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BI-CONTINUOUS SEMIGROUPS FOR FLOWS IN INFINITE NETWORKS

CHRISTIAN BUDDE AND MARJETA KRAMAR FIJAVŽ

Abstract. We study transport processes on infinite metric graphs with non-constant velocities
and matrix boundary conditions in the L∞-setting. We apply the theory of bi-continuous
operator semigroups to obtain well-posedness of the problem under different assumptions on
the velocities and for general stochastic matrices appearing in the boundary conditions.

1. Introduction

Consider a very large network, whose actual size may not be known but some structural proper-
ties are understood well. One way to model this situation is to consider an infinite graph with
combinatorially reasonable assumptions based on the a priori knowledge about the structure of
the network. Along the edges of the network some transport processes take place that are coupled
in the vertices in which the edges meet. This means that we consider each edge as an interval
and describe functions on it, that is, we consider a metric graph. Systems of partial differential
equations on a metric graph are also known as quantum graphs. The transport processes (or flows)
on the edges are given by partial differential equations of the form ∂

∂tuj(t, x) = cj
∂
∂xuj(t, x) and

are interlinked in the common nodes via some prescribed transmission conditions.

Such a problem was considered by Dorn et al. [12, 13, 14] on the state space L1 ([0, 1] , `1
)
applying

the theory of strongly continuous operator semigroups. A semigroup approach to flows in finite
metric graphs was first presented by Kramar-Sikolya [21] and further used in [15, 14, 9, 4, 8] while
transport processes in infinite networks were also studied in [5, 7]. However, all these results
were obtained in the L1-setting. By considering problems in infinite graphs, the flow problem in
the L∞-setting should be interesting for applications as well. Von Below and Lubary [27, 28],
for example, study eigenvalues of the Laplacian on infinite networks in an L∞-setting. To the
best of our knowledge, transport equations on infinite metric graphs with an L∞-state space
have not yet been studied. We consider this problem on the state space L∞

(
[0, 1] , `1

)
where the

obtained operator semigroup is not strongly continuous. To tackle this we apply the theory of
bi-continuous semigroups that was introduced by Kühnemund [23, 24] and further developed by
Farkas [17, 18, 19] and Albanese-Lorenzi-Manco [2].

This paper is organised as follows. Section 2 is a preliminary section which we start by a short
introduction to the theory of bi-continuous semigroups. We also recall certain duality concepts of
Bochner Lp-spaces that are needed later to obtain the generation theorem, and introduce some
notions for networks and metric graphs. In Section 3 we present our flow problem for an infinite
metric graph. We first prove the well posedness in the case when all flow velocities cj equal 1.
Next, we generalise this result to the case with rationally dependent velocities satisfying a finiteness
condition. Finally, we show that the general problem on a finite metric graph is well-posed.

2010 Mathematics Subject Classification. 35R02, 35F46, 47D06, 46A70.
Key words and phrases. transport equations, infinite metric graphs, bi-continuous operator semigroups, Bochner
L∞-spaces.
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2. Preliminaries

2.1. Bi-Continuous Semigroups. A family of linear bounded operators (T (t))t≥0 on a Banach
space X is called an (one-parameter) strongly continuous semigroup if it satisfies the following
properties,

(1) T (0) = I, T (t+ s) = T (t)T (s) for all t, s ≥ 0, and

(2) the function t 7→ T (t)f is continuous for all f ∈ X.

Strongly continuous semigroups and their applications to evolution equations have been studied
intensively in the last decades, we refer to monographs [16, 8] and references therein. It is well-
known, however, that there are important examples of semigroups which fail to satisfy property (2)
above, i.e., that are not strongly continuous with respect to the Banach space norm. The standard
example is the left translation semigroup (Tl(t))t≥0 on Cb(R) defined by Tl(t)f(x) = f(x + t),
t ≥ 0. It is also known that this semigroup is strongly continuous with respect to the so-called
compact open topology τco. This is a locally convex topology induced by the family of seminorms
P = {pK | K ⊆ R compact} where

pK(f) = sup
x∈K
|f(x)|, f ∈ Cb(R).

Hence, it might be useful to equip the given Banach space (X, ‖·‖) with an additional locally
convex topology τ . This is the general idea of the so-called bi-continuous semigroups. Before
giving the proper definition we state the main assumptions on the interplay between the norm
and the locally convex topology τ .

Assumption 2.1. (i) τ is a Hausdorff topology and is coarser then the norm-topology on X,
i.e., the identity map (X, ‖·‖)→ (X, τ) is continuous.

(ii) τ is sequentially complete on norm-bounded sets, i.e., every ‖·‖-bounded τ -Cauchy sequence
in τ -convergent.

(iii) The dual space of (X, τ) is norming for X, i.e.,
‖f‖ = sup

ϕ∈(X,τ)′

‖ϕ‖≤1

|ϕ(f)|.

Remark 2.2. (a) One can re-formulate the third assumption by the following equivalent state-
ment: There is a set P of τ -continuous seminorms defining the topology τ , such that

‖f‖ = sup
p∈P

p(f).

(b) The above mentioned compact-open topology τco on Cb(R) satisfies all these assumptions.

Now we are in the state to formulate the definition of a bi-continuous semigroup.

Definition 2.3 (Kühnemund [24]). Let X be a Banach space with norm ‖ · ‖ together with a
locally convex topology τ , such that conditions in Assumption 2.1 are satisfied. We call (T (t))t≥0
a bi-continuous semigroup on X if the following holds.

(i) (T (t))t≥0 satisfies the semigroup property, i.e., T (t + s) = T (t)T (s) and T (0) = I for all
s, t ≥ 0.

(ii) (T (t))t≥0 is strongly τ -continuous, i.e., the map ϕf : [0,∞) → (X, τ) defined by ϕf (t) =
T (t)f is continuous for every f ∈ X.

(iii) (T (t))t≥0 is exponentially bounded, i.e., there exist M ≥ 1 and ω ∈ R such that ‖T (t)‖ ≤
Meωt for each t ≥ 0.
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(iv) (T (t))t≥0 is locally-bi-equicontinuous, i.e., if (fn)n∈N is a norm-bounded sequence in X which
is τ -convergent to 0, then also (T (s)fn)n∈N is τ -convergent to 0 uniformly for s ∈ [0, t0] for
each fixed t0 ≥ 0.

The growth bound of (T (t))t≥0 is defined as
ω0(T ) := inf{ω ∈ R | there exists M ≥ 1 such that ‖T (t)‖ ≤Meωt for all t ≥ 0}.

As in the case of strongly continuous semigroups one can define a generator and relate it to
the well-posedness property of abstract initial value problems. The generator A of bi-continuous
semigroup (T (t))t≥0 is defined as

Af := τ − lim
t→0

T (t)f − f
t

with the domain

D(A) :=
{
f ∈ X

∣∣∣∣ τ − lim
t→0

T (t)f − f
t

exists and sup
t∈(0,1]

‖T (t)f − f‖
t

<∞

}
.

Let us recall some more notions from the bi-continuous setting. A subsetM ⊆ X is called bi-dense
if for every f ∈ X there exists a ‖·‖-bounded sequence (fn)n∈N in M which is τ -convergent to f .
An operator A is called bi-closed, whenever for fn

τ→ f and Afn
τ→ g, where both sequences are

norm-bounded, it holds f ∈ D(A) and Af = g.

We have collected here some basic properties of generators of bi-continuous semigroups. For the
proofs we refer to [23, 24, 18].

Proposition 2.4. The following assertions hold for the generator (A,D(A)) of a bi-continuous
semigroup (T (t))t≥0.

(a) Operator A is bi-closed and its domain D(A) is bi-dense in X.

(b) For f ∈ D(A) one has T (t)f ∈ D(A) and T (t)Af = AT (t)f for all t ≥ 0.

(c) For t > 0 and f ∈ X one has∫ t

0
T (s)f ds ∈ D(A) and A

∫ t

0
T (s)f ds = T (t)f − f.

(d) For λ > ω0(T ) one has λ ∈ ρ(A) and for every f ∈ X

R(λ,A)f =
∫ ∞

0
e−λsT (s)f ds,(2.1)

where the integral is a τ -improper integral.

(e) The semigroup (T (t))t≥0 is uniquely determined by its generator (A,D(A)).

The following generalisation of the classical notion of well-posedness is due to Farkas [17, Def. 4.1.1].
By Bloc(R+, X) we denote the space of functions that are bounded on each compact subset of R+
and the differentiation is understood in the vector valued sense with respect to τ .

Definition 2.5. The abstract Cauchy problem{
u̇(t) = Au(t), t ≥ 0,
u(0) = f ∈ D(A),

(ACP)

is well-posed in X if

(i) for every f ∈ D(A) there exists a unique solution u(t) := u(t, f) of (ACP) with u ∈
Bloc(R+, X) ∩ C1(R+, (X, τ)) and u̇ ∈ Bloc(R+, X),

(ii) the solution is unique, and
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(iii) the solution u of (ACP) depends continuously on the initial data f , i.e., if the sequence
(fn)n∈N is norm-bounded and τ -convergent to 0 then the solutions un(t) := un(t, fn) converge
to 0 in τ and uniformly on compact intervals [0, t0].

Theorem 2.6. [17, Thm. 4.1.2] If (A,D(A)) generates a bi-continuous semigroup then the abstract
Cauchy problem (ACP) is well-posed.

This result is very useful for applications in combination with some version of the generation the-
orem for bi-continuous semigroups. We only recall here a variant of Trotter–Kato approximation
theorem, see [23, 3, 17]. For that we also evoke the notion of uniformly bi-continuous semigroups
[23, Def. 2.1].

Definition 2.7. Let (Tn(t))t≥0, n ∈ N, be bi-continuous semigroups on X. They are called
uniformly bi-continuous (of type ω) if the following conditions hold.

(i) There exist M ≥ 1 and ω ∈ R such that ‖Tn(t)‖ ≤Meωt for all t ≥ 0 and n ∈ N.

(ii) (Tn(t))t≥0 are locally bi-equicontinuous uniformly for n ∈ N, i.e., for every t0 ≥ 0 and for
every ‖·‖-bounded sequence (fk)k∈N in X which is τ -convergent to 0 we have

τ − lim
k→∞

Tn(t)fk = 0,

uniformly for 0 ≤ t ≤ t0 and n ∈ N.

Let us also recall the notion of a bi-core, as defined in [23, Def. 1.20]. A subspace D of the domain
of a linear operator (A,D(A)) on a Banach space X is a bi-core for A if for all f ∈ D(A) there exists
a sequence (fn)n∈N in D such that (fn)n∈N and (Afn)n∈N are ‖·‖-bounded and limn→∞ fn = f
with respect to the locally convex (graph) topology τA generated by the family of seminorms

PA := {p(·) + q(A·) | p, q ∈P} .

Having these definitions in mind, we can formulate the Trotter–Kato approximation theorem
for bi-continuous semigroups which was first proven by Kühnemund [23, Thm. 2.6] and later on
in a more general version by Albanese and Mangino [3, Thm. 3.6]. For locally equicontinuous
semigroups on locally convex space this was done by Albanese and Kühnemund [1, Thm. 16].

Theorem 2.8. [23, Thm. 2.6] Let (Tn(t))t≥0, n ∈ N, be bi-continuous semigroups with generators
(An,D(An)) such that they are uniformly bi-continuous of type ω and let λ0 > ω. Consider the
following assertions.

(a) There exists a bi-densely defined operator (A,D(A)) such that Anf
‖·‖→ Af for all f in a bi-core

of A and such that Ran(λ0 −A) is bi-dense in X.

(b) There exists an operator R ∈ L (X) such that R(λ0, An)f ‖·‖→ Rf for all f in a subset of
Ran(R) which is bi-dense in X.

(c) There exists a bi-continuous semigroup (T (t))t≥0 with generator (B,D(B)) such that Tn(t)f τ→
T (t)f for all f ∈ X uniformly for t in compact intervals

Then the implications (a)⇒ (b)⇒ (c) hold. In this case, B = A
τ (the bi-closure of A).

Remark 2.9. In the proof of [23, Thm. 2.6] one observes that operator R in assertion (b) gives
rise to a pseudo-resolvent that is used to define operator (B,D(B)) in assertion (c).

We refer to [23, 24, 17, 10, 18, 3] for further properties of bi-continuous semigroups and their
generators.
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2.2. Some observations on Bochner Lp-spaces and duality. We consider spaces of the form
Lp ([0, 1], X) where X is a Banach space. From [11, Chapter IV, Section 1] and [22, Theorem 2.22]
we obtain that for 1 < p <∞ and 1

p + 1
q = 1 one has

Lp ([0, 1] , X)′ ∼= Lq ([0, 1] , X ′) and L1 ([0, 1] , X)′ ∼= L∞ ([0, 1] , X ′)(2.2)
whenever X ′ has the Radon–Nikodym property. If this is not the case, one only has an isometric
inclusion Lq([0, 1], X ′) ↪→ Lp([[0, 1], X)′ for 1 ≤ p <∞.

Example 1. It is known that the space `1 has the Radon-Nikodym property while the spaces c0,
c, and `∞ do not. Recall that (`1)′ = `∞ while (c0)′ ∼= `1 as well as (c)′ ∼= `1 (that is, space `1
does not have a unique predual space, see also [25]). By (2.2) we obtain that

L∞
(
[0, 1] , `1

) ∼= L1 ([0, 1] , c0)′ ∼= L1 ([0, 1] , c)′

while L1 ([0, 1] , `1
)′ is only isomorphic to a subset of L∞ ([0, 1] , `∞).

The weak∗-topology on the dual spaces is defined as follows: fn → f with respect to the weak∗-
topology on Lp ([0, 1] , X)′ for 1 ≤ p < ∞ if and only if 〈fn − f, g〉 → 0 for all g ∈ Lp ([0, 1] , X),
where the pairing is defined by

(2.3) 〈f, g〉 :=
∫ 1

0
〈f(s), g(s)〉X ds, f ∈ Lp ([0, 1] , X)′ = Lq ([0, 1] , X ′) , g ∈ Lp ([0, 1] , X) ,

and 〈·, ·〉X denotes the dual pairing between X and X ′.

2.3. Infinite Networks, Metric Graphs. We use the notation introduced in [21] for finite and
expanded in [12] to infinite networks. Network is modelled with an infinite directed graph G =
(V,E) with a set of vertices V = {vi | i ∈ I} and a set of directed edges E = {ej | j ∈ J} ⊆ V × V
for some countable sets I, J ⊆ N. For a directed edge e = (vi, vk) we call vi the tail and vk the
head of e. Further, the edge e is an outgoing edge of the vertex vi and an incoming edge for the
vertex vk. We assume that graph G is simple, i.e., there are no loops or multiple edges, and locally
finite, i.e., each vertex only has finitely many outgoing edges.

Graph G is weighted, that is equipped with some weights 0 ≤ wij ≤ 1 such that

(2.4)
∑
i∈J

wij = 1 for all j ∈ J.

The structure of a graph can be described by its incidence and/or adjacency matrices. We shall
only use the so-called weighted (transposed) adjacency matrix of the line graph B = (Bij)i,j∈J
defined as

(2.5) Bij :=
{
wij if ej−→ v ei−→,
0 otherwise.

By (2.4), matrix B is column stochastic and defines a bounded positive operator on `1 with
r(B) = ‖B‖ = 1. It reflects many properties of graph G. For example, B is irreducible iff graph G
is strongly connected (see [12, Prop. 4.9]).

We identify every edge of our graph with the unit interval, ej ≡ [0, 1] for each j ∈ J , and
parametrise it contrary to its direction, so that it is assumed to have its tail at the endpoint 1 and
its head at the endpoint 0. For simplicity we use the notation ej(1) and ej(0) for the tail and the
head, respectively. In this way we obtain a metric graph.

For the unexplained terminology we refer to [8, Sect. 18] and [12].
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3. Transport problems in (in)finite metric graphs

We now consider a transport process (or a flow) along the edges of an infinite network, modelled
by a metric graph G. The distribution of material along edge ej at time t ≥ 0 is described by
function uj(x, t) for x ∈ [0, 1]. The material is transported along edge ej with constant velocity
cj > 0, j ∈ J . We assume that
(3.1) 0 < cmin ≤ cj ≤ cmax <∞
for all j ∈ J . Let C := diag(cj)j∈J be a diagonal velocity matrix and define another weighted
adjacency matrix of the line graph by

BC := C−1BC.
In the vertices the material gets redistributed according to some prescribed rules. This is modelled
in the boundary conditions by using the adjacency matrix BC . The flow process on G is thus given
by the following infinite system of equations

∂
∂tuj(x, t) = cj

∂
∂xuj(x, t), x ∈ (0, 1) , t ≥ 0,

uj(1, t) =
∑
k∈J BCjkuk(0, t), t ≥ 0,

uj(x, 0) = fj(x), x ∈ (0, 1) ,
(3.2)

for every j ∈ J , where fj(x) are the initial distributions along the edges.

One can give different interpretations to the weights wij , i.e, entries of the matrix B, resulting in
different transport problems. The two most obvious are the following.

(1) wij is the proportion of the material arriving from edge ej leaving on edge ei.

(2) wij is the proportion of the material arriving from vertex ej(0) = ei(1) leaving on edge ei.

Note, that in both situations (2.4) represents a conservation of mass and the assumption on local
finiteness of the graph guarantees that all the sums are finite. While the latter situation is the
most common one (see e.g. [12, 21, 8]) the first one was considered for finite networks in [9, Sect. 5].
Here, we will not give any particular interpretation and will treat all the cases simultaneously.

Remark 3.1. By replacing in (3.2) the graph matrix BC with some other matrix, one obtains
a more general initial-value problem that does not necessarily consider a process in a physical
network. Such a problem from population dynamics was for example studied in [5]. Furthermore,
a question when can such a general problem be identified with a corresponding problem on a
metric graph was raised in [4].

3.1. The simple case. First we assume that all the velocities are the same: cj = 1 for each
j ∈ J . As the state space we set X := L∞

(
[0, 1] , `1

)
equipped with the norm

‖f‖X := ess sup
s∈[0,1]

‖f(s)‖`1 .

On Banach space X we define operator (A,D(A)) by

A := diag
(

d
dx

)
D(A) :=

{
v ∈W1,∞ ([0, 1] , `1

)
| v(1) = Bv(0)

}(3.3)

Observe that the corresponding abstract Cauchy problem{
u̇(t) = Au(t), t ≥ 0,
u(0) = (fj)j∈J ,

(3.4)

on X is equivalent to the flow problem (3.2) in case when all the velocities equal 1.

This problem was considered by Dorn [12] on the state space L1 ([0, 1] , `1
)
where an explicit

formula for the solution semigroup in terms of a shift and matrix B was derived. Here, the left
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translation semigroup (Tl(t))t≥0 was used, which is not strongly continuous onX. By using duality
arguments we will show that it is, however, a bi-continuous semigroup on X. First note that the
left translation semigroup on X = L1 ([0, 1] , c0)′ is the adjoint semigroup of the right translation
semigroup on L1 ([0, 1] , c0), see Subsection 2.2 and [16, II.5.14].

Lemma 3.2. The right translation semigroup (Tr(t))t≥0, defined by

Tr(t)f(s) :=
{
f(s− t), s− t ≥ 0,
0, s− t < 0,

for t ≥ 0 and s ∈ [0, 1], is strongly continuous on L1 ([0, 1] , c0).

Proof. Let x = (xn)n∈N ∈ c0 and let f := x · χΩ for a measurable subset Ω ⊆ [0, 1]. We first show
that Tr(t)f → f with respect to the norm on L1 ([0, 1] , c0) as t→ 0:∫ 1

0
‖Tr(t)f(s)− f(s)‖c0

ds =
∫ 1

0

∥∥f(s− t)χ[s−t≥0] − f(s)
∥∥

c0
ds

= ‖x‖c0
·
∫ 1

0
|χΩ(s− t)− χΩ(s)|ds

= ‖x‖c0
·
∫ 1

0

∣∣χ(Ω+t)∆Ω(s)
∣∣ ds

= ‖x‖c0
· λ1 ((Ω + t)∆Ω)→ 0 as t→ 0,

where λ1 is the one-dimensional Lebesgue measure on [0, 1] and ∆ the symmetric difference of sets
defined by A∆B := (A ∪ B) \ (A ∩ B). Since every function f ∈ L1 ([0, 1] , c0) is an increasing
limit of linear combinations of functions of the form x · χΩ for some x ∈ c0 and measurable set
Ω ⊆ [0, 1], the vector-valued version of Beppo–Levis’s monotone convergence theorem yields the
result. �

Remark 3.3. Observe that the strong continuity does not depend on the space c0, hence one
could generalise this result to strongly continuous right-translation semigroups on L1 ([0, 1] , Y )
and even to Lp ([0, 1] , Y ) for an arbitrary Banach space Y and 1 ≤ p <∞.

Lemma 3.4. The left translation semigroup (Tl(t))t≥0, defined by

Tl(t)f(s) :=
{
f(s+ t), s+ t ≤ 1,
0, s+ t > 1,

for t ≥ 0 and s ∈ [0, 1], is bi-continuous on L∞
(
[0, 1] , `1

)
with respect to the weak∗-topology.

Proof. By [26, Corollary 2.1.7], the dual space Y ′ of any Banach space Y satisfies Assumption 2.1
for the weak∗-topology. Moreover, by [23, Proposition 3.18], the dual semigroup (T ′(t))t≥0 on Y ′
is bi-continuous with respect to the weak∗-topology whenever (T (t))t≥0 is a strongly continuous
semigroup on Y . Thus, [20, Example 1.3], Example 1 and Lemma 3.2 imply the result. �

We now use the formula for the semigroup which was derived by Dorn [12] and show that it yields
a bi-continuous semigroup on L∞

(
[0, 1] , `1

)
. For that we have to check all the assertions from

Definition 2.3 which we do in several steps.

Lemma 3.5. The semigroup (T (t))t≥0 on X = L∞
(
[0, 1] , `1

)
, defined by

T (t)f(s) = Bnf(t+ s− n), n ≤ t+ s < n+ 1, f ∈ X, n ∈ N0,(3.5)
is strongly continuous with respect to the weak∗-topology.
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Proof. The semigroup property is easy to verify. Observe that for any f ∈ X, g ∈ L1 ([0, 1] , c0),
and t ∈ (0, 1] we have

|〈T (t)f − f, g〉| =
∣∣∣∣∫ 1

0
〈T (t)f(s)− f(s), g(s)〉X ds

∣∣∣∣
≤
∣∣∣∣∫ 1−t

0
〈f(s+ t)− f(s), g(s)〉X ds

∣∣∣∣+
∫ 1

1−t
|〈Bf(s+ t− 1)− f(s), g(s)〉X |ds

≤
∣∣∣∣∫ 1

0
〈Tl(t)f(s)− f(s), g(s)〉X ds

∣∣∣∣+
∫ 1

1−t
|〈Bf(s+ t− 1)− f(s), g(s)〉X |ds.

Now, notice that the second summand vanishes since λ1 ([1− t, 1])→ 0 as t→ 0. Here, λ1 is the
one-dimensional Lebesgue measure on the unit interval [0, 1]. By Lemma 3.4, the left translation
semigroup is bi-continuous on X, which means, in particular, that it is strongly continuous with
respect to the weak∗-topology and hence the first summand also vanishes as t→ 0. �

Lemma 3.6. The semigroup (T (t))t≥0, defined by (3.5), is a contraction semigroup on X.

Proof. Let f ∈ X and t ≥ 0. Then there exists n ∈ N such that n ≤ t < n + 1. This means that
for s ∈ [0, 1] one has n ≤ s+ t < n+ 2. By (3.5), we can make the following estimate.

‖T (t)f‖X = ess sup
s∈[0,1]

‖T (t)f(s)‖`1

≤ max
{

ess sup
s∈[0,1]

‖Bnf(s+ t− n)‖`1 , ess sup
s∈[0,1]

∥∥Bn+1f(s+ t− n− 1)
∥∥
`1

}
.

Since ‖Bn‖ = ‖B‖n = 1, we have
‖Bnf(s+ t− n)‖`1 ≤ ‖Bn‖ · ‖f‖X = ‖f‖X

and hence, ‖T (t)f‖X ≤ ‖f‖X . �

Lemma 3.7. The semigroup (T (t))t≥0, defined by (3.5), is locally bi-equicontinuous with respect
to the weak∗-topology on X = L∞

(
[0, 1] , `1

)
.

Proof. Let (fn)n∈N be a sequence of functions in X that is ‖·‖X -bounded and converges to 0 with
respect to the weak∗-topology. By Definition 2.3 we need to show that (T (t)fn)n∈N also converges
to 0 with respect to the weak∗-topology uniformly on compact intervals [0, t0]. To this end, fix
t0 > 0 and let m := bt0c. Then 0 ≤ s+ t ≤ m+ 1 for all t ∈ [0, t0], s ∈ [0, 1] and by (3.5) we can
estimate as follows.

|〈T (t)fn, g〉| ≤
∫ 1

0
|〈T (t)fn(s), g(s)〉X |ds

≤
∫ 1

0
max

0≤k≤m

∣∣〈Bkfn(s+ t− k), g(s)
〉
X

∣∣ds
≤
∫ 1

0
max

0≤k≤m

∣∣∣〈Tl(t− k)fn(s),
(
Bk
)′
g(s)

〉
X

∣∣∣ ds
for any g ∈ L1 ([0, 1] , c0). Since, by Lemma 3.4, the left translation semigroup (Tl(t))t≥0 is bi-
continuous, hence locally bi-equicontinuous on compact intervals, |〈T (t)fn, g〉| tends to 0 uniformly
on [0, t0]. This finishes the proof. �

Let us here recall the explicit expression of the resolvent of operator (A,D(A)) defined by (3.3)
which was obtained in [12, Theorem 18]. This result does not rely on the Banach space and
remains the same by taking X = L∞

(
[0, 1] , `1

)
.
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Proposition 3.8. For Re(λ) > 0 the resolvent R(λ,A) of the operator (A,D(A)) defined by (3.3)
is given by

(R(λ,A)f)(s) :=
∞∑
k=0

e−λk
∫ 1

0
e−λ(t+1−s)Bk+1f(t) dt+

∫ 1

s

eλ(s−t)f(t) dt, f ∈ X, s ∈ [0, 1] .

We are now in the state prove the first generation theorem.
Theorem 3.9. The operator (A,D(A)), defined in (3.3), generates a contraction bi-continuous
semigroup (T (t))t≥0 on X with respect to the weak∗-topology. This semigroup is given by (3.5).

Proof. By Lemmas 3.5, 3.6, and 3.7, semigroup (T (t))t≥0 defined by (3.5) is a bi-continuous
semigroup with respect to the weak∗-topology. It remains to show that (A,D(A)), given in (3.3),
is the generator of this semigroup.

Let (C,D(C)) be the generator of (T (t))t≥0. For f ∈ D(A) and s ∈ [0, 1] we have T (t)f ∈ D(A).
By (2.1), the resolvent of C is the Laplace transform of the semigroup (T (t))t≥0, that is, for
λ > ω0(T ) we have

R(λ,C)f(s) =
∫ ∞

0
e−λtT (t)f(s) dt

=
∫ 1−s

0
e−λtf(t+ s) dt+

∞∑
n=1

∫ n−s+1

n−s
e−λtBnf(t+ s− n) dt

=
∫ 1

s

e−λ(ξ−s)f(ξ) dξ +
∞∑
n=1

∫ 1

0
e−λ(ξ−s−n)Bnf(ξ) dξ

By Proposition 3.8, the resolvent operators R(λ,A) and R(λ,C), coincide on the bi-dense set
D(A), so we may conclude that C = A. �

Corollary 1. If all cj = 1, j ∈ J , the flow problem (3.2) is well-posed on X = L∞
(
[0, 1] , `1

)
.

Remark 3.10. All the obtained results also hold for finite networks. If G = (V,E) is a finite
network with |E| = m <∞, we have `1 ({1, . . . ,m}) ∼= Cm, hence we consider our semigroups on
the space X = L∞ ([0, 1] ,Cm).

3.2. The rationally dependent case. We now consider the case when the velocities cj appearing
in (3.2) are not all equal to 1 and define on X := L∞

(
[0, 1] , `1

)
the operator

AC := diag
(
cj ·

d
dx

)
,

D(AC) :=
{
f ∈W1,∞ ([0, 1] , `1

)
| f(1) = BCf(0)

}
.

(3.6)

We assume, however, that the velocities are linearly dependant over Q: ci

cj
∈ Q for all i, j ∈ J ,

with a finite common multiplier, that is,

(3.7) there exists 0 < c ∈ R such that `j := c

cj
∈ N for all j ∈ J.

This enables us to use the procedure that was introduced in the proof of [21, Thm. 4.5] and carried
out in detail in [6, Sect. 3]. We construct a new directed graph G̃ by adding `j − 1 vertices on
edge ej for all j ∈ J . The newly obtained edges inherit the direction of the original edge and are
parametrised as unit intervals [0, 1]. We can thus consider a new problem on G̃ with corresponding
functions ũj and velocities c̃j := c for each j ∈ J̃ . After appropriately correcting the initial and
boundary conditions the new problem is equivalent to the original one. Since all the velocities
on the edges of the new graph are equal, we can treat this case by rescaling to 1 and use the
results from Subsection 3.1. Moreover, since (3.1) and (3.7) hold, the procedure described in [6,
Sect. 3] for the finite case can be as preformed in the infinite case as well. Hence, we even obtain
an isomorphism between the corresponding semigroups.
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Proposition 3.11. Let the assumptions (3.1) and (3.7) on the velocities cj hold. Then operator
(AC ,D(AC)), defined in (3.6), generates a contraction bi-continuous semigroup (TC(t))t≥0 on X
with respect to the weak∗-topology. Moreover, there exists an isomorphism S : X → X such that
(3.8) TC(ct)f = ST (t)S−1f,

where the semigroup (T (t))t≥0 is given by (3.5)

Corollary 2. If the assumptions (3.1) and (3.7) on the velocities cj hold, the flow problem (3.2)
is well-posed on X = L∞

(
[0, 1] , `1

)
.

3.3. The general case for finite networks. We finally consider the case of general cj ∈ R but
restrict ourselves to finite graphs, i.e., we work on the Banach space X = L∞ ([0, 1] ,Cm), where
m denotes the number of edges in the graph. In [8, Cor. 18.15] the Lumer–Phillips generation
theorem for positive strongly continuous semigroups is applied to show that the transport problem
with general cj ∈ R is well-posed on X = L1 ([0, 1] ,Cm). Since an appropriate variant of this
result for the bi-continuous situation is not known, we proceed differently and use the variant of
Trotter–Kato approximation theorem given in Theorem 2.8.

Let
Eλ(s) := diag

(
e(λ/cj)s

)
, s ∈ [0, 1] , and BCλ := Eλ(−1)BC .

By using this notation one can write an explicit expression for the resolvent of operator AC defined
in (3.6).

Lemma 3.12. [8, Prop. 18.12] For Re(λ) > 0 the resolvent R(λ,AC) of operator AC given in
(3.6) equals

R(λ,AC) =
(

IX + Eλ(·)
(
1− BCλ

)−1 BCλ ⊗ δ0
)
Rλ,

where δ0 denotes the point evaluation at 0 and

(Rλf) (s) =
∫ 1

s

Eλ(s− t)C−1f(t) dt, s ∈ [0, 1] , f ∈ L∞ ([0, 1] ,Cm) .

Theorem 3.13. The operator (AC ,D(AC)), defined in (3.6), generates a bi-continuous semigroup
(TC(t))t≥0 on X = L∞ ([0, 1] ,Cm).

Proof. We first show that operator AC is bi-densely defined. Take any f ∈ L∞ ([0, 1] ,Cm). For
n ∈ N let Ωn :=

[ 1
n , 1−

1
n

]
⊆ [0, 1] and define fn : [0, 1]→ Cm by a linear truncation of f outside

Ωn, i.e.,

fn(x) :=


nf
( 1
n

)
x, x ∈

[
0, 1

n

]
,

f(x), x ∈
[ 1
n , 1−

1
n

]
,

nf
(
1− 1

n

)
(1− x), x ∈

[
1− 1

n , 1
]
.

Observe that fn is Lipschitz for each n ∈ N and hence fn ∈W1,∞ ([0, 1] ,Cm). Moreover fn(1) =
fn(0) = 0 for each n ∈ N implying that fn(0) = BCfn(0), hence fn ∈ D(AC). Furthermore one
has that supn∈N ‖fn‖ ≤ ‖f‖ <∞ and fn→f as n→∞ with respect to the weak∗-topology since∣∣∣∣∫ 1

0
〈(fn(x)− f(x)) , g(x)〉X dx

∣∣∣∣ ≤ 2 ‖f‖∞ λ1
([

0, 1
n

]
∪
[
1− 1

n
, 1
])
‖g‖1 = 4

n
‖f‖∞ ‖g‖1

for each g ∈ L1 ([0, 1] ,Cm).

We now define a sequence of operators An approximating AC in the following way. For each cj ∈ R
there exists a sequence

(
c
(n)
j

)
n∈N

in Q such that limn→∞ c
(n)
j = cj . Since the network is finite, for
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each n ∈ N the velocities c(n)
j , j ∈ J , satisfy condition (3.7) and, by Proposition 3.11 we obtain

contraction bi-continuous semigroup (Tn(t))t≥0 generated by

(3.9)
An := diag

(
c
(n)
j · d

dx

)
,

D(An) :=
{
f ∈W1,∞ ([0, 1] ,Cm) | f(1) = BCnf(0)

}
,

where Cn := diag
(
c
(n)
j

)
. Moreover, all semigroups (Tn(t))t≥0, n ∈ N, are similar and thus

uniformly bi-continuous of type 0.

Observe, that the general assumptions of Theorem 2.8 are satisfied. Let us now check the as-
sumptions of assertion (b). Let R := R(λ,AC) and observe that R : L∞ ([0, 1] ,Cm) → D(AC)
is a bijection. By above, Ran(R) is bi-dense in L∞ ([0, 1] ,Cm). For every n ∈ N, replacing cj
by c(n)

j for all j ∈ J , Lemma (3.12) yields an explicit expression for R(λ,An). It is easy to see

that R(λ,An)f ‖·‖→ Rf for f ∈ D(AC) as n→∞. Applying Theorem 2.8 gives us a bi-continuous
semigroup (TC(t))t≥0 with generator (B,D(B)). Note that, since in our case R = R(λ,AC) is a
resolvent, by Remark 2.9 we have R = R(λ,AC) = R(λ,B) for λ ∈ ρ(AC) and by the uniqueness
of the Laplace transform we conclude that (B,D(B)) = (AC ,D(AC)). �

Corollary 3. The flow problem (3.2) is well-posed on X = L∞ ([0, 1] ,Cm).

Remark 3.14. Observe that in the same manner, by using the original strongly continuous
version of the Trotter–Kato Theorem (see [16, Sect. III.4b]), one can deduce the well-posedness of
the problem on X = L1 ([0, 1] ,Cm).
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