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Abstract The goal of this work is to parallelize the multistep method for the numer-

ical approximation of the Backward Stochastic Differential Equations (BSDEs) in

order to achieve both, a high accuracy and a reduction of the computation time as

well. In the multistep scheme the computations at each grid point are independent

and this fact motivates us to select massively parallel GPU computing using CUDA.

In our investigations we identify performance bottlenecks and apply appropriate op-

timization techniques for reducing the computation time, using a uniform domain.

Finally, a Black-Scholes BSDE example is provided to demonstrate the achieved

acceleration on GPUs.

1 Introduction

In this work we parallelize the multistep scheme developed in [19] to approximate

numerically the solution of the following (decoupled) forward backward stochastic

differential equation (FBSDE):











dXt = a(t,Xt)dt +b(t,Xt)dWt , X0 = x0,

−dyt = f (t,Xt ,yt ,zt)dt − zt dWt ,

yT = ξ = g(Xt),

(1)

Lorenc Kapllani

University of Wuppertal, Applied Mathematics and Numerical Analysis, Gaussstrasse 20, D-42119

Wuppertal, Germany, e-mail: kapllani@math.uni-wuppertal.de

Long Teng

University of Wuppertal, Applied Mathematics and Numerical Analysis, Gaussstrasse 20, D-42119

Wuppertal, Germany, e-mail: teng@math.uni-wuppertal.de

Matthias Ehrhardt

University of Wuppertal, Applied Mathematics and Numerical Analysis, Gaussstrasse 20, D-42119

Wuppertal, Germany, e-mail: ehrhardt@math.uni-wuppertal.de

1



2 Lorenc Kapllani, Long Teng and Matthias Ehrhardt

where Xt ,a ∈ R
n, b is a n × d matrix, Wt is a d-dimensional Brownian motion,

f (t,Xt ,yt ,zt) : [0,T ]×R
n ×R

m ×R
m×d → R

m is the driver function and ξ is the

terminal condition. We see that the terminal condition yT depends on the final value

of a forward stochastic differential equation (SDE). For a = 0 and b = 1, namely

Xt =Wt , one obtains a backward stochastic dierential equation (BSDE) of the form

{

−dyt = f (t,yt ,zt)dt − zt dWt ,

yT = ξ = g(WT ),
(2)

where yt ∈R
m and f (t,yt ,zt) : [0,T ]×R

m×R
m×d →R

m. In the sequel of this work,

we investigate the acceleration of numerical scheme developed in [19] for solving

(2). Note that the developed schemes can be applied also for solving (1), where

the general Markovian diffusion Xt can be approximated, e.g., by using the Euler-

Scheme.

The existence and uniqueness of the solution of (2) were proven by Pardoux and

Peng [12]. Peng [13] obtained a direct relation between forward-backward stochas-

tic differential equations (FBSDEs) and partial differential equations (PDEs). Based

on this relationship, many numerical methods are proposed, e.g. probabilistic based

methods in [3, 4, 8, 11, 20], tree-based methods in [5, 16] etc. El Karoui, Peng and

Quenez [7] showed that the solution of a linear BSDE is in fact the pricing and

hedging strategy of an option derivative. This was the first claim of application of

BSDEs in finance.

In general the solution of BSDEs cannot be established in a closed form. There-

fore, a numerical method is mandatory. There are two main classes of numerical

methods for approximating the solution of BSDEs. The first class is related with

the PDE equivalent based on the Feynman-Kac formula and the second is based

on the BSDE. Many methods have been developed, but one of the most interesting

(due to the ability to achieve very high accuracy) is developed by Zhao, Zhang and

Ju [19]. They used Lagrange interpolating polynomials to approximate the integrals,

given the values of integrands at multiple time levels. One of the drawbacks of their

method is the computation time. However, the method is highly parallel. Hence,

due to simple and intense calculations, the best computing environment is the one

offered by GPUs rather than CPUs.

Many acceleration strategies have been developed to solve option pricing prob-

lems on the GPU with different mathematical models. However, little work is based

on BSDEs. Dai, Peng and Dong [6] solved a linear BSDE on the GPU with the theta-

scheme method. They analyzed the effects of the thread number per block to in-

crease the speedup. The parallelized program using CUDA achieved high speedups

and showed that the GPU architecture is well suited for solving the BSDEs in paral-

lel. Later in 2011, they developed acceleration strategies for option pricing with non-

linear BSDEs using a binomial lattice based method [14]. To increase the speedup,

they reduce the global memory access frequency by avoiding the kernel invocation

on each time step. Also, due to the load imbalance produced by the binomial grid,

they provided load-balanced strategies and showed that the acceleration algorithms
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exhibit very high speedup over the sequential CPU implementation and therefore

suitable for real-time application.

In 2014, Peng, Liu, Yang and Gong [15] considered solving high dimensional

BSDEs on GPUs with application in high dimensional American option pricing. A

Least Square Monte-Carlo (LSMC) method based numerical algorithm was studied,

and summarised in four phases. Multiple factors which affect the performance (task

allocation, data store/access strategies and the thread synchronisation) were taken

into consideration. Results showed much better performance than the CPU version.

In 2015, Gobet, Salas, Turkedjiev and Vasquez [9] designed a new algorithm for

solving BSDEs based on LSMC. Due to stratification, the algorithm is very effi-

cient especially for large scale simulations. They showed big speedups even in high

dimensions.

Next we introduce some preliminary elements which are needed to under-

stand the multistep scheme. We start with the relation of BSDEs and PDEs. Let

(Ω ,F ,P,{Ft}0≤t≤T ) be a complete, filtered probability space. In this space a

standard d-dimensional Brownian motion Wt is defined, such that the filtration

{Ft}0≤t≤T is generated. We define ‖ · ‖ as the standard Euclidean norm in the Eu-

clidean space R
m or Rm×d and L2 = L2

F(0,T ;Rd) the set of all {Ft}-adapted and

square integrable processes valued in R
d . A pair of processes (yt ,zt) : [0,T ]×Ω →

R
m ×R

m×d is the solution of BSDE (2) if it is {Ft}-adapted, square integrable, and

satisfies (2) in the sense of

yt = ξ +
∫ T

t
f (s,ys,zs)ds−

∫ T

t
zs dWs, t ∈ [0,T ), (3)

where f (t,yt ,zt) : [0,T ]×R
m ×R

m×d → R
m is {Ft}-adapted and the third term on

the right-hand side is an Itô-type integral. This solution exist under ”reasonable”

regularity conditions [12]. Let us consider the following:

yt = u(t,Wt), zt = ∇u(t,Wt) ∀t ∈ [0,T ), (4)

where ∇u denotes the derivative of u(t,x) with respect to the spatial variable x and

u(t,x) is the solution of the following (backward in time) parabolic PDE:

∂u

∂ t
+

1

2

d

∑
i=1

∂ 2u

∂x2
i

+ f (t,u,∇u) = 0, (5)

with the terminal condition u(T,x) = φ(x). Under ”reasonable” conditions, the

PDE (5) possess a unique solution u(t,x). Therefore, for ξ = φ(WT ), the pair (yt ,zt)
is the unique solution of BSDE (3).

Due to conditional expectations that compound the numerical method, the fol-

lowing notations will be used. Let F
t,x
s for t ≤ s ≤ T be a σ -field generated by the

Brownian motion {x+Wr −Wt , t ≤ r ≤ s} starting from the time-space point (t,x).
We define E

t,x
s [X ] as the conditional expectation of the random variable X under the

filtration F
t,x
s , i.e. E

t,x
s [X ] = E[X |F t,x

s ].
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This work is organized as follows. In Section 2 we introduce the multistep

scheme. Next, in Section 3 our algorithmic framework for using GPU is presented.

In Section 4 we illustrate our findings with the Black-Scholes example.

2 The Multistep scheme

In this section we briefly present the multistep scheme. This is done in two steps,

the first corresponds to the derivation of the stable semi-discrete scheme, as only

the time domain is discretized. Furthermore, the space is discretized and the fully

stable multistep scheme is achieved. Note that the scheme will be presented for

the one-dimensional case (but recall that in principle it can be generalized for the

d-dimensional case).

2.1 The stable semi-discrete scheme

Let N be a positive integer and ∆ t = T/N the step size that partitions uniformly

the time interval [0,T ]: 0 = t0 < t1 < · · · < tN−1 < tN = T , where ti = t0 + i∆ t,

i = 0,1, . . . ,N. Let k and Ky be two positive integers such that 1 ≤ k ≤ Ky ≤ N. The

BSDE (3) can be expressed as

ytn = ytn+k
+

∫ tn+k

tn

f (s,ys,zs)ds−
∫ tn+k

tn

zs dWs. (6)

In order to approximate ytn based on the later information [tn, tn+k], we need to adapt

it to the filtration (that is already generated, since we are solving it backwards).

Therefore, taking the conditional expectation Ex
tn
[·] in (6), we have

ytn = Ex
tn

[

ytn+k

]

+
∫ tn+k

tn

Ex
tn

[

f (s,ys,zs)
]

ds (7)

where the third term of (6) is disappeared as it is an Itô-type integral. In order to ap-

proximate the integral part of (7), Zhao [19] considered the Lagrange interpolating

method, since the Ex
tn

[

f (s,ys,zs)
]

is a deterministic function of s. Given the values

of
(

tn+i,E
x
tn

[

f (tn+i,ytn+i
,ztn+i

)
])

and using Lagrange interpolating polynomial, (7)

becomes

ytn = Ex
tn

[

ytn+k

]

+ k∆ t

Ky

∑
i=0

bk
Ky,iE

x
tn

[

f (tn+i,ytn+i
,ztn+i

)
]

+Rn
y , (8)

where bk
Ky,i

are the coefficients derived from the integration of Lagrange interpolat-

ing polynomial [19] and Rn
y is the error due to the former.
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Next, we derive a semi-discretized form for the zt process. Let ∆Ws = Ws −Wtn

for s ≥ tn. Then ∆Ws is a standard Brownian motion with mean 0 and standard

deviation
√

s− tn. Let l and Kz be two positive integers such that 1 ≤ l ≤ Kz ≤ N.

Using l instead of k in (6), multiplying both sides by ∆Wtn+l
, taking the conditional

expectation Ex
tn
[·] and using the Itô isometry we obtain

0 = Ex
tn

[

ytn+l
∆Wtn+l

]

+
∫ tn+l

tn

Ex
tn

[

f (s,ys,zs)∆Ws

]

ds−
∫ tn+l

tn

Ex
tn

[

zs

]

ds. (9)

Using again the Lagrange interpolation method to approximate the two integrals in

(9), we have

0 = Ex
tn

[

ytn+l
∆Wtn+l

]

+ l∆ t

Kz

∑
i=0

bl
Kz,iE

x
tn

[

f (tn+i,ytn+i
,ztn+i

)∆Wtn+i

]

+Rn
z1

− l∆ t

Kz

∑
i=0

bl
Kz,iE

x
tn

[

ztn+i

]

−Rn
z2,

(10)

where bl
Kz,i

are the coefficients derived from the integration of the Lagrange inter-

polating polynomial and (Rn
z1,R

n
z2) are the errors for the first and second integrals in

(9).

Consider (yn,zn) as an approximation of (yt ,zt), the semi-discrete scheme is

defined as follows: Given random variables (yN−i,zN−i), i = 0,1, . . . ,K − 1 with

K = max{Ky,Kz}, find the random variables (yn,zn), n = N −K, . . . ,0 such that

yn = Ex
tn

[

yn+k
]

+ k∆ t

Ky

∑
i=0

bk
Ky,i Ex

tn

[

f (tn+i,y
n+i,zn+i)

]

0 = Ex
tn

[

zn+l
]

+
Kz

∑
i=1

bl
Kz,i Ex

tn

[

f (tn+i,y
n+i,zn+i)∆Wtn+i

]

−
Kz

∑
i=0

bl
Kz,i Ex

tn

[

zn+i
]

.

(11)

Zhao [19] showed that in order to have a stable semi-discrete scheme, the fol-

lowing should hold:

k = Ky, with Ky = 1,2, . . . ,7 and Ky = 9

l = 1, with Kz = 1,2,3.
(12)

The coefficients are presented in the following Table 1 and 2.

2.2 The stable fully discrete scheme

Let R∆x denote a partition of the real axis, i.e. R∆x =
{

xi|xi ∈ R, i ∈ Z,xi <
xi+1, limi→+∞ xi = +∞, limi→−∞ xi = −∞

}

. The fully discrete scheme is defined

as (cf. [19]): Given random variables (yN−l
i ,zN−l

i ), l = 0,1, . . . ,K − 1 with K =
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Table 1: The coefficients
{

b
Ky

Ky,i

}Ky

i=0
until Ky = 3.

Ky b
Ky

Ky,i

i = 0 i = 1 i = 2 i = 3

1 1
2

1
2

2 1
6

4
6

1
6

3 1
8

3
8

3
8

1
8

Table 2: The coefficients
{

b1
Kz,i

}Kz

i=0
for Kz = 1,2,3

Kz b1
Kz,i

i = 0 i = 1 i = 2 i = 3

1 1
2

1
2

2 5
12

8
12

− 1
12

3 9
24

19
24

− 5
24

1
24

max{Ky,Kz}, find the random variables (yn
i ,z

n
i ), n = N −K, . . . ,0 such that

yn
i = Ê

xi
tn

[

ŷn+Ky
]

+Ky∆ t

Ky

∑
j=1

b
Ky

Ky, j
Ê

xi
tn

[

f (tn+ j, ŷ
n+ j, ẑn+ j)

]

+Ky∆ tb
Ky

Ky,0
f (tn,y

n
i ,z

n
i )

0 = Ê
xi
tn

[

ẑn+1
]

+
Kz

∑
j=1

b1
Kz, j Ê

xi
tn

[

f (tn+ j, ŷ
n+ j, ẑn+ j)∆Wtn+ j

]

(13)

−
Kz

∑
j=1

b1
Kz, jÊ

xi
tn

[

ẑn+ j
]

−b1
Kz,0zn

i ,

where (yn
i ,z

n
i ) denotes the approximation of

(

y(tn,xi),z(tn,xi)
)

, Ê
xi
tn [·] is the approx-

imation of E
xi
tn [·] and (ŷn+ j, ẑn+ j) are the interpolating values from (yn+ j,zn+ j) at

the space point xi +Wtn+ j
−Wtn . In order to approximate the conditional expecta-

tions, the Gauss-Hermite quadrature rule is used, due to the high accuracy that can

be achieved only with a few points. Therefore, the conditional expectation can be

expressed as

Ê
xi
tn

[

ŷn+k
]

=
1√
π

L

∑
j=1

ω j ŷ
n+k

(

xi +
√

2k∆ t a j

)

, (14)

where (ω j,a j), for j = 1, . . . ,L are the weights and roots of the Hermite polyno-

mial of degree L (see [19]). In the same way, one can express the other conditional

expectations in (13).

The error of the method exhibits different behaviours due to the time-space dis-

cretization. However, the maximal order of convergence is 3 for both processes. For
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technical details, we refer to [19]. Due to the high order of convergence, the numer-

ical method can achieve very high accuracy. It can be observed from (13) that the

calculations on each point are independent. Therefore parallelization techniques can

be easily adapted. In the next Section 3, we discuss the algorithmic framework.

3 The Algorithmic Framework

3.1 The Algorithm

According to Section 2, the whole process for solving (2) is divided into 3 steps.

1. Construct the time-space discrete domain.

We divide the time period [0,T ] into N time steps using ∆ t = T/N and get N+1

time layers. Moreover, in order to balance the errors in time and space directions,

we adjust the space step size ∆x and the time step size ∆ t such that they satisfy

the equality (∆x)r = (∆ t)q+1, where q=min(Ky+1,Kz) and r denotes the global

error from the interpolation method used to generate the non-grid points when

calculating the conditional expectations.

2. Calculate K initial solutions with K = max{Ky,Kz}.

Since only the terminal value is given, one needs to generate the other K − 1

values. This can be done by running a 1-step scheme for [tN−K+1, tN−1] with a

higher number of time points such that the K − 1 produced initial values will

have neglectable error.

3. Calculate the numerical solution (y0,z0) backward using equation (13).

Note that the calculation for the yt process is done implicitly by Picard iteration.

3.2 Preliminary considerations

In the numerical experiments, we have considered the following points:

• The space domain needs to be truncated. Since the space domain represent the

Brownian motion discretization, in our test we use [−16,16].
• When generating the non-grid points for the calculation of conditional expec-

tations, some will be outside of the domain. For such points, the value on the

boundaries is considered, as the desired solution will not be affected.

• Due to uniformity of the grid, one does not need to consider 2K (K for yt and

K for zt ) interpolations for each new calculation, but only 2. This is due to the

following:

Suppose we are at time layer tn−K . To calculate yt and zt values on this time

layer, one needs the calculation of conditional expectations for K time layers. The

cubic spline interpolation is used to find the non-grid values, and the necessary

linear systems are solved. For instance, the coefficients for yt process are Ay ∈
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R
K×M . All the spline coefficients are stored. When we are at time layer tn−K−1,

only the spline interpolation corresponding to the previous calculated values is

considered. Then, the columns of matrix Ay are shifted +1 to the right in order

to delete the last column and enter the current calculated coefficients in the first

column. The new Ay is used for the current step. The same procedure is followed

until t0. This reduces the amount of work for the algorithm.

• There is a very important benefit from the uniformity of the grid. When we need

to find the position of the non-grid point, a naı̈ve search algorithm is to loop

over the grid points. In the worst case, a O(M) work is needed. However, this

can be done in O(1), i.e. the for loop is removed. Recall that each new point

is generated as X j = xi +
√

2∆ tk a j. This means that taking int((X j − xmin)/∆x)
gives the left boundary of the grid interval that X j belongs to. This reduces the

total computation time substantially, as it will be demonstrated in the numerical

experiments.

3.3 The Parallel implementation

In this Section we present the naı̈ve parallelization of the multistep scheme. Never-

theless, we have kept into attention the optimal CUDA execution model, i.e. creating

arrays such that the access will be aligned and coalesced, reducing the redundant ac-

cess to global memory, using registers when needed etc.

The first and second steps of the algorithm are implemented in the host. The third

step is fully implemented in the device. Recall from (13) that the following steps are

needed to calculate the approximated values on each time layer backward:

• Generation of non-grid points X j = xi +
√

2∆ tk a j.

In the uniform domain, the non-grid points need to be generated only once. To

do this, a kernel is created where each thread generates L points.

• Calculation of the values ŷ and ẑ at the non-grid points.

This is the most time consuming part of the algorithm, since it involves the so-

lution of two linear systems (see third point in Subsection 3.2) arising from the

spline interpolation.

We used the BiCGSTAB iterative method since the matrix is tridiagonal. To apply

the method, we considered the cuBLAS and cuSPARSE libraries. For the inner

product, second norm and addition of vectors, we use the cuBLAS library.

For the matrix vector multiplication, we use the cuSPARSE library with the com-

pressed sparse row format, due to the structure of the system matrix. Moreover,

we created a kernel to calculate the spline coefficients based on the solved sys-

tems under the spline interpolation idea.

Finally, a kernel to apply the last point in Subsection 3.2 was created to find the

values at non-grid points. Note that each thread is assigned to find the values.

• Calculation of the conditional expectations.

For the first conditional expectations in the right hand side of (13), we created

one kernel, where each thread calculates one value by using (14). Moreover, we
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merged the calculation of three conditional expectation in one kernel, namely

Ê
xi
tn

[

ẑn+ j
]

, Ê
xi
tn

[

f (tn+ j, ŷ
n+ j, ẑn+ j)

]

, Ê
xi
tn

[

f (tn+ j, ŷ
n+ j, ẑn+ j)∆Wtn+ j

]

,

for j = 1,2, . . . ,K. This reduces the accessing of data multiple times from the

global memory. Note that one thread calculates three values as in (14).

• Calculation of the zt values.

The second equation in (13) is used and each thread calculates one value.

• Calculation of the yt values.

The first equation in (13) is used and each thread calculates one value, using the

Picard iterative process.

4 Numerical Results

We implement the parallel algorithm using CUDA C programming. The parallel

computing times are compared with the serial ones on a CPU. Furthermore, the

speedups are calculated. The CPU is Intel(R) Core(TM) i5-4670 3.40Ghz with 4

cores. The GPU is a NVIDIA GeForce 1070 Ti with a total 8GB GDDR5 memory.

In the following we consider an option pricing example, the Black-Scholes

model. Consider a security market that contains one bond with price pt and one

stock with price St . Therefore, their dynamics are described by:

{

d pt = rt pt dt, t ≥ 0,

p0 = p,
(15)

{

dSt = µtStdt +σtSt dWt , t ≥ 0,

S0 = x,
(16)

where rt denotes the interest rate of the bond, p is its current value, µt is the expected

return on the stock St , σt is the volatility of the stock, x is its current value and Wt

denotes the Brownian motion.

An European Option is a contract that gives the owner the right, but not the

obligation, to buy or sell the underlying security at a specific price, known as the

strike price K, on the option’s expiration date T . A European call option gives the

owner the right to purchase the underlying security, while a European put option

gives the owner the right to sell the underlying security. Let us take the European

call option as an example. The decision of the holder will depend on the stock price

at maturity T . If the value of the stock ST < K, then the holder would discard the

option; whereas if ST > K, the holder would use the option and make a profit of

ST −K. Therefore, the payoff of a call option is (ST −K)+ and for a put option

(K − ST )
+, where ( f )+ = max(0, f ). The option pricing problem of the writer (or

seller) is to determine a premium for this contract at present time t0. Note that the

payoff function is an {FT}-measurable random variable.
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Suppose that an agent sells the option at price yt and then invests it in the market.

Denote his wealth on each time by yt . Assume that at each time the agent invests

a portion of his wealth in an amount given by πt into the stock, and the rest (yt −
πt) into the bond. Now the agent has a portfolio based on the stock and the bond.

Considering a stock that pays a dividend δ (t,St), the dynamics of the wealth process

yt are described by

dyt =
πt

St

dSt +
yt −πt

pt

d pt +πtδ (t,St)dt

=
πt

St

(µtSt dt +σtSt dWt)+
yt −πt

pt

(rt pt dt)+πtδ (t,St)dt

=
(

rtyt +πt(µt − rt +δ (t,St))
)

dt +πtσt dWt .

(17)

Let zt = πtσt , then

−dyt =−
(

rtyt +
(

µt − rt +δ (t,St)
) zt

σt

)

dt + zt dWt . (18)

For a call option, one needs to solve a Forward Backward Stochastic Differential

Equation (FBSDE), where the forward part is given from the SDE modelling of the

stock price dynamics.

Example 1. Let us consider the Black-Scholes FBSDE















dSt = µtStdt +σtSt dWt , S0 = x, t ∈ [0,T ]

−dyt =−
(

rtyt +
(

µt − rt +δ (t,St)
)

zt
σt

)

dt + zt dWt , t ∈ [0,T )

yT = (ST −K)+.

(19)

For constant parameters (i.e. rt = r, µt = µ , σt = σ , δt = δ ), the analytic solution is















yt =V (t,St) = St exp
(

−δ (T − t)
)

N(d1)−K exp
(

−r(T − t)
)

N(d2),

zt = ∂V
∂S

σ = St exp
(

−δ (T − t)
)

N(d1)σ ,

d1/2 =
ln
(

St
K

)

+
(

r± σ2

2

)

(T−t)

σ
√

T−t
,

(20)

where N(·) is the cumulative standard normal distribution function. In this example,

we consider T = 0.33, K = S0 = 100, r = 0.03, µ = 0.05, δ = 0.04, σ = 0.2, with

the solution at (t0,S0) being (y0,z0)
.
= (4.3671,10.0950).

Note that the terminal condition has a non-smooth problem for the zt process.

Therefore, for discrete points near the strike price (also called at the money region),

the initial value for the zt process will cause large errors on the next time layers.

To overcome this non-smoothness problem, we considered smoothing the initial

conditions, cf. the approach of Hendricks [10]. For the forward part of (20), we

have the analytic solution

St = S0 exp
(

(

µ − σ2

2

)

t +σ Wt

)

. (21)
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Discretizing (21), the exponential term will lead to a non-uniform grid. Therefore,

instead of working in the stock price domain, we work in the log stock price domain.

If we denote Xt = lnSt , then the analytic solution of Xt reads

Xt = X0 +
(

µ − σ2

2

)

t +σ Wt . (22)

The backward part is the same as the (19). In Table 3 we show the importance of

using the log stock price. Note that the speedup is relative to the serial case using a

for loop.

(a) Error for the y process. (b) Error for the z process.

(c) Speedup (d) Speedup results in table format.

Fig. 1: Results of naı̈ve parallelization for the Black-Scholes example.

The naı̈ve results using 256 threads per block are presented in Figure 1 (note that

Ky = Kz = K). It can be easily observed that the higher accuracy can be achieved

when considering a 3-step scheme. Since we have more time layers to consider,

more work can be assigned to the GPU and therefore increasing the speedup of the

application. The highest speedup that we obtained for the Black-Scholes example is

17×.
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Table 3: Comparison due to uniformity of the domain under log stock price transfor-

mation for the Black-Scholes model for N = 256, K = Ky = Kz = 3 and M = 24826.

Type Time Speedup

Serial (with for) 36825.27

Serial (without for) 76.94 478.62

Parallel (with for) 237.57 155.01

Parallel (without for) 6.72 5476.19

(a) Performance of naı̈ve kernels

(b) Performance after first optimization iteration

(c) Performance after second optimization iteration

Fig. 2: Results of iterative parallelization for the Black-Scholes example.
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Furthermore, we optimize the kernels created for the Black-Scholes BSDE for

N = 512, Ky = 3 and Kz = 3. For this, we used the NVIDIA profiling tools (nvprof

and nvvp) to gather information about performance bottlenecks and apply the

proper optimization technique.

After applying nvprof, the main bottleneck of the application is the second

norm kernel that calculates the errors in the BiCGSTAB algorithm as presented in

Figure 2a. Note that this kernel is already optimized by the NVIDIA developers.

However, it is a kernel that serves for a general purpose. Instead of using second

norm kernel, we used the dot kernel and later took the square root. This reduced the

computation time from 7.2 s to 580.9 ms as presented in Figure 2b. We consider it

as the first iteration of the optimization process.

Moreover, we applied again nvprof and found that the next performance in-

hibitor is the kernel which calculates the non-grid values and another kernel that

generates the non-grid values. This is due to the inefficient memory accesses. To

overcome this problem, we considered loop interchanging and loop unrolling. As

presented in Figure 2c, the performance of above kernels is improved, from 960.1 ms

to 910.1 ms and 914.3 ms to 103.9 ms respectively. Finally, we changed the thread

configuration to 128 threads per block in order to increase parallelizm and we were

able to achieve a 51× speedup. We present the speedups for each iteration of the

optimization process in Table 4.

Table 4: Speedups of Black-Scholes model for N = 256, K = Ky = Kz = 3 and

M = 24826.

Type Time Speedup

Serial 307.09

Naı̈ve 18.2 16.87

First iteration 7.45 41.22

Second iteration 6.02 51.01

5 Conclusions and Outlook

In this work we parallelized the multistep method developed in [19] for the numeri-

cal approximation of BSDEs on GPU.

Firstly, we presented an optimal operation to find the location of the interpolated

values. This was essential for the reduction of the computational time. The numer-

ical results exhibited a high accuracy in very small computation times. Moreover,

we optimized the application after finding the performance bottlenecks and apply-

ing optimization techniques. Using the cuBLAS kernel to calculate the error of the

BiCGSTAB iterative method, loop interchange and loop unrolling provided us a

51× speedup for the Black-Scholes example.
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Based on our results, the GPU architecture for the multistep scheme is well suited

for the acceleration of BSDEs. For future work we will focus on parallelizing d-

dimensional problems using more time steps as in [17] for a higher accuracy with

financial applications such as multi-asset option pricing.
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