wτ

the geometric mean of the level of antibodies, with w being the waning rate.
We also assume that the concentration C(τ) of antibodies in each time τ
since recovery or vaccination is a log-normally distributed random variable,
that is, x = lnC(τ) is a normally distributed random variable with mean
lnGMT (τ) and standard deviation σ. Then we can express the secondary
vaccine failure as

(3) SV F (τ) = P
(
x < ln(Ccrit)

)
=

1√
2πσ2

ln(Ccrit)∫

−∞

e−
(x−lnGMT (τ))2

2σ2 dx.

In other words, SV F is the probability that the immunity of a host drops
below a critical threshold and the individual becomes susceptible again.
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Figure 1. Immunity waning scenario 2 (see Table 1). Left:
GMT (τ). Right: E(lnC(τ)) ± σ. The time τ since full
immunity is in years. The red horizontal interrupted lines
represent Ccrit and lnCcrit.

Data for this model is available from estimations in other research papers;
we summarize the data as well as their sources in Table 1. We depict an
example of the process of waning immunity in Figure 1.

4. Model with vaccination and waning immunity

We shall now proceed to derive a model which utilizes the waning im-
munity concept introduced in the previous section. As it is not intuitively
straightforward to write the continuous model right away, we shall start by
the discrete consideration of the dynamics.

In a model with waning immunity, individuals who once have been im-
mune (recovered or vaccinated), may lose their protection if the level of their
antibodies decreases below a certain critical level Ccrit. Individuals who have
lost their immunity will enter back from R or V into the state S of being
susceptible. The differential equation for S will therefore contain terms with
the recovered R and the vaccinated V and so it is practical to start with
deriving an equation for the dynamics of recovered and vaccinated yet before
investigating the dynamics of S.

At the very beginning let us consider the simplest dynamics first, the one
of I. There are no specific changes in the corresponding ODE compared to
other known models also described in Section 2. Therefore, we just present
it here without any further explanation:

(4)
dI(t)

dt
= β

I(t)S(t)

N(t)
− γI(t)− µI(t),

where we recall that γ is the rate of recovery, β is the transmission rate
and µ is the yearly natural mortality rate. We allowed for a non-constant
population size N(t), as the birth and mortality rates will not have to be
equal in the model, and hence the overall balance of the population might
not be constant.

4.1. Equation for Recovered Individuals. We denoted by S(t), I(t) the
number of susceptible and infectious individuals at time t. It is natural to
define another unknown function as the number of recovered individuals at
time t who recovered from the naturally gained disease τ time units before
t. As we will see, a more suitable unknown function to work with is this
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number normalized to one time unit (year), which we shall denote by R(t, τ).
We shall derive a differential equation governing the normalized number of
recovered, R(t, τ).

First, we recall that SV F (τ) is the probability that individual loses im-
munity before time τ since recovery. Now, let P (τ) := 1 − SV F (τ) denote
the probability that an individual retains immunity at least up to time in-
stance τ since recovery. During a small time interval from t to t +∆t, the
number γI(t)∆t of infectious individuals get recovered, and out of them only
γI(t)∆tP (0) gain a sufficient (and full) immunity for protection; the rest of
them remain susceptible. The initial condition for normalized number of
recovered will then be R(t, 0) = γI(t)P (0).

Let us denote for a moment the (not normalized) number of recovered at
time t with time τ since recovery by R∗(t, τ). For the sake of simplicity, we
now consider waning immunity as the only reason for individuals to leave
the compartment of recovered. We do not take natural death into account at
this point. Then it is obvious that R∗(t, τ) = R∗(t−τ, 0)P (τ)/P (0). Indeed,
if R∗(t− τ, 0) is the number of individuals at time t− τ who are 0 time units
since recovery and are immune, then R∗(t−τ, 0)/P (0) is the total number of
individuals who just recovered at time t− τ . Finally, R∗(t− τ, 0)P (τ)/P (0)
is the number of people who recovered at t− τ and are still immune at time
t. Dividing both sides of this equation by ∆t, we get the same equation for
the normalized function R:

(5) R(t, τ) = R(t− τ, 0)
P (τ)

P (0)
.

Once knowing the profile P (τ) and the value of R(t, 0) for a certain time
t, values R(t + h, h) are known for any time step h > 0. After a time step
∆t > 0, the corresponding equation must hold as well:

(6) R(t+∆t, τ +∆t) = R(t− τ, 0)
P (τ +∆t)

P (0)
.

By dividing these two equations, we get

(7)
R(t, τ)

R(t+∆t, τ +∆t)
=

P (τ)

P (τ +∆t)
.

In order for this operation to be legal, we need to secure nonzero-ness of the
terms in the denominators. It holds that P (τ) > 0 for any τ . Positivity of
R(t, τ) for any t, τ > 0 will be a consequence of the following assumption:

(A1) we assume that I(0) = I0 > 0.

This assumption is meaningful and not restricting, as for I(0) = 0 there
would be no relevant dynamics in the compartment R.

Lemma 4.1. Under assumption (A1), it holds that I(t) > 0 for any t > 0.

Proof. This statement is obvious from (4), the solution of which is

I(t) = I0 e
−

∫
t

0 (βS(s)/N(s)−γ−µ)ds,

which means I(t) > 0 for all t > 0 if I0 > 0. �
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Remark 4.2. As a consequence of Lemma 4.1, it holds that R(t, 0) :=
γI(t) > 0 for any t > 0. For now, let us make another assumption:

(A2) we assume that R(t, τ) > 0 for any t, τ > 0.

We shall show that this assumption is fulfilled later in Corollary 4.4. For
now, it ensures that the denominator on the left-hand side of (7) is non-zero
too.

Applying the logarithm to both sides of (7) yields

ln
(
R(t, τ)

)
− ln

(
R(t+∆t, τ +∆t)

)
= ln (P (τ))− ln (P (τ +∆t)) .

Adding a special zero on the left-hand side and dividing by ∆t leads to:

ln
(
R(t, τ)

)
− ln

(
R(t+∆t, τ)

)

∆t
+
ln
(
R(t+∆t, τ)

)
− ln

(
R(t+∆t, τ +∆t)

)

∆t

=
ln (P (τ))− ln (P (τ +∆t))

∆t
.

Letting ∆t→ 0, we arrive at the following differential equation:

∂ ln
(
(R(t, τ)

)
)

∂t
+
∂ ln

(
R(t, τ)

)

∂τ
=
d ln
(
(P (τ)

)
)

dτ
,

and hence, the PDE for the recovered individuals R reads

(8)
∂R

∂t
+
∂R

∂τ
=
P ′

P
R .

Next, let R(t) denote the overall number of recovered individuals at time
t. In the discrete setting, it is obvious that

R(t) =
∞∑

i=0

R∗(t, τi).

Recognizing that ∆t ≡ ∆τ , because a shift in running time t is always
the same like the shift in time since recovery τ for any individual, and
multiplying the right-hand side of this equation by ∆τ/∆t ≡ 1, we get

R(t) =
∞∑

i=0

R∗(t, τi)

∆t
∆τ =

∞∑

i=0

R(t, τi)∆τ,

which in the continuous limit ∆τ → 0 becomes

R(t) =

∫
∞

0
R(t, τ) dτ.

Now, to include the effect of natural death into our considerations, we
look back at the relation (7) in another form:

R(t+∆t, τ +∆t) = R(t, τ)
P (τ +∆t)

P (τ)
.

Including natural death into this equation is now straightforward. If µ de-
notes the yearly natural mortality rate, then the probability that an individ-
ual does not die within an interval of length ∆t is 1−µ∆t. Since we consider
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natural mortality to be independent to waning immunity, we multiply these
probabilities:

(9) R(t+∆t, τ +∆t) = R(t, τ)
P (τ +∆t)

P (τ)
(1− µ∆t).

We again take analogous steps like previously: we divide the equation by
R(t, τ), add a special zero, take logarithm, divide by ∆t and arrive at

ln
(
R(t+∆t, τ +∆t)

)
− ln

(
R(t, τ)

)

∆t
=

ln (P (τ +∆t))− ln (P (τ))

∆t
+
ln (1− µ∆t)

∆t
.

Letting ∆t→ 0, we obtain

1

R

∂R

∂t
+

1

R

∂R

∂τ
=
P ′

P
+ lim

∆t→0
ln
(

(1− µ∆t)1/∆t
)

and subsequently

(10)
∂R

∂t
+
∂R

∂τ
= R

(P ′

P
− µ

)

.

This is the PDE governing the evolution of the (normalized) number of
recovered if waning immunity and natural deaths are considered.

Lemma 4.3. The equation (10) with given initial profile R(0, τ) has the
analytic solution

(11) R(t, τ) = R(t− τ, 0)
P (τ)

P (0)
e−µτ .

Proof. First, we divide both sides of (10) by R(t, τ) and substitute u(t, τ) =
lnR(t, τ) and arrive at

∂u(t, τ)

∂t
+
∂u(t, τ)

∂τ
=
P ′(τ)

P (τ)
− µ.

This is a first-order PDE with characteristic system

dt

ds
= 1,

dτ

ds
= 1,

du

ds
=
P ′(τ(s))

P (τ(s))
− µ.

Noticing that ṫ − τ̇ = 0, we can identify the first characteristic Φ = t − τ .
To get a second characteristic, we divide du/ds by dτ/ds and get

du

dτ
=
P ′(τ)

P (τ)
− µ,

which has a solution u = ln(P (τ))−µτ+c2. Hence, the second characteristic
is ψ = u− ln(P (τ)) + µτ .

The general solution is then given by F (Φ, ψ) = 0 with F being an arbi-
trary function. We choose F (Φ, ψ) = f(Φ)−ψ, where f will be determined
later. We obtain

u = f(t− τ) + ln
(
P (τ)

)
− µτ.
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By taking exponential from both sides, we get

R(t, τ) = ef(t−τ)P (τ) e−µτ .

If we choose f(t− τ) := ln
(
R(t− τ, 0)/PR(0)

)
, it holds

(12) R(t, τ) = R(t− τ, 0)
PR(τ)

PR(0)
e−µτ ,

where we added the index R to the function P for the sake of distinguishing
between the P function of recovered and vaccinated.

The final step is to show that there is no contradiction on boundary
R(t, 0). The right-hand side of the above analytic expression (12) says that
R(t, 0) should be equal to R(t− 0, 0)PR(0) e

−µ0/PR(0), which is truly iden-
tical to R(t, 0). �

The following property justifies Assumption (A2) and follows directly
from Lemma 4.3.

Corollary 4.4. If P (τ) > 0 for all τ ∈ R, it holds that R(t, τ) > 0 for all
t, τ ∈ R.

Remark 4.5. If we want to solve (10) numerically, we would face a problem
with convergence or numerical stability. Indeed, the term R(t, τ)P ′(τ)/P (τ)
contains two conflicting terms: P ′(τ)/P (τ) goes to −∞ for τ → ∞, while
R(t, τ) tends to zero for τ → ∞. Thus, we have a product of a term going
to zero and of a term going to −∞. One would have to prove that the speed
of convergence to zero is faster than the one to −∞, so we ensure that the
number of recovered does not go to −∞ (or is not negative at all). However,
equation (10) can be reformulated using Lemma 4.3 into the form

∂R(t, τ)

∂t
+
∂R(t, τ)

∂τ
= R(t− τ, 0)

P ′

R(τ)

PR(0)
e−µτ −R(t, τ)µ,

which avoids the problematic expressions. We do not need to solve equation
(10) in this paper though, as we will reduce the model and get rid of this
PDEs later.

Remark 4.6. We note that the derivation of a PDE for the population
of vaccinated individuals is analogous to the one for recovered individuals,
therefore we shall skip it in this paper and directly provide the corresponding
PDE when presenting the complete model.

4.2. The effect of waning immunity on the susceptibles. To derive
the waning immunity terms that should enter an equation for S, we again
examine the discrete setting first. Let us start with making clear which part
of R (or R∗) contributes to S. The following is true for all immune at time
t+∆t:
∞∑

j=0

R∗(t+∆t, j∆t+∆t)

︸ ︷︷ ︸

Still immune

=
∞∑

j=0

R∗(t, j∆t)

︸ ︷︷ ︸

Immune at t

−µ∆t
∞∑

j=0

R∗(t, j∆t)

︸ ︷︷ ︸

Died

− ∆S(t)
︸ ︷︷ ︸

Lost immunity

.

Then

∆S(t) =

∞∑

j=0

[

R∗(t, j∆t)
(

1− P (j∆t+∆t)

P (j∆t)
− µ∆t

)]
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and finally we can write

S(t+∆t) = S(t) +

∞∑

j=0

R∗(t, j∆t)
(

1− P (j∆t+∆t)

P (j∆t)
− µ∆t

)

.

If we express P (j∆t) and P ((j + 1)∆t) from (5) and (6), we get

S(t+∆t) = S(t) +
∞∑

j=0

R∗(t, j∆t)
(R(t, j∆t)−R(t+∆t, j∆t+∆t)

R(t, j∆t)
−µ∆t

)

and subsequently
(13)

S(t+∆t) = S(t)+
( ∞∑

j=0

R(t, j∆t)−R(t+∆t, j∆t+∆t)−R(t, j∆t)µ∆t
)

∆t.

Now we can divide the entire equation by ∆t and multiply the sum on
the right-hand side by ∆t/∆t. We get

S(t+∆t)− S(t)

∆t
=

∞∑

j=0

(R(t, j∆t)−R(t+∆t, j∆t+∆t)

∆t
−R(t, j∆t)µ

)

∆t.

Letting ∆t→ 0, we arrive at:

dS(t)

dt
= −

∫
∞

0

(∂R(t, τ)

∂t
+
∂R(t, τ)

∂τ

)

dτ − µ

∫
∞

0
R(t, τ) dτ,

which by (10) is the same as

dS(t)

dt
= −

∫
∞

0
R(t, τ)

(P ′

R(τ)

PR(τ)
− µ

)

dτ − µ

∫
∞

0
R(t, τ) dτ.

and subsequently

dS(t)

dt
= −

∫
∞

0
R(t, τ)

P ′

R(τ)

PR(τ)
dτ .

Adding the standard terms into this equation, like the new infected, the
newborn, and the naturally died, is now straightforward and we will present
the complete equation when presenting the complete model.

4.3. The complete model with waning immunity. We can now sum-
marize the complete model when waning immunity and vaccination at the
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moment of birth are considered:

dS(t)

dt
= −βS(t)I(t)

N(t)
+ νN(t)(1− x)− µS(t)

−
∞∫

0

R(t, τ)
P ′

R(τ)

PR(τ)
dτ −

∞∫

0

V (t, ξ)
P ′

V (ξ)

PV (ξ)
dξ

+
(
1− PR(0)

)
γI(t) +

(
1− PV (0)

)
νN(t)x

(14)

dI(t)

dt
= β

S(t)I(t)

N(t)
− γI(t)− µI(t)(15)

∂R(t, τ)

∂t
+
∂R(t, τ)

∂τ
= R(t, τ)

(P ′

R(τ)

PR(τ)
− µ

)

(16)

∂V (t, ξ)

∂t
+
∂V (t, ξ)

∂ξ
= V (t, ξ)

(P ′

V (ξ)

PV (ξ)
− µ

)

(17)

with initial conditions

(18) R(t, 0) = γI(t)PR(0), V (t, 0) = νN(t)xPV (0).

We denoted by x the portion of newborn individuals who are vaccinated
at the moment of birth. We also distinguish between

PR(τ) := 1− SV FR(τ) and PV (ξ) := 1− SV FV (ξ)

as these may in general have different parameters, and so these two functions
might differ. The variable ξ represents the time of an individual since their
vaccination. The last two terms in the equation for S are terms containing
individuals who got vaccinated or recovered, but lost their protection right
away.

Remark 4.7. Equations (16) and (17) as well as the integral terms in (14)
can be rewritten by means of Lemma 4.3. We did not do it here because we
are not going to solve this system numerically.

5. A reduced model

In this section We shall solve the PDEs for R and V analytically, which
will allow us to reduce the model (14)–(17) into just two ODEs.

Proposition 5.1. Analytic solutions to (16) and (17) are as follows:

R(t, τ) = γI(t− τ)PR(τ) e
−µτ ,(19)

V (t, ξ) = νN(t− ξ)xPV (ξ) e
−µξ.(20)

Proof. The statement follows directly from the interpretation of the function
P . Starting from new recovered (or vaccinated), R(t− τ, 0) (or V (t− ξ, 0)),
the number of individuals who still retain protection, i.e. who did not lose
immunity and who did not die, is

R(t, τ) = R(t− τ, 0)
PR(τ)

PR(0)
e−µτ ,

V (t, ξ) = V (t− ξ, 0)
PV (ξ)

PV (0)
e−µξ.

The rest follows easily from plugging in the boundary conditions (18). �



12 MATTHIAS EHRHARDT, JÁN GAŠPER AND SOŇA KILIANOVÁ

Next we substitute R(t, τ) from (19) and V (t, ξ) from (20) into (15). We
arrive at a system of two ordinary-integral differential equations with one-
dimensional time variable:

dS(t)

dt
= −βS(t)I(t)

N(t)
+ νN(t)(1− x)− µS(t)+

+

∞∫

0

γI(t− τ) e−µτP ′

R(τ) dτ +

∞∫

0

νN(t− ξ)x e−µξP ′

V (ξ) dξ(21)

+
(
1− PR(0)

)
γI(t) +

(
1− PV (0)

)
νN(t)x .

dI(t)

dt
= β

S(t)I(t)

N(t)
− γI(t)− µI(t),(22)

supplemented by relationships for total recovered and vaccinated at time t,
reading

(23) R(t) =

∞∫

0

R(t, τ) dτ =

∞∫

0

γI(t− τ)PR(τ) e
−µτ dτ

and

(24) V (t) =

∞∫

0

V (t, ξ) dξ =

∞∫

0

νN(t− ξ)xPV (ξ) e
−µξ dξ.

Finally, we have

(25) N(t) = S(t) + I(t) +R(t) + V (t).

Moreover, one can notice that equation (22) can be solved analytically as
well. To do so, we use the formula of variation of constants and obtain

(26) I(t) = I0 exp

(

β

t∫

0

S(a)

N(a)
da− (γ + µ)t

)

.

That means, to compute I(t) analytically, we would need to integrate the
ratio S(a)/N(a) over all a ∈ [0, t]. It is not really possible to do this analyt-
ically, though, as we can only calculate S(t) from the nonlinear ODE (21)
numerically and using I(t) itself.

Remark 5.2. The model (21)–(22) can be re-written in terms of relative
subpopulations s(t) := S(t)/N(t), i(t) := I(t)/N(t). If the population has a
constant size (ν = µ), i.e. N(t) ≡ N = const., then it is easy to re-write the
system to the following one:

ds(t)

dt
= −βs(t)i(t) + ν(1− x)− µs(t)+

+

∫
∞

0
γi(t− τ) e−µτP ′

R(τ) dτ +

∫
∞

0
νx e−µξP ′

V (ξ) dξ(27)

+
(
1− PR(0)

)
γi(t) +

(
1− PV (0)

)
νx

di(t)

dt
= βs(t)i(t)− γi(t)− µi(t).(28)
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For the numbers of recovered and vaccinated, we get

(29) r(t) =
R(t)

N
=

∞∫

0

γi(t− τ)PR(τ) e
−µτ dτ,

and

(30) v(t) =
V (t)

N
=

∞∫

0

νxPV (ξ) e
−µξ dξ.

We note that for a nonconstant population size N(t), it is rather difficult to
re-write the equations in this way.

5.1. The Reproduction number. In the theory of infectious disease mod-
eling and epidemiology the notion of the reproduction number is a central
quantity. The basic reproduction number [5] is defined as the number of
secondary infections caused by a single infectious introduced into a fully
susceptible population over the course of the infection of this single infec-
tious individual. The effective reproduction number [10] is the instantaneous
reproduction number at calendar time t. If the reproduction number of a
disease is greater than 1, the disease breaks out into epidemics; if it is less
than 1, the disease dies out quickly. This characterization can be expressed
in terms of the sign of the derivative of the number of infectious individuals:
if dI(t)/dt > 0, the disease spreads out, if dI(t)/dt < 0, the disease dies out.

This allows to derive from (15) the formula for the reproduction number:

dI(t)

dt
= β

S(t)

N(t)
I(t)− (γ + µ)I(t)

!
< 0,

i.e.
S(t)

N(t)

β

γ + µ
< 1,

hence the (constant) basic reproduction number (for S(t) = N(t)) reads

(31) R0 =
β

γ + µ
,

and the effective reproduction number at time t is defined as

(32) R(t) =
S(t)

N(t)

β

γ + µ
.

We can observe that none of these reproduction numbers depend on the
size of the vaccinated, infectious or recovered subpopulation. Moreover,
it is reasonable that the formula for the basic reproduction number R0 is
identical to the one in the standard SIR model. This is due to the fact that
in our model, the ODE for I was not modified compared to the standard
model.

Remark 5.3. The formula for the effective reproduction number can be
re-written in terms of relative population of susceptibles introduced in Re-
mark 5.2 as

R(t) = s(t)
β

γ + µ
,
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from which we can see that the chance of the disease to break out in interme-
diate time t depends (besides the parameters of the disease) on the percentage
of susceptible individuals in the current population.

The obvious relation R(t) ≤ R0 naturally implies an upper bound on
the size of the epidemics: the epidemic size is maximal if the population is
virgin.

6. Numerical implementation and results

In this section we shall propose a numerical scheme for solving system
(21)–(25). The first two equations are ODEs, for which we will use forward
Euler method (except of the integral terms, which we treated as explained
below in (33)). The latter three equations are not differential equations.
We note that the equations for S, R, V use information about the complete
history of I or N .

To stay consistent with the rest of the text in this paper, we shall adopt the
∆t notation for the numerical scheme too, instead of indexed time instances
t like it is standard in most literature. Hence, let ∆t > 0 be an equidistant
time discretization step, τmax the maximal possible value of time since re-
covery considered for numerical computations (instead of infinity), similarly
ξmax the maximal considered time since vaccination.

Before we proceed to specifying a complete numerical scheme, we first
take a look at the discretization of the integral terms in equation (21):

(33)

∫
∞

0
γI(t− τ)P ′

R(τ) e
−µτdτ.

This integral represents immunity waning of recovered individuals. To find
a discrete version of this term, we will use the balance equation (13):

∆S(t) =





∞∑

j=0

R(t, j∆t)−R(t+∆t, j∆t+∆t)−R(t, j∆t)µ∆t



 ∆t

=





∞∑

j=0

(1− µ∆t)R(t, j∆t)−R(t+∆t, j∆t+∆t)



 ∆t

=





∞∑

j=0

(1− µ∆t)R(t, j∆t)



∆t−





∞∑

j=0

R(t+∆t, j∆t+∆t)



 ∆t

=





∞∑

j=0

(1− µ∆t)R(t, j∆t)



∆t−





∞∑

j=0

R(t+∆t, j∆t+∆t)



∆t

−R(t+∆t, 0)∆t+R(t+∆t, 0)∆t

=





∞∑

j=0

(1− µ∆t)R(t, j∆t)



∆t−





∞∑

j=0

R(t+∆t, j∆t)



 ∆t

+R(t+∆t, 0)∆t

= (1− µ∆t)R(t)−R(t+∆t) + γI(t)PR(0)∆t.
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The same procedure can be applied to the waning term for the vaccinated
individuals, arriving at:

V (t)(1− µ∆t)− V (t+∆t) + νN(t)xPV (0)∆t.

In order to get more consistent results as ∆t → 0, we chose dying factor
from equations (23) and (24) to keep in continuous form of e−µτ and e−µξ,

not coming back to discrete (1− µ∆t)τ/∆t and (1− µ∆t)ξ/∆t.
To improve computational efficiency, one can replace element-wise multi-

plication and summing by calculating inner products and working with vec-
tors. All constants can be taken out before the product, which also speeds
up the calculations. Let us note that the factors e−µτPR(τ), e

−µξPV (ξ)
as well as µ∆t and ν∆t can be pre-calculated, so they do not need to be
calculated in every iteration.

Ordering the discrete equations in the order in which they will be needed
in the computation, we can write

I(t+∆t) = I(t) + I(t)
(

β
S(t)

N(t)
− γ − µ

)

∆t,

(34)

R(t+∆t) =

τmax/∆t
∑

j=0

PR(j∆t) e
−µj∆tγI(t− j∆t)∆t,

(35)

V (t+∆t) =

ξmax/∆t
∑

j=0

PV (j∆t) e
−µj∆tνN(t− j∆t)x∆t,

(36)

S(t+∆t) = S(t) + νN(t)(1− x)∆t+ νN(t)x
(
1− PV (0)

)
∆t− µS(t)∆t

− β
S(t)I(t)

N(t)
∆t+

(
1− PR(0)

)
γI(t)∆t

+R(t)(1− µ∆t)−R(t+∆t) + γI(t)PR(0)∆t

+ V (t)(1− µ∆t)− V (t+∆t) + νN(t)xPV (0),

(37)

N(t+∆t) = N(t) +N(t)(ν − µ)∆t
(38)

In equations (34) and (37) we used forward differences to approximate the
derivatives.

We implemented the above numerical scheme in Python 3.7 using numpy

1.15.4 and scipy 1.1.01 with the following parameters: ∆t = 0.001, mod-
eled time horizon tmax = 100 years, maximal time since recovery τmax = 100
years, maximal time since vaccination ξmax = 100 years, transmission pa-
rameter for disease outbreak β = 50 and for disease elimination β = 40,
vaccination rate x = 0.2, natural natality and mortality rates ν = µ = 0.02,

1The source codes can be found online on https://github.com/gasper6/SIRS-model
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recovery rate γ = 36. We emphasize that all these parameters are academic,
not real-life values.

Our aim was to illustrate the behavior of the system on a sample pop-
ulation of size N(0) = 105 and for suitably chosen parameters so that we
get R0 > 1 in one case and R0 < 1 in the other case. Specifically, we have
R0 ≈ 1.23 for β = 50 and R0 ≈ 0.98 for β = 40. We note that case studies
using real data is a subject of our future work.

The parameters for modeling the waning immunity (SV F ) were taken
from Scenario 2 from Table 1, i.e. GMT (0) = 1914, wτ = 0.069, wξ = 0.069,
σ = 0.92 and Ccrit = 150.

Table 1. Measles: parameters entering the model of wan-
ing immunity. Scenario 1 without waning, more pessimistic
scenarios 2 and 3, more optimistic scenarios 4 and 5. Source:
[33], [9], [20].

GMT (0) σ w (p.a.) Ccrit

Scenario 1 - - - -
Scenario 2 1914 mIU/mL 0.92 0.069 150 mIU/mL (350 mIU/ml)
Scenario 3 1523 mIU/mL 0.97 0.078 120 mIU/mL
Scenario 4 2000 mIU/mL 0.9 0.05 150 mIU/mL (350 mIU/ml)
Scenario 5 2000 mIU/mL 0.9 0.03 150 mIU/mL (350 mIU/ml)

We present the results of the model in Figures 2 and 3. We can see that for
β = 40, which is corresponding toR0 < 1, the number of infectious decreases
from the initial value I0 = 1 to zero and no epidemic occurs. On the other
hand, for β = 50 (corresponding to R0 > 1, epidemic outbreaks repeat over
time, while we can observe a diminishing size of epidemic, with peaks of
the number of infected being lower each time. We can also observe cycling
dynamics between S and I. The model parameters in both examples were
chosen to ensure a constant population N . These two examples illustrate
two possible behaviors of the systems, depending on the estimate of the
reproduction number. For future work, we can study the situation for real
world data of Germany and Slovakia. However, this model is continuous
and homogeneous, therefore its results will never correspond to reality. One
can obtain qualitative insights into the dynamics, though.

7. Comparison to the SIRS Model

In order to verify the qualitative behaviour of our results (repeating epi-
demics with their size decreasing over time), we now compare our model to
the classical SIRS model with population dynamics, given by the following
set of equations [21]:

dS(t)

dt
= ν(1− x)N(t) + θR(t)− β

S(t)I(t)

N(t)
− µS(t)(39)

dI(t)

dt
= β

S(t)I(t)

N(t)
− γI(t)− µI(t)(40)

dR(t)

dt
= νxN(t) + γI(t)− θR(t)− µR(t)(41)
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Figure 2. Solution of our model for β = 40, disease dies
out without breaking out into epidemics.
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The immunity waning in this model is modeled by the term θR(t) in
equations (39) and (41). If we neglect all other terms in (41), we find that
the dynamics of the waning immunity has an exponential form Rwaning(t) =
c exp(−θt), where c is a constant. Therefore, to compare the results of our
model with the results from a SIRS model, we replace the SV F waning
profile by an exponential one; see Figure 4.

Figure 4. Comparison of the waning curves in our model
(probabilistic distribution) and SIRS model (exponential
curve).

We chose the parameter θ = 0.03602, because this value ensures that
∫
∞

0 PR(τ) dτ does not change. We computed this integral numerically on a
bounded domain from 0 to 250 with a discretization step 0.001 using the
rectangular rule. The parameters τmax = ξmax = 250, β ∈ {50, 35}, and all
other parameters are unchanged, see Section 6. We solved the SIRS model
numerically by the Runge-Kutta method of 4-th order and depict the results
in Figures 5 and 6.

We can observe in Figures 5 and 6 that the solutions obtained by our
model and but the standard SIRS model coincide. The green curve in the
graph of the recovered compartment in the SIRS model contains all individ-
uals from the recovered and vaccinated compartment of our model, therefore
the quantitative values of recovered compartments differ. Other than that,
the results from the two models coincide, which justifies the correctness of
our model as well as the numerical scheme we proposed.

There is one important observation to be made from this comparison. We
can notice that changing the character of the waning curve has changed the
solution significantly. Indeed, with probabilistic distribution considered in
definition (3) of SVF, only 3 epidemics occur during the 100 years of the
simulation period. Changing the waning curve to the exponential one, with
faster immunity waning at the beginning, leads to 8 epidemics during the
100 years. This indicates that, in future work when studying the model on
real data, it will be of crucial importance to calibrate or estimate the waning
curve as realistically as possible.
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Figure 5. SIRS model (top left) and our model (top right)
results for β = 50. We note that the number of recovered
in the SIRS model (green curve) corresponds to the sum of
recovered and vaccinated (green and black curves) in our
model. The number of susceptible and infectious individuals
coincides for both models (bottom graphs).
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8. Conclusions

In this work we proposed and analyzed an SIR model with vaccination and
waning immunity. Following the work of Mossong [23], we assumed that the
level of antibodies is driven by a normal distribution. We derived a system
of two ODEs (for susceptible and infectious) and two PDEs (for recovered
and vaccinated). Then we reduced this model to just one ordinary-integral
differential equation and one ODE and derived expressions for the basic and
the effective reproduction numbers. Next, we proposed a numerical scheme
based on finite differences.

We illustrated two types of system behavior: a case with epidemic re-
currence, and a case when the disease dies out soon after it was initially
brought to the population. We also compared the results of our model with
the exponential waning curve with a standard SIRS model, which showed
that our model is correct and the chosen numerical scheme appropriate.

Our future work will consider the dynamics of infectious diseases with
boosting of immunity (by exposure to the pathogen) and also allowing for
stochastic terms that reflects the uncertainty in the used parameters. We
will also perform a calibration of the parameters using real data for measles
in Germany and Slovakia. Also we will, following the ideas of Georgescu
& Zhang [15] and Elazzouzi et al. [12], consider an extension to a SIRI-
type epidemic model describing that recovered individuals may encounter a
relapse of the disease (due to a reactivation of a latent infection or due to
an incomplete treatment of the disease) and again enter the compartment
of the infectious individuals.

Finally, it will be the goal of our future work to calibrate our model
parameters wit respect to real data, e.g. taken from [14, 22, 31].
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