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We present an analytical derivation of the transport coefficients of a relativistic gas in (2 + 1) di-
mensions for both Chapman-Enskog (CE) asymptotics and Grad’s expansion methods. We further
develop a systematic calibration method, connecting the relaxation time of relativistic kinetic theory
to the transport parameters of the associated dissipative hydrodynamic equations. Comparison of
our analytical results and numerical simulations shows that the CE method correctly captures dissi-
pative effects, while Grad’s method does not, in agreement with previous analyses performed in the
(3+1) dimensional case. These results provide a solid basis for accurately calibrated computational

studies of relativistic dissipative flows.

I. INTRODUCTION

In the recent years, relativistic fluid dynamics [1] has
met with a major surge of interest, due to its crucial role
in several areas of modern physics, such as the transport
properties of high-temperature astrophysical plasmas [2],
dark-matter cosmology [3] and the dynamics of quark-
gluon plasmas in high-energy heavy-ion collisions [4, 5].

In this context, there is major scope for developing effi-
cient and accurate numerical solvers for the study of dis-
sipative relativistic hydrodynamics, since controlled ex-
perimental setups are often not viable, while analytical
methods suffer major limitations in describing complex
phenomena which arise from strong nonlinearities and /or
non-ideal geometries of direct relevance for experiments.
In the last decade, mesoscale lattice kinetic schemes [6-8]
have emerged as a promising tool for the study of dissi-
pative hydrodynamics in relativistic regimes.

One of the assets of the kinetic approach is that the
emergence of viscous effects does not break relativistic
invariance and causality, because space and time are
treated on the same footing, i.e. both via first order
derivatives (hyperbolic formulation). This overcomes
many conceptual issues associated with the consistent
formulation of relativistic transport phenomena. Indeed,
it is well known that a straightforward relativistic exten-
sion of the Navier-Stokes equations is inconsistent with
relativistic invariance, because second order space deriva-
tives imply superluminal propagation, hence non-causal
and unstable behaviour. In 1979 Israel and Stewards (IS)
introduced a hyperbolic formulation [9, 10] able to restore
causal dissipation, thus providing a valuable reference
framework for subsequent studies to this day. However,
recent work has highlighted both theoretical shortcom-
ings [11] of the IS formulation, as well as poor agreement
with numerical solutions of the Boltzmann equation [12—
14]. Several alternative formulations have been proposed
in recent years [11, 15-26], but a consistent definition of a
causal theory of relativistic viscous hydrodynamics and

the accurate determination of the associated transport
coefficients, is still under debate.

The IS formulation follows from the Boltzmann equa-
tion, using a relativistic extension of Grad’s moments
method, [27], commonly used to derive hydrodynamic
equations from the Boltzmann equation. Grad’s method
is not the only route from kinetic theory to hydrody-
namics, another viable alternative being provided by the
Chapman-Enskog (CE) expansion [28].

The two differ significantly in spirit and technical detail
as well: Grad’s method is basically an expansion of the
Boltzmann probability distribution function in Hilbert
space, which is usually truncated at the level of the third
kinetic moment (energy flux). Chapman-Enskog asymp-
totics, on the other hand, is a multi-scale expansion based
on a weak-gradient approximation, i.e. weak departure
from local equilibrium.

Both procedures come with well-known limitations:
Grad’s truncation endangers positive-definiteness of the
distribution function, while the Chapman-Enskog ex-
pansion suffers convergence problems in the presence of
strong gradients, or, more precisely, whenever the hetero-
geneity scale of hydrodynamic fields becomes comparable
with the molecular mean free path (finite Knudsen num-
ber).

Despite these differences and limitations, in the non-
relativistic regime, both methods connect kinetic theory
and hydrodynamics in a consistent way, i.e. they provide
the same transport coefficients. Yet, in the relativistic
regime, this is no longer the case and the immediate ques-
tion arises as to which (if any) of the two provides the
correct description of the hydrodynamic limit.

This question has been studied by several authors, at
the theoretical level [11, 19, 22, 29-33], but only very
recently has this extensive analysis — complemented by
results of numerical simulations [14, 25, 34] — decidedly
pointed in favour of the CE procedure; All these analy-
ses are restricted to three-dimensional fluids in the ultra-
relativistic limit, with virtually no results available in the



mildly relativistic regime or for the two-dimensional case.
A notable exception in (3+1) dimensions [35] shows that
numerical simulations are able to clearly discriminate be-
tween CE and Grad’s method on a wide range of kine-
matic regimes and neatly confirms that the CE approach
is the correct one. While the (3+1)-dimensional case is
obviously relevant in terms of potential applications, the
study of relativistic fluids in lower dimensions may be of
practical interest since it is considerably simpler to han-
dle both at a mathematical [36] and computational level
[37].

More interestingly, it has been recently realised that
two-dimensional relativistic fluid dynamics captures sev-
eral aspects of the collective dynamics of exotic sys-
tems, e.g. graphene sheets and Weyl semi-metals [38-50].
Graphene is particularly relevant for our analysis, since
in this material charge carriers mimic ultra-relativistic
particles [51], positioning itself in a regime of parameters
for which the differences between the results of Grad’s
method of moment and Chapman-Enskog expansion are
larger, as we shall see in the following.

Furthermore, a fascinating connection between hydro-
dynamics and black hole physics has been established
and intensively explored in the last decade [52]. Of par-
ticular interest is the AdS/CFT duality [53, 54|, which
connects (d+1)-dimensional gravity with d-dimensional
field theory [55]. In this framework, fluid dynamic solu-
tions in (2+1)-dimensions provide valuable information
for the study of gravity in (3+1)-dimensions. For exam-
ple, the development of turbulence in (3+1)-dimensional
gravitational perturbations [56] has sparked a significant
interest for the analysis of relativistic turbulent flows in
(241)-dimensions ([57-59]).

In spite of its importance, a robust methodology con-
necting kinetic and hydrodynamic parameters in (2+1)-
dimensions is still lacking; Mendoza et al. [60] derived
transport coefficients for an ultra-relativistic ideal gas us-
ing Grad’s method of moments and the relaxation time
approximation (RTA) while, to the best of our knowl-
edge, the Chapman-Enskog expansion has not been fully
derived, with only one calculation of thermal conductiv-
ity available in literature [61].

Starting from this state of affairs, in this paper we
develop a robust simulation environment for viscous rel-
ativistic fluid dynamics, based on a two step approach:
i) a complete theoretical derivation of the transport co-
efficients of an ideal gas in (2 4+ 1) dimensions for all
kinematic regimes (from ultra-relativistic to near non-
relativistic) using both the CE approach and Grad’s
method; ii) a comparison of the predictions of both ap-
proaches against accurate numerical simulations, based
on a recent lattice kinetic scheme [8].

Our main results are as follows; i) neat numerical ev-
idence that also in (2+1)-dimensions the CE expansion
accurately describes dissipative effects in the relativis-
tic regime, while Grad’s method fails to do so, and ii) a
controlled and systematic procedure relating macroscopic
transport parameters to the kinetic relaxation time, thus

allowing an accurate calibration of the numerical simula-
tions.

Items i) and ii) provide a unified framework for ac-
curate numerical studies of transport phenomena in rel-
ativistic fluids under quite general conditions, i.e. flows
with strong nonlinearities, in non-ideal geometries, across
both ultra-relativistic and near-non relativistic regimes.

This paper is structured as follows: in Section II we
introduce the relevant equations describing a relativis-
tic fluid in (2+1)-dimensions at both the mesoscopic and
macroscopic levels. We then sketch the Chapman-Enskog
expansion and provide the analytical results of both CE
and Grad’s method of moments. In Section III we present
a numerical analysis giving clear evidence that the trans-
port coefficients calculated using the Chapman-Enskog
expansion provide the correct bridge between the meso-
scopic and the macroscopic layers. To conclude, in Sec-
tion IV we summarize our results and future directions
of research.

II. HYDRODYNAMIC DERIVATIONS

In the following, we consider a (2+1) Minkowski space,
with metric tensor n°# = diag(1,—1,—1) and use the
Einstein summation convention over repeated indexes,
with Latin indexes for 2-D space coordinates and Greek
indexes for (2+1) space-time coordinates. We use natural
units, c= kg =h=1.

Our starting point is the relativistic Boltzmann equa-
tion in the RTA given by the Anderson-Witting model
[62, 63]:
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the particle distribution function f(z®,p”) depends on
space-time coordinates x®* = (¢t,x) and momenta p* =

(1°,p) = (\/pQ +m2,p), with z,p € R2, U“ is
the macroscopic relativistic velocity, 7 is the relaxation
(proper-) time, and f° is the equilibrium distribution
function, here taken to be the Maxwell-Jiittner distribu-
tion which in (2 + 1) dimensions writes as
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n is the particle density, and ( is the ratio between the
rest mass m and the temperature 7. The parameter
¢ physically characterizes the kinematic regime of the
macroscopic fluid, with ( — 0 in the ultra-relativistic
regime and ( — oo in the classical one. The Anderson-
Witting model ensures the local conservation of particle
number, energy and momentum:

DN =0 (3)
TP =0 | (4)



with N® and T? respectively the particle flow and en-
ergy momentum tensors. These equations are purely for-
mal until a specific form for N* and T# is specified. The
Anderson-Witting model is compatible with the Landau-
Lifshitz decomposition [64]:
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€ is the energy density, P the hydrostatic pressure,
q® is the heat flux, 7<*#> the pressure deviator, w
the dynamic pressure, and A*? = U*UP — n°8 is the
(Minkowski-)orthogonal projector to the fluid velocity
U%; the latter, in the Landau frame, is defined as
TPUz = eU*. 1t is useful to recall that in equilibrium
w =0, ¢* =0 and 7<*%> = 0. On the other hand, the
non-equilibrium contribution to the energy momentum
tensor can be used to define the transport coefficients
[64]:

¢ =\ (VT = TU®93U°) | (7)
<o = (ASAL + AFAT - AYAL) VU (8)
w=-uV, U ; (9)

A is the thermal conductivity, n and p the shear and bulk
viscosities, and we have used the shorthand notation

a af

Xz = i’ (10)
B vB

The CE expansion allows to define a pathway between
kinetic theory and fluid dynamics, linking the macro-
scopic transport coefficients A, p, 1 to the mesoscopic
ones, in our case the relaxation time 7.

The CE expansion of the relativistic Boltzmann equa-
tion was derived several decades ago in (341) dimensions,
see, e.g., [64]. Here we briefly summarize the main steps
of the procedure and derive results in (2+ 1) dimensions,
leaving full mathematical details to an extended version
of this paper.

The starting point is to approximate the one-particle
distribution with the sum of two terms, the equilibrium
distribution f°? and a non equilibrium part f"°¢, under
the assumption that f"°? is a small deviation from equi-
librium:

f=r+m=r9+e) (11)

with ¢ of the order of the Knudsen number Kn, defined
as the ratio between the mean free path and a typical
macroscopic length scale. From Eq. 5 and 6 we infer the
following constraints on the particle distribution func-

tion:
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These conditions together with Eq. 11 lead to the follow-
ing constraints for the non-equilibrium part:
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Plugging Eq. 11 into Eq. 1 we obtain
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where on the LHS we have ignored the term p® ag;i¢ since
it is O(Kn?). We multiply Eq. 16 by {1, p”}, integrate in
momentum space and use the result in combination with
Eq. 14 and 15 to derive the conservation equations:

U, 0% +nVeU, =0 ,
nc, Uy 0T + PV, U =0 (17)
VPP — (P +e)U0°U° =0

where ¢, = (¢2 4+ 4¢ + 2)/(1 + ¢)? is the heat capacity
at constant volume. From Eq. 16 we then obtain an
expression for ¢:
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Next, we apply the projectors A to N, (Eq. 5) and
respectively A,z and (AgAg — 1A Ayp) to TP (Eq. 6)
to obtain:

P+e
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We now use Eq. 11 together with Eq. 18 to calculate
N® and T°? via their integral definitions, eliminate the
convective time derivatives using Eqs. 17, and obtain the
expression of the transport coefficients by direct compar-
ison of Eq. 19, 20 and 21 with respectively Eq. 7, 8 and
9:
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is the upper incomplete gamma function. In the ultra-
relativistic limit these expressions simplify to

3
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For Grad’s method, following a procedure similar to
those described in [64] for the (3 + 1) dimensional case,
and in [60] for the ultra-relativistic (2 + 1) dimensional
case, we obtain the following expressions:
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with the ultra-relativistic limit given by:

Aur = ZTTL , (31)

fpar =0 (32>
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These limiting values are the same as those computed
by [60] for p and 7, while we have a discrepancy of a
factor 2 for A\. This discrepancy, whose origin is not clear
to us, has no impact on our phenomenological analysis,
as we discuss in the following.

III. NUMERICAL VALIDATION

Precisely in the same way as in (3+1) dimensions (see
[64] for details), the CE expansion and Grad’s method
yield different results for the transport coefficients. In or-
der to discriminate between the two, we perform numeri-
cal experiments using a recently developed lattice kinetic

scheme [8]. We consider relativistic flows for which we
are able to compute approximate solutions explicitly de-
pending on the transport coefficients, and compare with
numerical results, obtaining an explicit correspondence
of the values of the transport coefficients with the relax-
ation time 7.

First, we consider shear viscosity; we follow [35] and
consider as a benchmark the Taylor-Green vortex [65],
a well known example of a decaying flow with an exact
solution of the classic Navier-Stokes equations, and for
which an approximate solution can be derived in the rel-
ativistic regime [35]. From the following initial conditions
in a 2D periodic domain:

ug(x,y,0) =  vpcos (x)sin (y),

uy(,7y,0) = —vg cos (y) sin (z), (34)

x,y € [0,2n]

with vy a initial velocity, it is possible to define the fol-
lowing approximated solution:

ug(z,y,t) = wocos (z)sin (y)F(t),
uy(x,y,t) = —vg cos (y) sin (z) F'(t),

with

2n
F(t) = exp ( P+et> , (36)
which allows us to numerically measure 7. We perform
several simulations with different value of the relaxation
time 7 and fit the coefficient linking n and 7 at different
values of (. Fig. 1a shows our new results for the non-
dimensional shear viscosity in (2 + 1) dimensions, while
Fig. 1b shows results for the (3 + 1) dimensional case,
previously presented in [35]. Our data clearly show that
the Chapman-Enskog expansion correctly matches the
measured behavior in all regimes, while this is not the
case for Grad’s method.

Further evidence is given when taking into considera-
tion thermal conductivity. We consider a second bench-
mark, in which following [66], two parallel plates are kept
at constant temperatures, Ty and 17, 179 — Ty = AT. For
sufficiently small values of AT, and consequently low ve-
locities compared to the speed of light, Eq. 7 reduces to
Fourier’s law. Under these settings, simulations reach a
steady state in which we obtain an approximately con-
stant value for the heat flux ¢®, measured via Eq. 5, as
well as a constant temperature gradient allowing to use
Eq. 7 to numerically fit A.

Results shown in Fig. 1 are once again in excellent
agreement with CE predictions, while the results ob-
tained with Grad’s are at strong variance with our numer-
ical findings in the mild-relativistic to ultra-relativistic
regime. This conclusion is in no way affected by the dis-
crepancy between our results and those of Mendoza et al.
[60] in the ultra-relativistic limit.

Before closing, we wish to spend a few tentative com-
ments on the reasons why relativistic dissipation obeys
Chapman-Enskog asymptotics rather than Grad’s expan-
sion. As mentioned earlier on, the two procedures differ
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FIG. 1: Comparison of the non-dimensional transport coefficients for an ideal relativistic gas in (2 + 1) dimensions
(left) and (3 + 1) dimensions (right, from [35]), obtained applying the Chapman-Enskog expansion and Grad’s
method to the relativistic Boltzmann equation in the relaxation time approximation. For the thermal conductivity A
and the shear viscosity 7 we show the results of numerical measurements obtained using a lattice kinetic solver [8]
which clearly rule in favor of the predictions of Chapman-Enskog. For the bulk viscosity p only the analytical
results are available. We also show (panel (c)) the prediction for the ultra-relativistic thermal conductivity in (24 1)
dimensions by Mendoza et al. in [60] obtained with Grad’s method, and differing by a factor two with respect to our
calculations. Errors are of the order of 1% for all the numerical measurements (bars not shown).

considerably in spirit, before they do in their mathemati-
cal formulation. Grad’s expansion is based on a low-order
truncated representation of the Boltzmann distribution
in Hilbert space, while the Chapman-Enskog expansion
is basically a weak-gradient approximation. The recog-
nized weakness of Grad’s procedure is that truncation
endangers positive-definiteness, while Chapman-Enskog

is, in principle, confined to comparatively mild inhomo-
geneities, i.e. weak departures from local equilibrium.
Other authors have indeed shown [11] that extending
Grad’s method to account for higher moments, beyond
the 14-terms of the standard IS formulation, one even-
tually approaches the CE results. Since hydrodynamics
is a weak-gradient approximation of kinetic theory, on



purely intuitive grounds, the Chapman-Enskog route ap-
pears indeed a more natural candidate to describe trans-
port phenomena than Grad’s expansion. In this respect,
it is worth noting that, for all its formal elegance, even
for non-relativistic fluids Grad’s has only met with mixed
success, while Chapman-Enskog techniques have proved
significantly more viable (for a detailed discussion see
Chapter 6 of [67]). In other words, even though they
provide the same analytical transport coefficients, they
are not equivalent at all in practical and numerical terms.
Relativity exposes this gap already at the analytical level.

IV. CONCLUSIONS AND FUTURE
DIRECTIONS

In summary, this paper has presented a complete ana-
lytical derivation of the transport coefficients of an ideal
gas in (2 + 1) dimensions, encompassing both ultra-
relativistic and near non-relativistic regimes, for both
Chapman-Enskog and Grad’s methods. A detailed com-
parison between analytical and numerical results, un-
ambiguously shows that relativistic dissipation obeys
Chapman-Enskog asymptotics. The present works marks
a concrete step towards a unified kinetic scheme for com-

putational studies of two and three dimensional dissipa-
tive relativistic fluid dynamics. We plan to further ex-
tend the present methodology to include quantum statis-
tics, so as to perform more detailed studies of hydro-
dynamic phenomena in graphene [68] and other exotic
two-dimensional quantum materials [44, 69, 70], includ-
ing problems related to the AdS/CFT fluid/gravity cor-
respondence [71].

ACKNOWLEDGMENT

AG has been supported by the European Union’s Hori-
zon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No. 642069.
DS has been supported by the European Union’s Hori-
zon 2020 research and innovation programme under the
Marie Sklodowska-Curie grant agreement No. 765048.
SS acknowledges funding from the European Research
Council under the European Union’s Horizon 2020 frame-
work programme (No. P/2014-2020)/ERC Grant Agree-
ment No. 739964 (COPMAT). All numerical work has
been performed on the COKA computing cluster at Uni-
versita di Ferrara.

[1] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics
(Oxford University Press, 2013).

[2] D. A. Uzdensky and S. Rightley, Reports on Progress in
Physics 77, 036902 (2014).

[3] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys.
Rev. D 95, 043541 (2017).

[4] R. Baier, P. Romatschke, and U. Wiedemann, Physical
Review C - Nuclear Physics 73 (2006), 10.1103/Phys-
RevC.73.064903.

[5] P. Romatschke
arXiv:1712.05815.

[6] M. Mendoza, B. M. Boghosian, H. J. Herrmann, and
S. Succi, Phys. Rev. Lett. 105, 014502 (2010).

[7] P. Romatschke, M. Mendoza, and S. Succi, Phys. Rev.
C 84, 034903 (2011).

[8] A. Gabbana, M. Mendoza, S. Succi, and R. Tripiccione,
Phys. Rev. E 95, 053304 (2017).

[9] W. Israel, Annals Phys. 100, 310 (1976).

[10] W. Israel and J. M. Stewart, Proceedings of the Royal
Society of London A: Mathematical, Physical and Engi-
neering Sciences 365, 43 (1979).

[11] G. S. Denicol, H. Niemi, E. Molndr, and D. H. Rischke,
Phys. Rev. D 85, 114047 (2012).

[12] P. Huovinen and D. Molnar, Phys. Rev. C 79, 014906
(2009).

[13] 1. Bouras, E. Molndr, H. Niemi, Z. Xu, A. El, O. Fochler,
C. Greiner, and D. H. Rischke, Phys. Rev. C 82, 024910
(2010).

[14] W. Florkowski, R. Ryblewski, and M. Strickland, Phys.
Rev. C 88, 024903 (2013).

[15] A. Muronga, Phys. Rev. C 76, 014909 (2007).

[16] A. Muronga, Phys. Rev. C 76, 014910 (2007).

and U. Romatschke, (2017),

[17] B. Betz, D. Henkel, and D. H. Rischke, Journal of
Physics G: Nuclear and Particle Physics 36, 064029
(2009).

[18] A. El, Z. Xu, and C. Greiner, Phys. Rev. C 81, 041901
(2010).

[19] G. S. Denicol, T. Koide, and D. H. Rischke, Phys. Rev.
Lett. 105, 162501 (2010).

[20] Betz, B., Denicol, G.S., Koide, T., Molnar, E., Niemi, H.,
and Rischke, D.H., EPJ Web of Conferences 13, 07005
(2011).

[21] A. Jaiswal, R. S. Bhalerao, and S. Pal, Phys. Rev. C 87,
021901 (2013).

[22] A. Jaiswal, Phys. Rev. C 87, 051901 (2013).

(23] A. Jaiswal, Phys. Rev. C 88, 021903 (2013).

[24] R. S. Bhalerao, A. Jaiswal, S. Pal, and V. Sreekanth,
Phys. Rev. C 88, 044911 (2013).

[25] R. S. Bhalerao, A. Jaiswal, S. Pal,
Phys. Rev. C 89, 054903 (2014).

[26] C. Chattopadhyay, A. Jaiswal, S. Pal, and R. Ryblewski,
Phys. Rev. C 91, 024917 (2015).

[27] H. Grad, Communications on Pure and Applied Mathe-
matics 2, 331 (1949).

[28] S. Chapman and T. G. Cowling, The Mathematical The-
ory of Non-Uniform Gases, 3rd ed (Cambridge Univer-
sity Press, 1970).

[29] E. Molnar, H. Niemi, G. S. Denicol, and D. H. Rischke,
Phys. Rev. D 89, 074010 (2014).

[30] K. Tsumura and T. Kunihiro, The European Physical
Journal A 48, 162 (2012).

[31] K. Tsumura, Y. Kikuchi, and T. Kunihiro, Phys. Rev.
D 92, 085048 (2015).

and V. Sreekanth,



[32] Y. Kikuchi, K. Tsumura, and T. Kunihiro, Phys. Rev.
C 92, 064909 (2015).

[33] Y. Kikuchi, K. Tsumura, and T. Kunihiro, Physics Let-
ters A 380, 2075 (2016).

[34] S. Plumari, A. Puglisi, F. Scardina, and V. Greco, Phys.
Rev. C 86, 054902 (2012).

[35] A. Gabbana, M. Mendoza, S. Succi, and R. Tripiccione,
Phys. Rev. E 96, 023305 (2017).

[36] G. M. Kremer and F. P. Devecchi, Phys. Rev. D 65,
083515 (2002).

[37] T. Kellerman, L. Baiotti, B. Giacomazzo, and L. Rez-
zolla, Classical and Quantum Gravity 25, 225007 (2008).

[38] M. Miiller and S. Sachdev, Phys. Rev. B 78, 115419
(2008).

[39] M. Miiller, L. Fritz, and S. Sachdev, Phys. Rev. B 78,
115406 (2008).

[40] L. Fritz, J. Schmalian, M. Miiller, and S. Sachdev, Phys.
Rev. B 78, 085416 (2008).

[41] M. Miiller, J. Schmalian, and L. Fritz, Phys. Rev. Lett.
103, 025301 (2009).

[42] H. Yoshino and K. Murata, Journal of the Physical So-
ciety of Japan 84, 024601 (2015).

[43] A. Hartnoll, Sean A. Lucas and S. Sachdev,
arXiv:1612.07324.

[44] A. Lucas, R. Davison, and S. Sachdev, Proceedings of
the National Academy of Sciences of the United States
of America 113, 9463 (2016).

[45] A. Lucas, J. Crossno, K. C. Fong, P. Kim, and
S. Sachdev, Phys. Rev. B 93, 075426 (2016).

[46] A. Lucas, Phys. Rev. B 93, 245153 (2016).

[47] J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim,
A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watan-
abe, T. A. Ohki, and K. C. Fong, Science 351, 1058
(2016).

[48] D. A. Bandurin, I. Torre, R. K. Kumar, M. Ben Shalom,
A. Tomadin, A. Principi, G. H. Auton, E. Khestanova,
K. S. Novoselov, 1. V. Grigorieva, L. A. Ponomarenko,
A. K. Geim, and M. Polini, Science 351, 1055 (2016).

[49] A. Gabbana, M. Mendoza, S. Succi, and R. Tripiccione,
Computers & Fluids 172, 644 (2018).

[50] A. Lucas and K. C. Fong, Journal of Physics: Condensed
Matter 30, 053001 (2018).

[51] P. R. Wallace, Phys. Rev. 71, 622 (1947).

[52] D. T. Son and A. O. Starinets, Annual Review of Nuclear
and Particle Science 57, 95 (2007).

[53] J. Maldacena, International Journal of Theoretical
Physics 38, 1113 (1999).

[54] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and
Y. Oz, Physics Reports 323, 183 (2000).

[65] S. Bhattacharyya, S. Minwalla, V. E. Hubeny, and
M. Rangamani, Journal of High Energy Physics 2008,
045 (2008).

[56] A. Adams, P. M. Chesler, and H. Liu, Phys. Rev. Lett.
112, 151602 (2014).

[57] F. Carrasco, L. Lehner, R. C. Myers, O. Reula, and
A. Singh, Phys. Rev. D 86, 126006 (2012).

[58] S. R. Green, F. Carrasco, and L. Lehner, Phys. Rev. X
4, 011001 (2014).

[59] J. R. Westernacher-Schneider and L. Lehner, Journal of
High Energy Physics 2017, 27 (2017).

[60] M. Mendoza, I. Karlin, S. Succi, and H. J. Herrmann,
Journal of Statistical Mechanics: Theory and Experi-
ment 2013, P02036 (2013).

(2016),

[61] A. L. Garcia-Perciante, A. R. Méndez, and E. Escobar-
Aguilar, Journal of Statistical Physics 167, 123 (2017).

[62] J. Anderson and H. Witting, Physica 74, 466 (1974).

[63] J. Anderson and H. Witting, Physica 74, 489 (1974).

[64] C. Cercignani and G. M. Kremer, The Relativistic Boltz-
mann Equation: Theory and Applications (Birkhuser
Basel, 2002).

[65] G. I. Taylor and A. E. Green, Proceedings of the Royal
Society of London A: Mathematical, Physical and Engi-
neering Sciences 158, 499 (1937).

[66] R. C. Coelho, M. Mendoza, M. M. Doria, and H. J.
Herrmann, Computers & Fluids 172, 318 (2018).

[67] S. Succi, The Lattice Boltzmann Equation: For Complex
States of Flowing Matter (OUP Oxford, 2018).

[68] A. Gabbana, M. Polini, S. Succi, R. Tripiccione, and
F. M. D. Pellegrino, Phys. Rev. Lett. 121, 236602 (2018).

[69] P. J. W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and
A. P. Mackenzie, Science 351, 1061 (2016).

[70] S. Wang, B.-C. Lin, A.-Q. Wang, D.-P. Yu, and Z.-M.
Liao, Advances in Physics: X 2, 518 (2017).

[71] S. Succi, EPL (Europhysics Letters) 109, 50001 (2015).



	Relativistic dissipation obeys Chapman-Enskog asymptotics: analytical and numerical evidence as a basis for accurate kinetic simulations
	Abstract
	Introduction
	Hydrodynamic derivations
	Numerical validation
	Conclusions and Future Directions
	Acknowledgment
	References


