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A wide-angle mode parabolic equation is obtained

from the horizontal refraction equation by using the

rational-linear approximation of the square-root op-

erator. A finite-difference scheme for the numerical

solution of the derived equation is developed. The

scheme is based on standard Crank-Nicolson method

and fully-discrete transparent boundary conditions

that allow for an accurate simulation of sound prop-

agation on an unbounded domain.

1 Introduction

The representation of an acoustic field in a 3D
shallow-water waveguide in the form of a modal de-
composition leads to 2D Helmholtz-type equations
for the modal amplitudes [1, 2, 3] (see Eq. (2) be-
low). They are often called horizontal refraction

equations (HREs). Many techniques were devel-
oped for the solution of HREs since they appeared
in literature in 1970s for the first time, including
ray theory [2], parabolic approximation [4] and a
variety of analytical methods (see, e.g., [3]).
Parabolic approximations to HREs also known as

mode parabolic equations (MPEs) were first intro-
duced in ocean acoustics 1993 by Collins [4]. In
principle, they can be solved numerically by ex-
actly the same methods as Schrödinger equations
and (paraxial) parabolic equations from optics and
radiophysics (e.g., by finite differences, exponential
time differencing, split-step Fourier and many other
methods [1]). In some important cases MPEs also
admit analytical solutions by group-theoretical ap-
proaches [5, 6].
To our knowledge, until now little attention was

paid in literature to the derivation, validation and
numerical solution of wide-angle mode parabolic

equations (WAMPEs), although standard wide-
angle parabolic equations (i.e., equations solved in

vertical plane in r, z coordinates) are widely used
in underwater acoustics [1, 7, 8]. In this study
we derive simple rational-linear WAMPE that ap-
proximates HRE and present its numerical vali-
dation by the solution of two test problems. A
finite-difference scheme of Crank-Nicolson type is
developed for the numerical solution of the derived
WAMPE.

An inherent feature of MPEs is that they are al-
ways solved on unbounded domains (by contrast
to “normal”, or “vertical” parabolic equations in
underwater acoustics which are solved in a stack
of layers that have ocean surface as their upper
boundary and, at least in theory, some lower bound-
ary at the sea bottom as well). Thus, an arti-
ficial truncation of the computational domain is
an inevitable step of numerical solution of such
equations. At artificial boundaries one has to
set up transparent/absorbing boundary conditions
(TBCs/ABCs). Such conditions are well-developed
for narrow-angle parabolic equations [9, 10].

In our study we adapted fully-discrete TBCs
from [11] (originally developed for “vertical”
parabolic equations) for our numerical scheme for
solving WAMPEs. The resulting computational
tool produces a robust and highly accurate approx-
imation to the solution of the HRE.

2 The Horizontal Refraction Equation

The sound field p (x, y, z) produced by a time-
harmonic point source in a 3D shallow-water
waveguide is described by the three-dimensional
Helmholtz equation (where z denotes the depth,
and x, y are the horizontal coordinates). Its so-
lution can be expressed in the form of modal de-



2 DAYS on DIFFRACTION 2019

composition [1, 3]

p(x, y, z) =

J
∑

j=1

Aj(x, y)ϕj(z, x, y), (1)

where ϕj (z, x, y) are the modal functions [1] and
Aj (x, y) are the modal amplitudes, which satisfy
the so-called horizontal refraction equation [1, 2]:

∂2Aj

∂x2
+
∂2Aj

∂y2
+k2j (x, y)Aj = −ϕj(zs)δ(x)δ(y), (2)

where kj = kj(x, y) are modal wavenumbers, and
zs is the source depth. Modal functions ϕj (z, x, y)
and the respective horizontal wavenumbers kj(x, y)
can be obtained from an acoustical spectral prob-
lem (see [1] for the details).

3 Wide-Angle Mode Parabolic Equation

In this section we obtain a wide-angle mode
parabolic equation from the HRE (2). To do so,
we first factorize (2) as

(

∂x + i
√

k2j + ∂2
z

)(

∂x − i
√

k2j + ∂2
z

)

Aj = 0 (3)

and separate its solution consisting of the waves
propagating in the positive direction of the x axis

(

∂x − i
√

k2j + ∂2
z

)

Aj = 0 . (4)

Introducing the modal reference wavenumber kj,0
and extracting the principal oscillation from Aj

Aj(x, y) = eikj,0xAj(x, y) ,

we obtain the pseudo-differential mode parabolic
equation

∂Aj

∂x
= ikj,0

(

√

1 + Lj − 1
)

Aj , (5)

where kj,0Lj = ∂2
y + k2j − k2j,0. Next we formally

approximate the square-root operator
√

1 + Lj by
a rational-linear function

√

1 + Lj ≈
a+ bLj

1 + cLj

, (6)

where a, b, c are certain constants chosen as ex-
plained in [1]. Finally, substituting (6) into (5) and
denoting α0 = a − 1, α1 = b − c, we obtain the
following WAMPE

∂Aj

∂x
= ikj,0

α0 + α1Lj

1 + cLj

Aj . (7)

For the initial condition for (7) at x = 0 we use
the so-called PE starter from Greene’s source [1, 8]
that can be written as

Aj (0, y) =

ϕj (zs)

2
√
π

(

1.4467− 0.8402k2j,0y
2
)

e−
k2
j,0

y2

1.5256 . (8)

4 The Numerical Scheme

Here we derive a numerical scheme for solving (7)
based on the standard CrankNicolson discretiza-
tion. Let us consider a uniform grid

xn = n∆x, n = 0, N ,

ym = y0 +m∆y, m = 0,M ,

kn,mj = kj (xn, ym) ,

An,m
j ≈ Aj (xn, ym) .

(9)

First we rewrite Eq. (7) as

(1 + cLj)
∂Aj

∂x
= ikj,0 (α0 + α1Lj)Aj , (10)

and use Crank-Nicolson discretization to obtain the
following finite difference equation:

(

1 + cL
n
2
,m

j

) An+1,m
j −An,m

j

∆x
=

ikj,0

(

α0 + α1L
n
2
,m

j

) An+1,m
j +An,m

j

2
, (11)

where
k2j,0L

n
2
,m

j = ∂2
y + κ

n
2
,m

j − k2j,0 ,

κ
n
2
,m

j =

(

kn+1,m
j

)2
+
(

kn,mj

)2

2
.

Collecting terms with identical n and introducing

βj,0 = 2− α0ikj,0∆x, βj,1 = 2c− α1ikj,0∆x ,

γj,0 = 2 + α0ikj,0∆x, γj,1 = 2c+ α1ikj,0∆x ,

we arrive at the marching scheme which approxi-
mates the evolution equation (10):

(

βj,0 + βj,1L
n
2
,m

j

)

An+1,m
j =

(

γj,0 + γj,1L
n
2
,m

j

)

An,m
j . (12)

Now we replace the operator L
n
2
,m

j by its second-
order finite-difference counterpart

∂2
yA

n,m
j ≈

An,m+1
j − 2An,m

j +An,m−1
j

∆y2
(13)
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and obtain the following discretized WAMPE:

pj,0An+1,m+1
j + qn,mj,0 An+1,m

j + pj,0An+1,m−1
j

= pj,1An,m+1
j + qn,mj,1 An,m

j + pj,1An,m−1
j ,

where

pj,0 =
βj,1

k2j,0∆y2
, qn,mj,0 = βj,0 − βj,1Ln,m

j ,

pj,1 =
γj,1

k2j,0∆y2
, qn,mj,1 = γj,0 − γj,1Ln,m

j , (14)

Ln,m
j =

1

k2j,0

(

κ
n
2
,m

j − k2j,0 −
2

∆y2

)

.

In order to perform the numerical simulation of
the propagation in an unbounded horizontal do-
main we use discrete transparent boundary condi-

tions (TBCs) developed in [11] at y = y0 and
y = yN .

For applying the fully-discrete TBCs [11] we
must assume that kj is constant (i.e., x-
independent) at the boundaries y = y0 and y = yN :

k0j = kj (0, y0) , kMj = kj (0, yM ) . (15)

Indeed, if media inhomogeneities are present at the
boundaries, then we cannot neglect the waves scat-
tered back to the domain interior by these inhomo-
geneities.

Fully-discrete TBCs at y = y0 are written as

(1 + iq)An+1,1
j − s

(0)
0 An+1,0

j

= − (1− iq)An,1
j +

n
∑

l=1

Al,0
j s

(n−l+1)
0 (16)

Where q = 2c/(kj,0α1∆x). The coefficients s
(l)
0 can

be calculated using the recursive formula [11]:

s
(0)
0 = 1 + iq − i

2

(

γ + iσ +
+
√
A
)

,

s
(1)
0 = 1− iq +

i

2

(

γ − iσ +
B
+
√
A

)

,

s
(2)
0 =

µ

2λ

(

s
(1)
0 +

s
(0)
0

λµ
− β

)

, (17)

s
(n+1)
0 =

1

n+ 1

(

2n− 1

λ
µs

(n)
0 − n− 2

λ2
s
(n−1)
0

)

,

where

R =
2kj,0
α1

∆y2

∆x
δ = 1− c

(

1−N2
0

)

,

κ =
∆xkj,0

2

(

α− α1

(

1−N2
0

))

,

γ = Rδ σ = −Rκ N0 =
kj,0
k0j

,

λ =
+
√
A

+
√
C

µ =
B

+
√
A +
√
C

,

A = (γ − iσ) (γ − 4q + i (σ + 4)) ,

B = γ (γ − 4q) + σ (σ + 4) ,

C = (γ − iσ) (γ − 4q − i (σ + 4)) ,

β = 1− iq +
i

2
(γ − iσ) +

C

B

(

1 + iq − i

2
(γ + iσ)

)

.

(18)

At y = yN the TBCs are written in the form

(1 + iq)An+1,M−1
j − s

(0)
M An+1,M

j

= − (1− iq)An,M−1
j +

n
∑

l=1

Al,M
j s

(n−l+1)
M , (19)

where the coefficients s
(l)
M are calculated analo-

gously to those in Eq. (17).

5 Numerical Examples

In the following numerical examples the coefficients
a, b, c in (6) are chosen from Claerbout’s square-
root operator approximation [1]:

√

1 + Lj ≈
1 + 0.75Lj

1 + 0.25Lj

. (20)

The mode functions ϕj(z, x, y) and the respec-
tive wavenumbers kj(x, y) are obtained by solv-
ing acoustical spectral problem using the finite-
difference method [1].

5.1 Shallow-Water Waveguide with Flat Bottom

We start with the validation of the derived numeri-
cal scheme by simulating the propagation of acous-
tic waves in the Pekeris waveguide (i.e., the water
depth is constant), for which the analytical solution
can be written as [1]

p(x, y, z) =

i

4

∞
∑

j=1

ϕj(zs)ϕj(z)H
(1)
0

(

kj
√

x2 + y2
)

, (21)
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where H
(1)
0 denotes the zeroth-order Hankel func-

tion of the first kind. In this example the point
source is located at x = y = 0, zs = 100m, the wa-
ter depth is 200m, the acoustic field is computed
at depth z = 30m on the uniform grid:

y0 = −4 km, y1 = 4km, M = 8001 ,

x1 = 10 km, N = 10001 .
(22)

The computational results are shown in Fig. 1.
From this figure it is clear that in general our nu-
merical scheme approximates accurately the ana-
lytical solution, although some numerical noise is
present in the vicinity of the source (also note that
despite being wide-angle, our MPE still has a lim-
ited aperture in the horizontal plane).
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Figure 1: Acoustic field (in dB re 1m) at the
depth z = 30m computed by the analytical
formula (21) (top) and by the numerical solu-
tion of the WAMPE (bottom).

5.2 Shallow Sea with Underwater Canyon

In the second example we consider the propagation
of the acoustic waves produced by a point source
in a shallow sea with an underwater canyon (see
schematic in Fig. 2). The bottom relief is described

Figure 2: Schematic illustration of an under-
water canyon.

by the formula

z = h(y) = h0 +∆h sec(σy). (23)

A point source S is located at x = y = 0, z = zs.
In this example we compute the acoustic field at the
depth z = zs and consider the following parameters
(Fig. 3)

h0 = 50m, ∆h = 5m, σ = 0.005 ,

zs = 10m, x1 = 30 km, N = 30001 ,

y0 = −1 km, y1 = 1km, M = 2001 .

(24)

The WAMPE solution is compared with the so-
lution of the narrow angle adiabatic MPE [1, 5].
As shown in Fig. 4 the solutions are identical and
therefore the numerical scheme is well-suited for
sound propagation in a shallow-water waveguide
with bottom inhomogeneities. This result also
shows that in fact the aperture of the narrow-angle
MPE is sufficient for accurately handling this prob-
lem. However, in the general case the narrow-angle
MPE is known to be insufficiently accurate, as the
horizontal rays refracted by the bottom may travel
at larger angles than can be taken into account by
the standard approximation. Such cases will be
considered in future work, while in this study we
restrict our attention to the validation of the devel-
oped computational tool.

6 Conclusion

In this study a simple rational-linear wide-angle
MPE was derived. A numerical scheme of Crank-
Nicolson type with fully-discrete TBCs was pro-
posed for the derived WAMPE. The resulting nu-
merical model can accurately handle 3D shallow-
water sound propagation problems. The three-
dimensional effects are taken into account via the
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Figure 3: Acoustic field in a shallow-water see
with underwater canyon p (x, y, z = zs) in dB
re 1m.
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Figure 4: Transmission loss (in dB re 1m)
along the y axis.

dependence of the modal eigenvalues kj = kj(x, y)
on the horizontal coordinates x, y. Mode coupling
effects are not taken into account in this model, and
a coupled mode wide-angle MPE will be developed
in future work.
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