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Abstract

Infinite-dimensional linear port-Hamiltonian systems on a one-dimen-
sional spatial domain with boundary control are studied. This class of
systems includes models of beams and waves as well as the transport
equation and networks of nonhomogeneous transmission lines. The main
result shows that well-posedness of the port-Hamiltonian system, with
state space L2([0, 1];Cn) and input space C

n, implies that the system is
exact controllable.
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1 Introduction

In this article, we consider infinite-dimensional linear port-Hamiltonian systems
on a one-dimensional spatial domain with boundary control of the form

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) =x0(ζ), (1)

u(t) =W̃B

[
(Hx)(1, t)
(Hx)(0, t)

]
,

where ζ ∈ [0, 1] and t ≥ 0. Moreover, we assume that P1 is an invertible n× n

Hermitian matrix, P0 is a n × n skew-adjoint matrix, W̃B is a full row rank
n× 2n-matrix, and H(ζ) is a positive n× n Hermitian matrix for a.e. ζ ∈ (0, 1)
satisfying H,H−1 ∈ L∞((0, 1);Cn×n).

Further, we suppose that P1H(ζ) = S−1(ζ)∆(ζ)S(ζ) such that ∆(ζ) is a
diagonal matrix, S(ζ) is an invertible matrix for a.e. ζ ∈ (0, 1) and S−1, S,
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∆ : [0, 1] → C
n×n are continuously differentiable. The latter assumption is

not very restrictive, since P1H(ζ) is always diagonalizable, and the continuous
differentiability of S−1, S, and ∆ is mostly given in applications.

This class of Cauchy problems covers in particular the wave equation, the
transport equation and the Timoshenko beam equation, and also coupled beam
and wave equations. In contrast to the well-established theory for finite-dimensional
port-Hamiltonian systems [1, 2], a more intensive study of infinite-dimensional
linear port-Hamiltonian systems has only begun recently. We refer to [3, 4, 5,
6, 7, 8, 9, 10], and in particular the Ph.D thesis [11].

We define

Ax :=

(
P1

d

dζ
+ P0

)
(Hx), x ∈ D(A), (2)

on X := L2((0, 1);Cn) with the domain

D(A) :=
{
x ∈ X | Hx ∈ H1((0, 1);Cn)

}
(3)

and B : D(A) → C
n by

Bx = W̃B(Hx). (4)

Here H1((0, 1);Cn) denotes the Sobolev space. We call A the (maximal) port-
Hamiltonian operator and equip the state space X = L2((0, 1);Cn) with the en-
ergy norm

√
〈·,H·〉, where 〈·, ·〉 denotes the standard inner product on L2((0, 1);Cn).

We note that the energy norm is equivalent to the standard norm on L2((0, 1);Cn).
Then the partial differential equation (1) can be written as a boundary control

system

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t).

We refer the reader for the precise definition of a boundary control system to
Section 2. The first important question is whether the port-Hamiltonian system
(1) is well-posed in the sense that for every initial condition x0 ∈ X and every
u ∈ L2

loc([0,∞);Cn) equation (1) has a unique mild solution. Again, for the
precise definition of well-posedness and mild solutions we refer to Section 2.

In [11, 7, 8] it is shown that the port-Hamiltonian system (1) is well-posed
if and only if the operator A : D(A) ⊂ X → X, defined by

Ax :=

(
P1

d

dζ
+ P0

)
(Hx), x ∈ D(A), (5)

with the domain

D(A) :=

{
x ∈ D(A) | W̃B

[
(Hx)(1)
(Hx)(0)

]
= 0

}
(6)

generates a strongly continuous semigroup on X. We note, that A generates a
contraction semigroup on X if and only if A is dissipative on X, c.f. [12, 8, 13].
Further, matrix conditions to guarantee generation of a contraction semigroup



have been obtained in [12, 8, 13] and matrix conditions for the generation of
strongly continuous semigroups can be found in [9].

Provided the port-Hamiltonian system (1) is well-posed, we aim to char-
acterize exact controllability. Exact controllability is a desirable property of a
controlled partial differential equation and has been extensively studied, see for
example [14, 15]. We call the port-Hamiltonian system exactly controllable, if
every state of the system can be reached in finite time. Triggiani [16] showed that
exact controllability does not hold for many hyperbolic partial differential equa-
tions. However, in this paper we prove, that every well-posed port-Hamiltonian
system (1) is exact controllable.

2 Some Preliminaries in System theory

For the proof of the main theorem feedback technics are needed and therefore
we investigate port-Hamiltonian system with control and observations. These
are systems of the form

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) =x0(ζ), (7)

u(t) =W̃B

[
(Hx)(1, t)
(Hx)(0, t)

]

y(t) =W̃C

[
(Hx)(1, t)
(Hx)(0, t)

]
,

where we restrict ourselves in this article to case where P1, P0, H and W̃B

satisfy the condition described in Section 1 and W̃C is a full row rank k × 2n

matrix, k ∈ {0, · · · , n}, such that the matrix
[
W̃B

W̃C

]
has full row rank. We call

system (7) a (boundary control and observation) port-Hamiltonian system. The
case k = 0 refers to the case of a system without observation, that is, every
definition or statement of the port-Hamiltonian system (7) also applies to the
port-Hamiltonian system (1).

We define C : D(A) → C
k by

Cx = W̃C(Hx). (8)

Then we can write the port-Hamitonian system (7) in the following form

ẋ(t) = Ax(t), x(0) = x0,

u(t) = Bx(t), (9)

y(t) = Cx(t).

If the operator A, defined by (5)-(6), generates a strongly continuous semigroup
on the state spaceX, then (9) defines a boundary control and observation system,
see [8, Theorem 11.3.2 and Theorem 11.3.5].



Definition 2.1. Let A : D(A) ⊂ X → X, B : D(A) → C
n and C : D(A) →

C
k be linear operators. Then (A,B,C) is a boundary control and observation

system if the following hold:

1. The operator A : D(A) ⊂ X → X with D(A) = D(A) ∩ ker(B) and Ax =
Ax for x ∈ D(A) is the infinitesimal generator of a strongly continuous
semigroup on X.

2. There exists a right inverse B̃ ∈ L(Cn, X) of B in the sense that for all

u ∈ C
n we have B̃u ∈ D(A), BB̃u = u and AB̃ : Cn → X is bounded.

3. The operator C is bounded from D(A) to C
k, where D(A) is equipped with

the graph norm of A.

We recall, that if A, defined by (5)-(6), generates a strongly continuous
semigroup on the state space X, then the port-Hamiltonian system (7) is a
boundary control and observation system.

We note that for x0 ∈ D(A) and u ∈ C2([0, τ ];Cn), τ > 0, satisfying Bx0 =
u(0), a boundary control and observation system (A,B,C) possesses a unique
classical solution [8, Lemma 13.1.5].

For technical reasons we formulate the boundary conditions equivalently via
the boundary flow and the boundary effort. As the matrix

[
P1 −P1

I I

]
is invertible,

we can write the port-Hamiltonian system (7) equivalently as

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) =x0(ζ), (10)

u(t) =WB

[
fδ,Hx

eδ,Hx

]
,

y(t) =WC

[
fδ,Hx

eδ,Hx

]
,

where
[
fδ,Hx

eδ,Hx

]
=

1√
2

[
P1 −P1

I I

] [
(Hx)(1)
(Hx)(0)

]

and

W̃B = WB

1√
2

[
P1 −P1

I I

]
, W̃C = WC

1√
2

[
P1 −P1

I I

]
. (11)

Here fδ,Hx is called the boundary flow and eδ,Hx the boundary effort. The port-
Hamiltonian system (7) is uniquely described by the tuple (A,B,C) given by
(2), (3), (4) and (8).

Well-posedness, that is the existence of mild solutions of a boundary control
and observation system is a fundamental property.



Definition 2.2. We call a boundary control and observation system (A,B,C)
well-posed if there exist a τ > 0 and mτ ≥ 0 such that for all x0 ∈ D(A) and
u ∈ C2([0, τ ];Cn) with u(0) = Bx0 the classical solution x, y satisfy

‖x(τ)‖2X +

∫ τ

0

‖y(t)‖2dt

≤mτ

(
‖x0‖2X +

∫ τ

0

‖u(t)‖2dt
)
.

There exists a rich literature on well-posed systems, see e.g. Staffans [17]
and Tuscnak and Weiss [18]. In general it is not easy to show that a boundary
control and observation system is well-posed. However, for the port-Hamiltonian
system (7) well-posedness is already satisfied ifA generates a strongly continuous
semigroup.

Theorem 2.3. [8, Theorem 13.2.2] The port-Hamiltonian system (7) is well-
posed if and only if the operator A defined by (5)-(6) generates a strongly con-
tinuous semigroup on X.

There is a special class of port-Hamiltonian systems for which well-posedness
follows immediately.

Definition 2.4. A port-Hamiltonian systems (7) is called impedance passive,
if

Re 〈Ax, x〉 ≤ Re 〈Bx,Cx〉 (12)

for every x ∈ D(A). If we have equality in (12), then the port-Hamiltonian
system is called impedance energy preserving.

The fact that a port-Hamiltonian system is impedance energy preserving
can be characterized by a simply matrix condition.

Theorem 2.5. [13, Theorem 4.4] The port-Hamiltonian systems (7) is impedance
energy preserving if and only if it holds

[
WBΣW

∗
B WBΣW

∗
C

WCΣW
∗
B WCΣW

∗
C

]
=

[
0 I
I 0

]
, (13)

where Σ = [ 0 I
I 0 ].

Remark 2.6. Every impedance energy preserving port-Hamiltonian system (7)
is well-posed; WBΣW

∗
B = 0 even implies that A generates a unitary strongly

continuous group, c.f. [9, Theorem 1.1].

In order to formulate the mild solution of a well-posed port-Hamiltonian
system (7) we need to introduce some notation. Let X−1 is the completion of X
with respect to the norm ‖x‖X

−1
= ‖(βI−A)−1x‖X for some β in the resolvent

set ρ(A) of A, that is,
X ⊂ X−1



and X is continuously embedded and dense in X−1. Morever, let (T (t))t≥0 be
the strongly continuous semigroup generated by A. The semigroup (T (t))t≥0

extends uniquely to a strongly continuous semigroup (T−1(t))t≥0 on X−1 whose
generator A−1, with domain equal to X, is an extension of A, see e.g. [19].
Moreover, we can identify X−1 with the dual space of D(A∗) with respect to
the pivot space X, see [15], that is X−1 = D(A∗)′. If the port-Hamiltonian
system (7) is well-posed, then the unique mild solution is given by

x(t) = T (t)x0 +

∫ t

0

T−1(t− s)(AB̃ −A−1B̃)u(s) ds.

Here the operator B̃ : Cn → L2((0, 1);Cn) can be defined as follows

(B̃u)(ζ) := (H(ζ))−1 (S1ζ + S2(1− ζ))u,

where S1 and S2 are n× n-matrices given by

[
S1

S2

]
:=

[
P1 −P1

I I

]−1

W̃ ∗
B(W̃BW̃

∗
B)

−1.

For a well-posed port-Hamiltonian system (7) the transfer function is given
by [8, Theorem 12.1.3]

G(s) = C(sI −A)−1(AB̃ − sB̃) + CB̃, s ∈ ρ(A),

where ρ(A) denotes the resolvent set of A. The transfer function is bounded
on some right half plane and equals the Laplace transform of the mapping
u(·) 7→ y(·) if x0 = 0.

Definition 2.7. [8, Definition 13.1.11] A well-posed port-Hamiltonian system
(7) with transfer function G is called regular if lims∈R,s→∞ G(s) exists. In this
case the feedthrough operator D is defined as

D := lim
s∈R,s→∞

G(s).

Lemma 2.8. [8, Lemma 13.2.22] Every well-posed port-Hamiltonian system
(7) is regular.

So far, we have only considered open-loop system, that is, the input u(t) is
independent of the output y(t), see Figure 1. Systems, where input and output
are connected via a feedback law

u(t) = Fy(t) + v(t), (14)

are called closed-loop systems, see Figure 2. Here F denotes the so called feedback
operator and v(t) the new input.



(A,B,C)
u y

Figure 1: open-loop system (A,B,C)

(A,B,C)

F

v u y

+

Figure 2: closed-loop system (A,B,C) with feedback F

Definition 2.9. ([8, Theorem 13.2.2] and [20, Proposition 4.9]) A n×n-matrix
F is called an admissible feedback operator for a regular port-Hamiltonian sys-
tem (7) with feedthrough operator D, if I −DF is invertible.

Proposition 2.10. [8, Theorem 13.1.12] Let (A,B,C) be a well-posed port-
Hamiltonian system (7). Assume that F is an admissible feedback operator.
Then the closed loop system (A, (B− FC),C), i.e.,

∂x

∂t
(ζ, t) =

(
P1

∂

∂ζ
+ P0

)
(H(ζ)x(ζ, t)),

x(ζ, 0) =x0(ζ), (15)

v(t) =(B− FC)x(t),

y(t) =Cx(t)

with input v and output y is a well-posed port-Hamiltonian system.

Definition 2.11. The well-posed port-Hamiltonian system (7) is exactly con-
trollable, if there exists a time τ > 0 such that for all x1 ∈ X there exists a
control function u ∈ L2((0, τ);Cn) such that the corresponding mild solution
satisfies x(0) = 0 and x(τ) = x1.

Proposition 2.12. [20, c.f. Remark 6.9] Let (A,B,C) be a well-posed port-
Hamiltonian system (7). Assume that F is an admissible feedback operator.
Then the closed loop system (A, (B− FC),C) is exactly controllable if and only
if the open loop system (A,B,C) is exactly controllable.



3 Exact controllability for port-Hamiltonian sys-

tems

This section is devoted to the main result of this paper, that is, we show that
every well-posed port-Hamiltonian system (1) is exactly controllable.

Exact controllabilty for impedance energy preserving port-Hamitonian sys-
tem has been studied in [10].

Proposition 3.1. [10, Corollary 10.7] An impedance energy preserving port-
Hamiltonian system (7) is exactly controllable.

For completeness we include the proof of Proposition 3.1.

Proof. As the port-Hamiltonian system (7) is impedance energy preserving the
corresponding operator A generates a unitary strongly continuous group. Thus,
−A generates a bounded strongly continuous semigroup and exact controllabil-
ity is equivalent to optimizability, c.f. [21, Corollary 2.2]. The system is called
optimizable if for all x0 ∈ X there exists a control function u ∈ L2((0,∞);Cn)
such that the corresponding mild solution x fulfils x ∈ L2((0,∞);X). Thus
it is sufficient to show that the port-Hamiltonian system (7) is optimizable.
Let x0 ∈ X be arbitrarily. In [10, Theorem 10.1] and [22, Lemma 7] it is
shown that for every k > 0 the choice u(t) = −ky(t) leads to a mild solution
in L2((0,∞);X). This shows optimizability of system (7) and concludes the
proof.

Now we can formulate our main result.

Theorem 3.2. Every well-posed port-Hamiltonian system (1) is exactly con-
trollable.

For the proof of our main result we need the following lemmas.

Lemma 3.3. Let [W1 W0 ] ∈ C
n×2n have full row rank with W1,W0 ∈ C

n×n.
Then, there exist invertible matrices R1, R0 ∈ C

n×n such that the product
[W1 W0 ]

[
R1

R0

]
is invertible.

Proof. Let [W1 W0 ] have full row rank with rankW1 = n−k, k ∈ {0, . . . , n}, and
rankW0 = n− ℓ with ℓ ∈ {0, . . . , n}. Clearly n− k+ n− ℓ ≥ n, or equivalently,
k + ℓ ≤ n.

By Wn−k
1 we denote the first n − k rows of W1 and W k

1 denotes the last k
rows. Similarly, by Wn−ℓ

0 we denote the last n − ℓ rows of W0 and by W ℓ
0 the

first ℓ rows. That is

W1 =

[
Wn−k

1

W k
1

]
and W0 =

[
W ℓ

0

Wn−ℓ
0

]
.

Without loss of generality, using row reduction and the fact that rank [W1 W0 ] =
n, we may assume that W k

1 = 0 and that Wn−k
1 and Wn−ℓ

0 have full row rank.



We choose right inverses Rn−k
1 ∈ C

n×(n−k) for Wn−k
1 and Rn−ℓ

0 ∈ C
n×(n−ℓ)

for Wn−ℓ
0 . Thus,

Wn−k
1 Rn−k

1 = I and Wn−ℓ
0 Rn−ℓ

0 = I.

Clearly, the columns of Rn−k
1 and Rn−ℓ

0 are linearly independent and are not
elements of the kernel of W1 and W0, respectively.

Let Rk
1 ∈ C

n×k consisting of columns spanning the kernel of W1, and let
Rℓ

0 ∈ C
n×ℓ consisting of columns spanning the kernel of W0. We define R1 =[

Rn−k
1 Rk

1

]
∈ C

n×n and R0 =
[
Rℓ

0 Rn−ℓ
0

]
∈ C

n×n. Thus, R1 and R0 are
invertible and it yields

W1R1 +W0R0

=

[
In−k 0(n−k)×k

0k×(n−k) 0k×k

]
+

[
0ℓ×ℓ W l

0R
n−ℓ
0

0(n−ℓ)×ℓ In−ℓ

]
.

Thus, W1R1 +W0R0 is invertible as an upper triangular matrix.

Lemma 3.4. Let α 6= 0 and (A,B) be a well-posed port-Hamiltonian system.
Then the port-Hamiltonian system (A, αB) is well-posed as well. Moreover, the
system (A,B) is exactly controllable if and only if the system (A, αB) is exactly
controllable.

Proof. Well-posed of the scaled system follows immediately. The controllability
of the two systems is equivalent, since we can scale the input function u of one
system by α or 1

α
to get an input for the other system without changing the

mild solution.

Proof of Theorem 3.2: We start with an arbitrary port-Hamiltonian system
(1) described by the tuple (A,B).

By Lemma 3.4, this system is exactly controllable if and only if for some
α > 0 the system system (A, αB) is exactly controllable. We aim to prove that
there exists an α > 0 such that the system (A, αB) is exactly controllable.

By (4) and (11), the operator B is described by a full row rank n×2n-matrix

WB =
[
W1 W0

]
.

Using Lemma 3.3 there exists a matrix R =
[
R1

R0

]
∈ C

2n×n such that

WBR = M

and R1, R0,M ∈ C
n×n are invertible. If W0 = 0, without loss of generality we

may assume that R0 = I and R1 = W−1
1 .

We now consider the port-Hamiltonian system (A,Bo, C̃), where

Box =
[
R−1

1 0
] [fδ,Hx

eδ,Hx

]



and

C̃x =
[
0 R∗

1

] [fδ,Hx

eδ,Hx

]
.

Obviously, the port-Hamiltonian system (A,Bo, C̃) is impedance energy pre-

serving. Then it follows from Lemma 3.1 that (A,Bo, C̃) is exactly controllable.
If W0 = 0, then (A,B) = (A,Bo) and thus the statement is proved with

α = 1.
We now assume that W0 6= 0. In this case we consider the port-Hamiltonian

system (A,Bo,Co), where

Cox =
[
αR−1

1 αR−1
0

] [fδ,Hx

eδ,Hx

]
.

The constant α > 0 will be chosen later. The matrix
[

R−1

1
0

αR−1

1
αR−1

0

]
is invertible

and the port-Hamiltonian system (A,Bo,Co) is still exactly controllable, since
changing the output does not influence controllability.

The port-Hamiltonian system (A,Bo,Co) is regular, see Theorem 2.3 and
Lemma 2.8. By D we denote the feedthrough operator of (A,Bo,Co) and we
choose

α =

{
2 ‖D‖

∥∥M−1
∥∥ ‖W0R0‖ , D 6= 0

1, D = 0
.

Then α > 0 and the matrix

F =
1

α
M−1W0R0

is an admissible feedback operator for (A,Bo,Co) as ‖DF‖ < 1 (which implies
invertibility of I −DF ).

We now consider the closed-loop system as shown in Figure 3 and obtain

ẋ(t) = Ax(t), x(0) = x0,

uα(t) = αM(uo(t)− Fyo(t))

= αM(Bo − FCo)x(t)

=
(
αM

[
R−1

1 0
]
−W0R0

[
αR−1

1 αR−1
0

]) [fδ,Hx

eδ,Hx

]

= αWB

[
fδ,Hx

eδ,Hx

]
.

Thus, the closed loop system equals the port-Hamiltonian system (A, αB). As
the open-loop system (A,Bo,Co) is exactly controllable, by Theorem 2.12 the
port-Hamiltonian system (A, αB) is exactly controllable.

Thus, every well-posed port-Hamiltonian system is exactly controllable. �



1
α
M−1 (A,Bo,Co)

F = 1
α
M−1W0R0

uα uo yo
+

Figure 3: (A, αB) as a closed-loop system

4 Example of an exact controllable port-Hamiltonian

system

An (undamped) vibrating string can be modeled by

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂w

∂ζ
(ζ, t)

)
, (16)

t ≥ 0, ζ ∈ (0, 1), where ζ ∈ [0, 1] is the spatial variable, w(ζ, t) is the vertical
position of the string at place ζ and time t, T (ζ) > 0 is the Young’s modulus of
the string, and ρ(ζ) > 0 is the mass density, which may vary along the string.
We assume that T and ρ are positive and continuously differentiable functions
on [0, 1]. By choosing the state variables x1 = ρ∂w

∂t
(momentum) and x2 = ∂w

∂ζ

(strain), the partial differential equation can equivalently be written as

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
=

[
0 1
1 0

]
∂

∂ζ

([ 1
ρ(ζ) 0

0 T (ζ)

] [
x1(ζ, t)
x2(ζ, t)

])

= P1
∂

∂ζ

(
H(ζ)

[
x1(ζ, t)
x2(ζ, t)

])
, (17)

where

P1 =

[
0 1
1 0

]
, H(ζ) =

[ 1
ρ(ζ) 0

0 T (ζ)

]
.

The boundary control for (17) is given by

[
W̃1 W̃0

] [(Hx)(1, t)
(Hx)(0, t)

]
= u(t),

where
[
W̃1 W̃0

]
is a 2 × 4-matrix with rank 2, or equivalently, the partial

differential equation is equipped with the boundary control

[
W̃1 W̃0

]



ρ∂w
∂t

(1, t)
∂w
∂ζ

(1, t)

ρ∂w
∂t

(0, t)
∂w
∂ζ

(0, t)


 = u(t). (18)



Defining γ =
√
T (ζ)/ρ(ζ), the matrix function P1H can be factorized as

P1H =

[
γ −γ

ρ−1 ρ−1

]

︸ ︷︷ ︸
S−1

[
γ 0
0 −γ

]

︸ ︷︷ ︸
∆

[
(2γ)−1 ρ/2
(2γ)−1 ρ/2

]

︸ ︷︷ ︸
S

.

In [9] it is shown that the port-Hamiltonian system (16), (18) is well-posed if
and only if

W̃1

[
γ(1)
T (1)

]
⊕ W̃0

[
−γ(0)
T (0)

]
= C

2,

or equivalently if the vectors W̃1

[
γ(1)
T (1)

]
and W̃0

[
−γ(0)
T (0)

]
are linearly indepen-

dent.
By Theorem 3.2 the port-Hamiltonian system (16), (18) is exactly control-

lable if the vectors W̃1

[
γ(1)
T (1)

]
and W̃0

[
−γ(0)
T (0)

]
are linearly independent.

As an example we consider W̃1 := I and W̃0 :=
[
−1 0
0 1

]
. Then the port-

Hamiltonian system (16), (18) is exactly controllable if the vectors
[
γ(1)
T (1)

]
and

[
γ(0)
T (0)

]
are linearly independent.

5 Conclusions

In this paper we have studied the notion of exact controllability for a class
of linear port-Hamiltonian system on a one dimensional spacial domain. We
showed that for this class well-posedness implies exact controllability. Further,
we applied the obtained results to the wave equation.

By duality a well-posed port-Hamiltonian system (A,B,C) with state space
L2((0,∞);Cn) and output space C

n is exactly observable.
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