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Abstract. We study a class of non-autonomous boundary control and observation linear systems that
are governed by non-autonomous multiplicative perturbations. This class is motivated by different
fundamental partial differential equations, such as controlled wave equations and Timoshenko beams.
Our main results give sufficient condition for well-posedness, existence and uniqueness of classical and
mild solutions.
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1. Introduction

We consider the following non-autonomous partial differential equation with boundary input u and bound-
ary output y

∂

∂t
x(t, ζ) =

N∑
k=1

Pk(t) ∂
k

∂ζk
[
H(t, ζ)x(t, ζ)

]
+ P0(t, ζ)H(t, ζ)x(t, ζ), t ≥ 0, ζ ∈ (a, b)

x(0, ζ) = x(ζ), ζ ∈ (a, b),
u(t) = WB,1τ(Hx)(t), t ≥ 0,

0 = WB,2τ(Hx)(t), t ≥ 0,
y(t) = WCτ(Hx)(t), t ≥ 0.

Here τ denotes the trace operator τ : HN ((a, b);Kn)→ K2Nn defined by
τ(x) :=

(
x(b), x′(b), · · · , xN−1(b), x(a), x′(a) · · · , xN−1(a)

)
,

Pk(t) is n × n matrix for all t ≥ 0, k = 0, 1, · · · , N , H(t, ζ) ∈ Kn×n for all t ≥ 0 and almost every
ζ ∈ [a, b], WB,1 is a m × 2nN -matrix, WB,2 is (nN −m) × 2nN -matrix and WC is a d × 2nN -matrix.
Finally, u(t) ∈ Km denotes the input and y(t) ∈ Kd is the output at time t.
This partial differential equation is also known as port-Hamiltonian systems, and covers the wave equation,
the transport equation, beam equations, coupled beam and wave equations as well as certain networks.
Autonomous port-Hamiltonian systems, that is when H, Pk are time-independent, have been intensively
investigated, see e.g., [15, 16, 3, 2, 17, 22, 36, 41]. The existence of mild/classical solutions with non-
increasing energy and well-posedness for autonomous port-Hamiltonian systems can in most cases be
tested via a simple matrix condition [22, Theorem 4.1]. Well-posedness of linear systems in general is
not easy to prove and a necessary condition is that the state operator generates a strongly continuous
semigroup. For the class of autonomous port-Hamiltonian systems of first order i.e., N = 1, this condition
is even sufficient under some weak assumptions on P1H, see [22] or [17, Theorem 13.2.2].
In this paper, we aim to generalize these solvability and well-posedness results to the non-autonomous
situation. To our knowledge, in contrast to infinite-dimensional autonomous port-Hamiltonian systems,
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the non-autonomous counterpart has not been discussed so far. Motivated by this class we start a
systematic study of non-autonomous linear boundary control and observation systems, and in particular
those of the following form

ẋ(t) = A(t)M(t)x(t), x(0) = x0, t ≥ 0(1)
BM(t)x(t) = u(t),(2)

CM(t)(t)x(t) = y(t),(3)

which we denote by ΣN,M (A,B,C). Here A(t) : D ⊂ X → X is a linear operator, u(t) ∈ U , y(t) ∈ Y , the
boundary operators B : D(B) ⊂ X → U and C : D ⊂ X → Y are linear such that D ⊂ D(B), X, U and
Y are complex Hilbert spaces and M(t) ∈ L(X) for all t ≥ 0. Setting

A(t)x =
N∑
k=0

Pk(t) ∂
k

∂ζk
x, Bx :=

ï
WB,1
WB,2

ò
τ(x), Cx := WCτ(x), and H(t, ·) := M(t)

we see that the non-autonomous port-Hamiltonian system is in fact a special class of non-autonomous
systems of the form (1)-(3).
A pair (x, y) is a classical solution of (1)-(3) if x ∈ C1((0,∞);X) ∩ C([0,∞);X), y ∈ C([0,∞);Y )
and x(t) ∈ D(A(t)M(t)) for all t ≥ 0 such that x, y satisfy (1)-(2) and (3), respectively. The system
ΣN,M (A,B,C) is called well-posed if for each (classical) solution (x, y) and any final time τ > 0, the
operator mapping the input functions u and to the initial state x0 to x(τ) and the output functions y is
bounded, i.e.

‖x(τ)‖2 +
∫ τ

0
‖y(s)‖2ds ≤ mτ

(
‖x0‖2 +

∫ τ

0
‖u(s)‖2ds

)
for some constant mτ > 0 independent of x0 and u.

Our approach for the solvability of ΣN,M (A,B,C) is based on a non-autonomous version of the Fattorini’s
trick, the theory of evolution families together with an idea of Schnaubelt and Weiss [29, Section 2].
Evolution families are a generalization of strongly continuous semigroups, and are often used to describe
the solution of an abstract non-autonomous Cauchy problem. In Section 2, we therefore review the
concept of evolution families and that of C1-well posed non-autonomous Cauchy problems. Furthermore,
we provide several abstract results which are crucial for the analysis of our non-autonomous boundary
control and observation systems.
Fattorini’s trick is well known for autonomous boundary control systems [17, 12, 9]. The basic idea of this
approach is to reformulate the state and the control equation into an abstract inhomogeneous Cauchy
problem on X. A brief description of the autonomous situation is given in Subsection 3.1. In Subsection
4.1 we provide a generalization to non-autonomous boundary control systems (see Proposition 4.2). This
generalization and the results of Section 2 are then used to prove our main classical solvability results:
Theorem 4.8 and Theorem 6.5.
The second main purpose of this paper is the study of the well-posedness for non-autonomous boundary
and observation systems ΣN,M (A,B,C). However, we will restrict ourselves to the case where for every
t ≥ 0 the (unperturbed) autonomous system ΣN,id(A(t),B,C) is (R(t), P (t), J(t))-scattering passive i.e.,
when

2 Re(A(t)x |P (t)x)
X
≤ (R(t)u |Bx)

U
− (Cx | J(t)C(x)

Y

for all x in an appropriate subspace of X ×U where P (t), R(t) and J(t) are bounded linear operators. A
precise definition and a characterization of scattering passive autonomous and non-autonomous systems
is the subject of Subsection 3.2 and Subsection 4.2, respectively. Under additional conditions we then
prove in Theorem 4.8 that the perturbed system ΣN,M (A,B,C) is well-posed. In particular, we deduce
in Theorem 6.5 that well-posedness for a large class of non-autonomous port-Hamiltonian systems can
be checked via a simples matrix condition.
In the literature most attention has been devoted to autonomous control systems. However, in view of
applications, the interest in non-autonomous systems has been rapidly growing in recent years, see e.g.,
[13, 26, 7, 29, 19, 6, 18, 28] and the references therein. In particular, a class of scattering passive linear
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non-autonomous linear systems of the form

ẋ(t) = A−1M(t)x(t) +Bu(t), t ≥ 0, x(0) = x0,(4)
y(t) = CM(t)x(t) +Du(t)(5)

has been studied by R. Schnaubelt and G. Weiss in [29]. Here (A,D(A)) generates a strongly continuous
semigroup onX, A−1 ∈ L(X,X−1) is a bounded extension of (A,D(A)), B ∈ L(U,X−1), C ∈ L(Z, Y ) and
D ∈ L(U, Y ), where X−1 is the extrapolation space corresponding to A, and Z := D(A) + (α−A)−1BU
for some α ∈ ρ(A).
The control part (1)-(2) of the nonautonomous boundary control system ΣN,M (A,B,C) can be rewritten
in the (standard) abstract formulation (4), however, in the particular case where A(t) = A is constant
which for non-autonomous port-Hamiltonian system correspond to the case where the matrices Pk, k =
1, · · · , N, are constant with respect to time variable. On the other hand, when A(t) = A the output part
(3) could be also written into (5) using the concept of system nodes. Indeed, well-posed autonomous
port-Hamiltonian system fit into the framework of compatible system nodes [37, Theorem 10]. This can
be also easily generalized for boundary control and observation systems defined in Definition 3.2. Since
we do not follow the approach of [29], this topic will not be discussed in this paper and we refer to [31, 34]
for more details on system nodes.

For the general case, that is when A is not constant, then A−1, B, C,D and Z will be time dependent.
Thus, the abstract results in [29] cannot be immediately applied to deduce classical solvability and well-
posedness for (1)-(3). We expect that the results in [29] can be generalized to include this general case.
However, for the class of boundary control systems defined in Definition 3.2 we deal directly with (1)-(2)
in combination with Fattorini’s trick instead of its corresponding system (4)-(5). Our method is indeed
much simpler. Moreover, in general it is not clear how the solution of (4)-(5) can be related to that of
(1)-(3) even for the special case where A(t) = A is constant. In the autonomous case this relationship is
quite simple as we can see in Section 3. The reason is that C0-semigroups can be always extended to the
extrapolation space. The situation is more delicate for the non-autonomous setting. Indeed, a general
extrapolation theory for evolution families is still missing. Moreover, the extrapolation space may also
depend on the time variable. In Section 5 we deal with this question by associating a mild solution to
the control part (1)-(2) of the nonautonomous boundary control system ΣN,M (A,B,C).
Finally, we apply our abstract results to non-autonomous port-Hamiltonian systems, in particular to the
time-dependent vibrating string and the time-dependent Timoschenko beam.

2. Background on evolution families and preliminary results

Throughout this section (X, ‖ · ‖) is a Banach space. Let A := {A(t) | t ≥ 0} be a family of linear, closed
operators with domains {D(A(t)) | t ≥ 0}. Consider the non-autonomous Cauchy problem

(6) u̇(t) = A(t)u(t) on [s,∞), u(s) = xs, (s > 0).

A continuous function u : [s,∞) → X is called a classical solution of (6) if u(t) ∈ D(A(t)) for all
t ≥ s, u ∈ C1((s,∞), X) and u satisfies (6).

Definition 2.1. The non-autonomous Cauchy problem (6) is called C1-well posed if there is a family
{Yt | t ≥ 0} of dense subspaces of X such that:

(a) Yt ⊆ D(A(t)) for all t ≥ 0.
(b) For each s ≥ 0 and xs ∈ Ys the Cauchy problem (6) has a unique classical solution u(·, s, xs) with

u(t, s, xs) ∈ Yt for all t ≥ s.
(c) The solutions depend continuously on the initial data s, xs.

If we want to specify the regularity subspaces Yt, t ≥ 0, we also say (6) is C1-well posed on Yt.

In the autonomous case, i.e., if A(t) = A is constant, then it is well known that the associated Cauchy
problem is well-posed if and only if A generates a C0-semigroup (T (t))t≥0. In this case, for each x ∈ D(A)
the unique classical solution is given by T (·)x. The following definition provides a natural generalization
of operator semigroups for non-autonomous evolution equations.
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Definition 2.2. A family U := {U(t, s) | (t, s) ∈ ∆} ⊂ L(X) where ∆ := {t, s ≥ 0 | t ≥ s} is called an
evolution family if:

(i) U(t, t) = I and U(t, s) = U(t, r)U(r, s) for every 0 ≤ s ≤ r ≤ t,
(ii) U(·, ·) : ∆→ L(X) is strongly continuous.

The evolution family U is said to be generated by A, if there is a family {Yt | t ≥ 0} of dense subspaces
of X with Yt ⊂ D(A(t)) and

(iii) For every xs ∈ Ys, the function t→ U(t, s)xs is the unique classical solution of (6).

The Cauchy problem (6) is then C1-well posed if and only if A(t), t ≥ 0, generates a unique evolution
family, see [10, Proposition 9.3] or [24, Proposition 3.10]. Clearly, if (T (t))t≥0 is a C0-semigroup in X
with generator (A,D(A)), then U(t, s) := T (t− s) yields an evolution family on X with regularity spaces
Yt = D(A).

2.1. Similar evolution families. Let U := {U(t, s) | (t, s) ∈ ∆} be an evolution family on X and let
{Q(t) | t ≥ 0} ⊂ L(X) be a family of isomorphisms on X such that Q and Q−1 are strongly continuous
on [0,∞). Define the two parameters operator family W := {W (t, s) | (t, s) ∈ ∆} by

(7) W (t, s) = Q−1(t)U(t, s)Q(s) for (t, s) ∈ ∆.

It is well known that if S is a C0-semigroup on X with generator A and Q ∈ L(X) is an isomorphism,
then T (·) := Q−1S(·)Q is again a C0-semigroup on X, called similar C0-semigroup to S, and its generator
is given by Q−1AQ, where

D(Q−1AQ) = D(AQ) = {x ∈ X |Qx ∈ D(A)} = Q−1D(A).

The purpose of this section is to generalize the concept of similar semigroups to evolution families.

Lemma 2.3. The two parameters family W, defined by (7), defines an evolution family on X.

Proof. Clearly, the evolution law (i) in Definition 2.2 is fulfilled. It remains to prove the strong continuity
of W in ∆. Let x ∈ X and T > 0, and set ∆T := {(t, s) ∈ [0, T ]2 | t ≥ s}. Let (t, s), (tn, sn) ∈ ∆T

for n ∈ N such that (tn, sn) → (t, s). Then {Q−1(tn) |n ∈ N} is bounded by the uniform boundedness
theorem. Since

‖Q−1(tn)U(tn, sn)x−Q−1(t)U(t, s)x‖ ≤ ‖Q−1(tn)‖‖U(tn, sn)x− U(t, s)x‖
+ ‖[Q−1(tn)−Q−1(t)]U(t, s)x‖,

we deduce that (t, s) 7→ Q−1(t)U(t, s)x is continuous on ∆T . Thus, using a similar argument for Q(s)
and Q−1(t)U(t, s) we obtain that (t, s) 7→ W (t, s)x is continuous on ∆T . Since T > 0 is arbitrary, this
proves the assertion. �

In contrast to semigroups, the evolution law (i) and the strong continuity (ii) do not guarantee that the
given evolution family is generated by some family of linear closed operators.

Proposition 2.4. Assume that Q(·) is in addition strongly C1-differentiable. Then U is generated by a
family A with regularity spaces {Yt | t ≥ 0} if and only if W is generated by AQ := {Q−1(t)A(t)Q(t) −
Q−1(t)Q̇(t) | t ≥ 0} with regularity spaces {Ỹt | t ≥ 0} where

Ỹt := {x ∈ X |Q(t)x ∈ Yt}.

Proof. (i) Assume that U is generated by A with regularity spaces {Yt | t ≥ 0}. We first remark that Ỹt
is a dense subspace of X and

(8) Ỹt = Q−1(t)Yt ⊂ Q−1(t)D(A(t)) = D(A(t)Q(t)) = D(AQ(t))

for every t ≥ 0, where AQ(t) := Q−1(t)A(t)Q(t)−Q−1(t)Q̇(t). Next, let xs ∈ Ỹs. Then Q(s)xs ∈ Ys and
by assumption U(·, s)Q(s)xs is the unique classical solution of

(9) u̇(t) = A(t)u(t) on [s,∞), u(s) = Q(s)xs, (s > 0).
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It follows that W (t, s)x ∈ Yt ⊂ D(AQ(t)) by (8) and
d

dt
W (t, s)xs = [ d

dt
Q(t)−1]U(t, s)Q(s)xs +Q(t)−1 d

dt
U(t, s)Q(s)xs

= −Q(t)−1Q̇(t)Q(t)−1U(t, s)Q(s)xs +Q(t)−1A(t)U(t, s)Q(s)xs(10)
=
[
Q−1(t)A(t)Q(t)−Q−1(t)Q̇(t)

]
W (t, s)xs.(11)

Since Q is strongly C1-differentiable, it now follows from (10)-(11) that W (·, s)xs ∈ C1((s,∞), X) and
W (·, s)xs solves the non-autonomous problem
(12) u̇(t) = AQ(t)u(t) on [s,∞), u(s) = xs.

Clearly,W (·, s)xs is the unique classical solution of (12). We conclude thatW is generated by {AQ(t) | t ≥
0} with regularity space {Ỹt | t ≥ 0}.
(ii) Conversely, assume thatAQ generates the evolution familyW with some regularity spaces {Ỹt | t ≥ 0}.
SinceQ−1 is C1-strongly continuous we obtain by (i) that the family (AQ)Q−1 = A generates the evolution
V defined by

V (t, s) := Q(t)W (t, s)Q−1(s) = U(t, s), (t, s) ∈ ∆
with regularity space Yt = Q(t)Ỹt. This completes the proof. �

If A : D(A) ⊂ X → X is the generator of a C0-semigroup and B ∈ L(X), then the perturbed operator
Ã := A+B is again the generator of a C0-semigroup, see e.g., [10, Section 1.2] or [35]. This perturbation
results fails to be true in general for non-autonomous evolution equations [10, Example 9.2]. Thus one
cannot conclude from Proposition 2.4 that the family {Q−1(t)A(t)Q(t) | t ≥ 0} generates an evolution
family. Nevertheless, inspired by an idea of Schnaubelt and Weiss [29], using Proposition 2.4 we show
that a positive answer can be given under some additional regularity assumptions.
For this we first need to introduce the following definition.

Definition 2.5. (Kato’s class)
(1) A family A is said to be Kato-stable if for each t ≥ 0 there exists a norm ‖ · ‖t on X equivalent

to the original one such that for each T ≥ 0 there exists a constant cT ≥ 0 with
(13) |‖x‖t − ‖x‖s| ≤ cT |t− s|‖x‖s, x ∈ X, t, s ∈ [0, T ]

and A(t) generates a contractive C0-semigroup on Xt := (X, ‖ · ‖t) for all t ≥ 0.
(2) A family A is said to belong to Kato’s class if it is Kato-stable and the operators A(t), t ≥ 0,

have a common domain D such that A(·) : [0,∞)→ L(D,X) is strongly C1-differentiable.

It is known that Kato-stability is a sufficient condition for C1-well posedness of (hyperbolic) non-
autonomous evolution equations [21, 35, 32]. In particular, each non-autonomous evolution equation
that is governed by a Kato-class family is C1-well posed.
Obviously, A is Kato-stable if each operator A(t) generates a contractive C0-semigroup, as one can simply
choose ‖ · ‖t = ‖ · ‖, t ≥ 0. In this case we say that A belongs to the elementary Kato class. Starting
from this simple case many less trivial Kato-stable families can be constructed.

Example 2.6. Assume that (H, ‖ · ‖H) is a Hilbert space. Let M : [0,∞) → L(H) be self-adjoint and
uniformly coercive, i.e., M(t)∗ = M(t) and (M(t)x|x)H ≥ β‖x‖2

H for some constant β > 0 and all t ≥ 0.
If M is strongly C1-continuous and M−1 is strongly continuous, then for each t ∈ [0,∞) the function

(14) x 7→ ‖x‖t :=
»

(M(t)x|x) = ‖M1/2(t)x‖

defines a norm on H which is equivalent to the norm ‖ · ‖H and satisfies (13). Moreover, if A has a
common domain D and for each t ≥ 0 the operator (A(t), D) generates a contraction C0-semigroup in
H, then (A(t)M(t), D(A(t)M(t)) and (M(t)A,D(A(t))) generate contractive C0-semigroups on Ht, and
thus both families {A(t)M(t) | t ≥ 0} and {M(t)A(t) | t ≥ 0} are Kato-stable. We refer to [17, Lemma
7.2.3] and to the proof of [29, Proposition 2.3] for precise details. Finally, if P : [0,∞) → L(X) is a
locally uniformly bounded function, then {M(t)A(t) + P (t) | t ≥ 0} and {A(t)M(t) + P (t) | t ≥ 0} are
Kato-stable [32, Propositions 4.3.2 and 4.3.3].
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Proposition 2.7. Let A belong to the Kato-class and let D denote the common domain of A(t), t ≥ 0.
Assume that Q(·) is strongly C2-continuous. Then {Q−1(t)A(t)Q(t) | t ≥ 0} generates a unique evolution
family W with regularity spaces Yt = Q−1(t)D, t ≥ 0. Moreover, for each F ∈ C1([0,∞);X) and
xs ∈ Q−1(s)D the inhomogeneous non-autonomous Cauchy problem
(15) ẋ(t) = Q−1(t)A(t)Q(t)x(t) + F (t) a.e. on [s,∞), x(s) = xs, s > 0,
has a unique classical solution given by

(16) x(t) = W (t, s)xs +
∫ t

s

W (t, r)F (r)dr t ≥ s.

Proof. It is not difficult to verify that (13) implies that ‖x‖t ≤ ecT |t−s|‖x‖s for all x ∈ X, t, s ∈ [0, T ]
and T > 0. Using [32, Propositions 4.3.2 and 4.3.3] and [32, Corollary of Theorem 4.4.2] we obtain
that {A(t) + Q̇(t)Q−1(t) | t ≥ 0} generates a unique evolution family U on X. Thus the first assertion
follows from Proposition 2.4. Next, let F ∈ C1([0,∞);X) and xs ∈ Q(s)D. By [32, Theorem 4.5.3] the
inhomogeneous Cauchy problem

u̇(t) = A(t)u(t) + Q̇(t)Q−1(t)u(t) +Q(t)F (t) a.e. on [s,∞),(17)
u(s) = Q−1(s)xs, s > 0.(18)

has a unique classical solution x given by

(19) u(t) = U(t, s)Q−1(s)xs +
∫ t

s

U(t, r)Q(r)F (r)dr t ≥ s.

On the other hand, arguing as in the proof of Proposition 2.4 we see that x := Q−1(·)u is a classical
solution of (15). The uniqueness of classical solutions of (15) follows from the uniqueness of classical
solutions of (17). Finally, (16) follows from (19) and (7). �

Using Example 2.6 and Proposition 2.7 one can formulate the following two corollaries.

Corollary 2.8. Assume that X is a Hilbert space. Assume that A belongs to the elementary Kato class
and denote by D the common of A(t), t ≥ 0. Let M : [0,∞) → L(X) and P : [0,∞) → L(X) be self-
adjoint and uniformly coercive such thatM is strongly C2-continuous while P is strongly C1-differentiable.
Then {A(t)M(t) + P (t) | t ≥ 0} generates a unique evolution family W with regularity spaces Yt =
M−1(t)D, t ≥ 0. Moreover, for each F ∈ C1([0,∞);X) and xs ∈ M−1(s)D the inhomogeneous non-
autonomous Cauchy problem
(20) ẋ(t) = A(t)M(t)x(t) + P (t)x(t) + F (t) a.e. on [s,∞), x(s) = xs, s > 0.
has a unique classical solution given by (16).

Proof. For the proof we just have to apply Proposition 2.7 for M(t)A(t) + M(t)P (t)M−1(t) instead of
A(t) and M(t) instead of Q(t). �

Corollary 2.9. Let X be a Hilbert space and let (A,D(A)) be generator of a contractive C0-semigroup on
X. LetM : [0,∞)→ L(X) and P : [0,∞)→ L(X) be as in Corollary 2.8. Further, let R : [0,∞)→ L(X)
be self-adjoint and uniformly coercive such that R is strongly C1-continuous and commute with M i.e.
(21) R(t)M(t) = M(t)R(t) for all t ≥ 0.
Then the family {R(t)AM(t) + P (t) | t ≥ 0} generates a unique evolution family W with regularity
spaces Yt = M−1(t)D(A), t ≥ 0. Moreover, for each F ∈ C1([0,∞);X) and xs ∈ M−1(s)D(A) the
inhomogeneous non-autonomous Cauchy problem
(22) ẋ(t) = R(t)AM(t)x(t) + P (t)x(t) + F (t) a.e. on [s,∞), x(s) = xs, s > 0.
has a unique classical solution given by (16).

Proof. From Example 2.6 we deduce that the family {M(t)R(t)A | t ≥ 0}, and therefore {M(t)R(t)A +
M(t)P (t)M−1(t) | t ≥ 0}, belongs to Kato’s class. In fact, using (22) we see that M(·)R(·) : [0,∞) →
L(X) is selfadjoint and uniformly coercive. Now, applying Proposition 2.7 forM(t)R(t)A+M(t)P (t)M−1(t)
instead of A(t) and M(t) instead of Q(t) concludes the proof. �
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Remark 2.10. Corollary 2.8 has been proved in [29, Proposition 2.8-(a)] using a slightly different method
for A(t) = A and F = P = 0.

2.2. Backward evolution families. Let X be a Hilbert space over K = C or R.

Definition 2.11. A family V := {V (t, s) | (t, s) ∈ ∆} ⊂ L(X) is called a backward evolution family if
(i) V (t, t) = I and V (r, s)V (t, r) = V (t, s) for every 0 ≤ s ≤ r ≤ t,

(ii) V (·, ·) : ∆→ L(X) is strongly continuous.
A family A(t) : D(A(t)) ⊂ X → X, t ≥ 0, of linear operators generates a backward evolution equation V
if there is a family {Yt | t ≥ 0} of dense subspaces of X with Yt ⊂ D(A(t)) and
(23) V (t, s)Yt ⊂ Ys for all 0 ≤ s ≤ t,
V (t, ·)xt ∈ C1([0, t], X) for every xt ∈ Yt and V (t, ·)xt solves uniquely the backward non-autonomous
problem

u̇(s) = −A(s)u(s) on 0 ≤ s ≤ t, u(t) = xt, (t > 0).(24)

Lemma 2.12. (1) Assume that A = {A(t) | t ≥ 0} belongs to the elementary Kato-class. Then A
generates a backward evolution family.

(2) Assume that A generates an evolution family U . If the adjoint operators A∗ := {A∗(t) | t ≥ 0}
generate a backward evolution family U∗ := {U∗(t, s) | (t, s) ∈ ∆}, then for (t, s) ∈ ∆ we have

(25) U(t, s) = [U∗(t, s)]′.

Proof. (i) Let T > 0 be fixed and set AT := {A(T − t) | t ∈ [0, T ]}. Then, obviously AT belongs to the
Kato-class and thus generates an evolution family UT := {UT (t, s) | 0 ≤ s ≤ t ≤ T} [35, Theorem 4.8]
such that for each x ∈ D and 0 ≤ s ≤ t ≤ T

d
dtUT (t, s)x = AT (t)UT (t, s)x,(26)

d
dsUT (t, s)x = −UT (t, s)AT (s)x.(27)

It is easy to see that S(t, s) := UT (T − s, T − t) for each 0 ≤ s ≤ t ≤ T defines a backward evolution
family with generator {A(t) | t ∈ [0, T ]}. This completes the proof since T is arbitrary.
(ii) Denote by Yt and Yt,∗, t ≥ 0 the regularity spaces corresponding to A and A∗, repectively. Let
t > s ≥ 0 and let xs ∈ Ys and yt ∈ Yt,∗. Then for s ≥ r ≥ t we have

d
dr (xs | [U(r, s)]′U∗(t, r)yt) = d

dr (U(r, s)xs |U∗(t, r)yt)

= (A(r)U(r, s)xs |U∗(t, r)yt)− (U(r, s)xs |A∗(r)U∗(t, r)yt)
= 0.

Integrating over [s, t] and using that Ys and Yt,∗ are dense in X yield the desired identity. �

3. Review on Autonomous boundary control and observation systems

Many systems governed by linear partial differential equations with inhomogeneous boundary conditions
are described by an abstract boundary system of the form

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0,(28)
Bx(t) = u(t),(29)
Cx(t) = y(t).(30)

Here A : D(A) ⊂ X → X is a linear operator, u(t) ∈ U , y(t) ∈ Y , the boundary operators B : D(B) ⊂
X → U and C : D(A) ⊂ X → Y are linear such that D(A) ⊂ D(B), and X, U and Y are complex Hilbert
spaces. We shall call X the state space, U the input space and Y the output space of the system.
In this section, we recall some well-known results on well-posedness of these system which are needed
throughout this paper.

Definition 3.1. Let x0 ∈ X and u : [0,∞)→ U be given.
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(i) x is called a classical solution of (28)-(29), if x ∈ C1([0,∞), X), x(t) ∈ D(A) for all t ≥ 0 and x
satisfies (28)-(29).

(ii) A pair (x, y) is called a classical solution of (28)-(30), if x is a classical solution of (28)-(29),
y ∈ C([0,∞);Y ) and y satisfies (30).

(iii) The system Σ(A,B,C) is called well-posed, if for any final time τ > 0 there exists mτ > 0 such
that for all classical solution of (28)-(30) we have

(31) ‖x(τ)‖2 +
∫ τ

0
‖y(s)‖2ds ≤ mτ

(
‖x(0)‖2 +

∫ τ

0
‖u(s)‖2ds

)
.

Remark that, if C ∈ L(D(A), Y ), then (x, y) is a classical solution of (28)-(30) if and only if x is a classical
solution of (28)-(29).

3.1. Existence of classical solutions. In order to study existence of classical solutions it is often useful
to write the boundary control system (28)-(29) as a C1-well posed (inhomogeneous) autonomous Cauchy
problem. We introduce the following definition which is based on Curtain and Zwart [9, Definition 3.3.2].
Definition 3.2. The linear (autonomous) system (28)-(30) is called a boundary control and observation
autonomous system, and we write Σ(A,B,C) is a BCO-system, if the following assertions hold:

(i) The operator A : D(A) ⊂ X → X, called the main operator, defined by
D(A) : = D(A) ∩ ker(B)
Ax : = Ax for x ∈ D(A)

generates a strongly continuous semigroup on X.
(ii) There exists a linear operator B̃ ∈ L(U,X) such that for all u ∈ U we have

B̃u ∈ D(A),AB̃ ∈ L(U,X) and BB̃u = u.

(iii) C : D(A) ⊂ X → Y is a linear bounded operator, where D(A) is equipped with the graph norm.
In the following Σ(A,B,C) is assumed to be a BCO-system. The following remark will be very useful for
non-autonomous boundary control systems.
Remark 3.3. Let Σ(A,B,C) be a BCO-system. Then for each (x, u) ∈ X × U we have

x ∈ D(A) and Bx = u⇐⇒ x− B̃u ∈ D(A).
This is an easily consequence of Definition 3.2.
We denote by X−1 the extrapolation space associated to A, i.e., the completion of X with respect to
the norm x 7→ ‖(βI − A)−1x‖ for some arbitrary β ∈ ρ(A). Let A−1 be the extension of A to X−1. It
is well known that A−1 with domain X generates a C0-semigroup (T−1(t))t≥0 on X−1 and for all t ≥ 0
the operator T−1(t) is the unique continuous extension of T (t) to X−1. We associate with Σ(A,B,C) the
linear operator B ∈ L(U,X−1) called control operator defined by
(32) B := AB̃ −A−1B̃.

It turns out, that for sufficiently smooth initial data and inputs the two Cauchy problems
ẇ(t) = Aw(t) + AB̃u(t)− B̃u̇(t), t ≥ 0, w(0) = x0 − B̃u(0),(33)
ẋ(t) = Ax(t) +Bu(t), t ≥ 0, x(0) = x0,(34)

and the BCO-system (28)-(30) are equivalent. More precisely, we have
Proposition 3.4. Let (x0, u) ∈ D(A) ×W 2,2([0,∞);U) such that Bx0 = u(0). Then (28)-(29) has a
unique classical solution x given by

x(t) = T (t)x0 +
∫ t

0
T−1(t− s)Bu(s)ds t ≥ 0,(35)

= T (t)(x0 − B̃u(0)) +
∫ t

0
T (t− s)

[
AB̃u(s)− B̃u̇(s)

]
ds+ B̃u(t)(36)

y(t) = CT (t)x0 + C

∫ t

0
T−1(t− s)Bu(s)ds t ≥ 0.(37)
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Therefore, x is the unique classical solution of (34) and w := x − ũ is the unique classical solution of
(33) with initial value w0 = x0 − B̃u(0).

Proof. The proof follows from a combination of [17, Theorem 11.1.2] (see also [9, Theorem 3.3.3]) and
[17, Corollary 10.1.4] taking Remark 3.3 into account. �

3.2. Scattering passive BCO-systems. Let Σ(A,B,C) be a BCO-system on (X,U, Y ) and let P =
P ∗ ∈ L(X), R = R∗ ∈ L(U) and J = J∗ ∈ L(Y ). The admissible space V ⊂ X × U is defined by

V : =
{

(x, u) ∈ X × U
∣∣ x ∈ D(A) and Bx = u

}
.

Definition 3.5. We say that Σ(A,B,C) is (P,R, J)-scattering passive if

(38) d
dt (Px(t) |x(t))X ≤ (Ru(t) |u(t))U − (y(t) | Jy(t))Y , for all t ≥ 0

and all classical solutions (x, y) of (28)-(30). Further, Σ(A,B,C) is called (R,P,J)-scattering energy
preserving if equality holds in (38). If P = I,R = I and J = I, then we simply say that Σ(A,B,C) is
scattering passive (or dissipative).

Each (P,R, J)-scattering passive boundary system Σ(A,B,C) is well-posed if P and J are invertible. This
can be seen by using Gronwall’s Lemma (see the proof of Lemma 4.5). The following lemma characterizes
(P,R, J)-scattering passive BCO-systems. A comparable results has been proved in [23, Theorem 3.2,
Proposition 5.2] for systems nodes.

Lemma 3.6. The BCO-system Σ(A,B,C) is (P,R, J)-scattering passive if and only if for each (x0, u0) ∈
V we have
(39) 2 Re(Ax0 |Px0)X ≤ (Ru0 |Bx0)U − (Cx0 | JCx0)Y
or equivalently,
(40) 2 Re(Ax0 |Px0)X ≤ (Ru0 |u0)U − (Cx0 | JCx0)Y .
Then the BCO-system Σ(A,B,C) is (P,R, J)-energy preserving if and only if equality holds in (39), or
equivalently in (40).

Proof. Obviously, the inequalities (39) and (40) are equivalent since Bx0 = u0 for each (x0, u0) ∈ V.
Assume that Σ(A,B,C) is (R,P, J)-scattering passive. Let (x0, u0) ∈ V and u : [0,∞) → U such
that u(0) = u0. Assume that (x, y) is a classical solution of (28)-(30) corresponding to (x0, u). Then
(x(t), u(t)) ∈ V and

d
dt (Px(t) |x(t)) = 2 Re(ẋ(t) |Px(t)) = 2 Re(Ax(t) |Px(t))

for all t ≥ 0. Inserting this into (38) yields
(41) 2 Re(Ax(t) |Px(t)) ≤ (Ru(t) |Bx(t))U − (Cx(t) | JCx(t))Y
for all t ≥ 0. The previous inequality implies (39) by taking t = 0. The converse implication and the last
assertion can be proved similarly. �

4. Non-autonomous boundary and observation systems

In this section, our aim is to extend the results of Section 3 to the more general case where A,B, and C
are time dependent. Let X,U and Y be Hilbert spaces over K = C or R. For each t ≥ 0 we consider the
linear operators A(t) : D(A(t)) ⊂ X → X, B(t) : D(B(t)) ⊂ X → U and C(t) : D(A(t)) ⊂ X → Y such
that D(A(t)) ⊂ D(B(t)) for each t ≥ 0.
We consider the following abstract non-autonomous boundary system

ẋ(t) = A(t)x(t), t ≥ s, x(s) = xs, (s ≥ 0)(42)
B(t)x(t) = u(t), t ≥ s,(43)
C(t)x(t) = y(t), t ≥ s,(44)

which we denote by ΣN (A,B,C).
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Definition 4.1. Let s ≥ 0, xs ∈ X and u : [0,∞)→ U be given.
(i) A function x : [s,∞) → X is called a classical solution of (42)-(43), if x ∈ C1([s,∞), X),

x(t) ∈ D(A(t)) for all t ≥ s and x satisfies (42)-(43).
(ii) A pair (x, y) is a classical solution of (42)-(44), if x is classical solution of (42)-(43), y ∈

C([s,∞);Y ) and (x, y) satisfies (42)-(44).
(iii) ΣN (A,B,C) is a non-autonomous boundary control and observation system, and we write NBCO-

systems, if for each t ≥ 0 the autonomous system Σ(A(t),B(t),C(t)) is a BCO-system such that
the family {A(t) | t ≥ 0} of main operators generates an evolution family.

(iv) The non-autonomous system ΣN (A,B,C) is called well-posed if for any final time τ > 0 there
exists a constant mτ > 0 such that for all classical solution of (42)-(44) we have

‖x(τ)‖2
X +

∫ τ

s

‖y(r)‖Y dr ≤ mτ

(
‖x(s)‖2

X +
∫ τ

s

‖u(r)‖2
Udr

)
.

4.1. Existence of classical solutions. Let ΣN (A,B,C) be a NBCO-system. In this subsection, we
study existence and uniqueness of classical solutions of ΣN (A,B,C) without output, i.e., classical solu-
tion of (42)-(43). In the previous section we have seen in the autonomous case that (42)-(43) can be
equivalently written as a C1-well-posed inhomogeneous Cauchy problem (in X) for sufficiently smooth
initial data and inputs. This idea can be extended to the non-autonomous setting.
For each t ≥ 0, we denote by A(t) : D(A(t) ⊂ X → X the main operator of Σ(A(t),B(t),C(t)), and by
U the evolution family generated by {A(t) | t ≥ 0}. Further, according to Definition 4.1-(iii) there exists
{B̃(t) | t ≥ 0} ⊂ L(U,X) such that for all t ≥ 0 we have

(45) B̃(t)U ⊂ D(A(t)), A(t)B̃(t) ∈ L(U,X) and B(t)B̃(t) = IU .

We also consider the time-dependent admissible spaces V(t), t ≥ 0, i.e,

V(t) := {(x, u) ∈ X × U |x ∈ D(A(t)) and B(t)x = u}.

Since {A(t) | t ≥ 0} generates an evolution family U on X, for a given f ∈ L1
Loc([0,∞);X) the inhomo-

geneous non-autonomous Cauchy problem

v̇(t) = A(t)v(t) + f(t), t ≥ s, (s ≥ 0),(46)
v(s) = vs,(47)

has at most one classical solution given by

v(t) = U(t, s)vs +
∫ t

s

U(t, r)f(r)dr,

see e.g., [35, Section 5.5.1]. Thus the following proposition provides a generalization of [9, Theorem 3.3.3]
(see also Proposition 3.6).

Proposition 4.2. Assume that u ∈ C1([0,∞);U), B̃(·)u0 ∈ C1([0,∞);X) and A(·)B̃(·)u0 ∈ L1([0,∞);X)
for each u0 ∈ U . Let xs ∈ X such that (xs, us) ∈ V(s). Then x is a classical solution of (42)-(43) if and
only if v := x− B̃u is a classical solution of (46)-(47) with inhomogeneity

(48) f(t) = Fu(t) := A(t)B̃(t)u(t)− d
dt
[
B̃(t)u(t)

]
and initial data vs = xs − B̃(s)u(s). Therefore, (42)-(43) has at most one classical solution x given by

x(t) = U(t, s)[xs − B̃(s)u(s)] + B̃(t)u(t) +
∫ t

s

U(t, r)Fu(r)dr(49)

for each t ≥ s.
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Proof. Let s ≥ 0. Clearly x ∈ C1([s,∞);X) if and only if v ∈ C1([s,∞);X). Assume now that x is a
classical solution of (42)-(43). Then v(t) ∈ Vt ⊂ D(A(t)) for every t ≥ s by Remark 3.3 and

v̇(t) = ẋ(t)− ˙̃B(t)u(t)− B̃(t)u̇(t)

= A(t)x(t)− A(t)B̃(t)u(t) + A(t)B̃(t)u(t)− ˙̃B(t)u(t)− B̃(t)u̇(t)

= A(t)[x(t)− B̃(t)u(t)] + A(t)B̃(t)u(t)− ˙̃B(t)u(t)− B̃(t)u̇(t)

= A(t)v(t) + A(t)B̃(t)u(t)− d
dt
[
B̃(t)u(t)

]
.

Thus v is a classical solution of (46) with f given by (48). The converse implication can be proved
similarly. Finally, (49) follows by the above the remark. �

4.2. Scattering passive NBCO-systems. Let R : [0,∞) → L(U), P : [0,∞) → L(X) and J :
[0,∞)→ L(Y ) be continuous functions such that P is strongly differentiable and R(t)∗ = R(t), P (t)∗ =
P (t), J(t)∗ = J(t) for all t ≥ 0.

Definition 4.3. Let (x, y) be classical solution of (42)-(44). Then ΣN (A,B,C) is called (R,P,J)-
scattering passive if for all t ≥ s

(50) d
dt (P (t)x(t) |x(t)) + (y(t) | J(t)y(t))Y ≤ (u(t) |R(t)u(t))U + (Ṗ (t)x(t) |x(t)).

Further, ΣN (A,B,C) is called (R,P,J)-scattering energy preserving if equality holds in (50). If P =
I,R = I and J = I then ΣN (A,B,C) is called scattering passive, and scattering energy preserving if we
have equality in (50).

We have seen in Section 3.2 that for autonomous BCO-systems Σ(A,B,C) the (R,P, J)-scattering passiv-
ity can be characterized in terms of A, B and C and (R,P, J)-scattering passivity is a sufficient condition
for well-posedness, if additionally P and J are invertible. Proposition 4.4 and Lemma 4.5 generalize this
facts for non-autonomous boundary control and observation systems.

Proposition 4.4. The following assertion are equivalent.
(i) ΣN (A,B,C) is (R,P,J)-scattering passive.

(ii) For each t ≥ 0 and all (x, u) ∈ V(t) we have
(51) 2 Re(A(t)x |P (t)x)X ≤ (R(t)u |B(t)x)U − (C(t)x | J(t)C(t)x)Y .

(iii) For each t ≥ 0, the autonomous BCO-system Σ(A(t),B(t),C(t)) is (R(t), P (t), J(t))-scattering
passive.

Proof. The equivalence of (ii) and (iii) has been proved in Proposition 3.6. It remains to prove the
equivalence of (i) and (ii). Assume that (i) holds and let s ≥ 0 and let (xs, us) ∈ V(s). Let u :
[s,∞)→ U such that u(s) = us. If (x, y) is a classical solution of (42)-(44) corresponding to (xs, u) then
(x(t), u(t)) ∈ V(t), y(t) = C(t)x(t) and

d
dt (P (t)x(t) |x(t))− (Ṗ (t)x(t) |x(t)) = 2 Re(ẋ(t) |P (t)x(t))(52)

= 2 Re(A(t)x(t) |P (t)x(t))(53)

for all t ≥ s. Inserting this into (50) yields
2 Re(A(t)x(t) |P (t)x(t)) ≤ (R(t)u(t) |B(t)x(t))U − (C(t)x(t) | J(t)C(t)x(t))Y

for all t ≥ s. The last inequality (ii) by taking t = s. Conversely, assume that (ii) holds and let (x, y) be
a classical solution of (42)-(44). Then (x(t), u(t)) ∈ V(t) and (52)-(53) holds for all t ≥ s. This together
with (51) imply (50), which completes the proof. �

Lemma 4.5. Let ΣN (A,B,C) be (R,P, J)-scattering passive such that J ≥ 0. Assume that P is strongly
C1-continuous and uniformly coercive with
(54) (P (t)x|x) ≥ β‖x‖2, for all t ≥ 0, x ∈ X
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for some constant β > 0. Then each classical solution of (42)-(44) satisfies the following inequality

(55) β‖x(t)‖2 +
∫ t

s

(y(r) | J(r)y(r))dr ≤ ct,se
1
β

∫ t
s
‖Ṗ (r)‖dr

[ ∫ t

s

(u(r) |R(r)u(r))dr + ‖x(s)‖2
]

where ct,s = max{1, max
r∈[s,t]

‖P (r)‖}. Therefore, ΣN (A,B,C) is well-posed provided that J is uniformly

coercive and R ∈ L∞Loc([0,∞);L(U)).

Proof. For the proof we follow a similar argument as in fourth steps of the proof of [29, Theorem 4.1].
Assume that ΣN (A,B,C) is (R,P, J)-scattering passive. Clearly (50) holds if and only if

(P (t)x(t) |x(t)) +
∫ t

s

(y(r) | J(r)y(r))dr ≤
∫ t

s

(u(r) |R(r)u(r))dr(56)

+
∫ t

s

(Ṗ (r)x(r) |x(r))dr + (P (s)xs |xs)

for all t ≥ s ≥ 0. Thus using (54) and that J ≥ 0 we obtain

β‖x(t)‖2 +
∫ t

s

(y(r) | J(r)y(r))dr ≤
∫ t

s

(u(r) |R(r)u(r))dr + ‖P (s)‖‖x(s)‖2

+
∫ t

s

‖Ṗ (r)‖‖x(r)‖2dr

≤
∫ t

s

(u(r) |R(r)u(r))dr + ‖P (s)‖‖x(s)‖2

+
∫ t

s

1
β
‖Ṗ (r)‖

[
β‖x(r)‖2 +

∫ r

s

(y(ζ) | J(ζ)y(ζ))dζ
]
dr.

Applying Gronwall’s Lemma yields

(57) β‖x(t)‖2 +
∫ t

s

(y(r) | J(r)y(r))dr ≤ e
2
β

∫ t
s
‖Ṗ (r)‖dr

[ ∫ t

s

(u(r) |R(r)u(r))dr + ‖P (s)‖‖x(s)‖2
]
,

which implies (55). This completes the proof. �

4.3. Multiplicative perturbed of NBCO-systems. We will adopt the same notations of the previous
sections. The main purpose of this section is the study of some classes of NBCO-systems which are
governed by a time-dependent multiplicative perturbation. More precisely, let ΣN (A,B,C) be a NBCO-
system such that the boundary operators are constant, that is C(t) = C and B(t) = B for all t ≥ 0. Thus
the domain A(t) should also be constant and we set D(A(t)) = D for all t ≥ 0.
Further, throughout this section we assume that the following assumption holds:

Assumption 4.6. (1) M : [0,∞)→ L(X)and R : [0,∞)→ L(X) be two self-adjoint and uniformly
coercive functions.

(2) M(·)x ∈ C2([0,∞);X) and M−1(·)x ∈ C([0,∞);X) for each x ∈ X.
(3) L(·)x ∈ C1([0,∞);X) for each x ∈ X such that L and M commute.

For each t ≥ 0 we set
AM (t) : = A(t)M(t)
CM (t) : = CM(t) and BM (t) := BM(t).

We consider the following perturbed system
ẋ(t) = AM (t)x(t), x(0) = x0,(58)

BM (t)x(t) = u(t),(59)
CM (t)x(t) = y(t),(60)

which we denote by ΣN,M (A,B,C) = ΣN (AM,BM,CM). Let B̃(t) be operators associated with
ΣM (A,B,C) provided by Definition 3.2-(ii). Then B̃M (t) := M−1(t)B̃(t) satisfies for each t ≥ 0 all
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properties listed in Definition 3.2-(ii). Moreover, the main operators associated with ΣM,N (A,B,C) are
given by {A(t)M(t) | t ≥ 0}, where D(A(t)M(t)) = M−1(t)(D ∩ ker(B)) for each t ≥ 0.

Lemma 4.7. The perturbed system ΣN,M (A,B,C) is (R,P, J)-scattering passive if and only if ΣN (A,B,C)
is (R,PM−1, J)-scattering passive.

Proof. For each t ≥ 0 we set

VM (t) := {(x, u) ∈ X × U |x ∈ D(AM (t)) and BM (t)x = u} .

Then, (x, u) ∈ VM (t) if and only if (M(t)x, u) ∈ V(t) for all t ≥ 0. Assume now that ΣN (A,B,C) is
(R,M−1P, J)-scattering passive and let (x, u) ∈ VM (t). Using Proposition 4.4 we obtain

2 Re
(
AM (t)x |P (t)x

)
= 2 Re

(
A(t)M(t)x |P (t)M−1(t)M(t)x(t)

)
≤ (R(t)u |BM(t)x)U − (CM(t)x(t) | J(t)CM(t)x(t))Y
= (R(t)u |BM (t)x)U − (CM (t)x | J(t)CM (t)x)Y .

This implies, again by Proposition 4.4, that ΣN,M (A,B,C) is (R,P, J)-scattering passive.
Conversely, assume that ΣN,M (A,B,C) is (R,P, J)-scattering passive. This means that ΣN (AM,BM,CM)
is (R,PM−1M,J)-scattering passive. Applying the first part of the proof yields that

ΣN (A,B,C) = ΣN,M−1(AM,BM,CM)

is (R,PM−1, J)-scattering passive. This completes the proof. �

In particular, the system ΣN,M (A,B,C) is (R,M, J)-scattering passive if and only if the unperturbed
system ΣN (A,B,C) is (R, I, J)-scattering passive. According to the above assumptions, we remark that
(x, y) is a classical solution of (58)-(60) if and only if x is a classical solution of (58)-(59).

Now we can formulate the first main result of this section.

Theorem 4.8. Assume that the following additional assumptions holds
(a) A : [0,∞)→ L(D, X) is strongly C1-continuous.
(b) The main operators A(t) : D ∩ ker(B)→ X, t ≥ 0 generate contraction C0-semigroups.
(c) B̃(·)u ∈ C2([0,∞);U) for each u ∈ U .

Then the perturbed system ΣN,M (A,B,C) is a NBCO-system on (X,U, Y ). Furthermore, if we de-
note by W the associated evolution family, then for each s ≥ 0 and (xs, u) ∈ X × C2([0,∞);U) with
(M(s)xs, u(s)) ∈ V(s) the system (58)-(60) has a unique classical solution (x, y) given by

x(t) = W (t, s)xs +
∫ t

s

W (t, r)A(r)B̃(r)u(r)dr −
∫ t

s

W (t, r) d
dr
[
B̃M (r)u(r)

]
dr, t ≥ s,

y(t) = CM (t)W (t, s)xs + CM (t)
∫ t

s

W (t, r)A(r)B̃(r)u(r)dr − CM (t)
∫ t

s

W (t, r) d
dr
[
B̃M (r)u(r)

]
dr, t ≥ s.

The system ΣN,M (A,B,C) is well-posed if in addition

(61) 2 Re(A(t)x0 |x0)X ≤ (R(t)u0 |Bx0)U − (Cx0 | J(t)Cx0)Y
for all t ≥ 0 and (x0, u0) ∈ V(t) where R = R∗ ∈ L∞Loc([0,∞);L(U)) and J = J∗ is uniformly coercive,
where

V = {(x, u) ∈ X × U |x ∈ D(A) and Bx = u} .

Proof. The first and the second assertion follow from Proposition 4.2 and Corollary 2.8, whereas the last
assertion follows from Lemma 4.7, Proposition 4.4 and Lemma 4.5. �

Next we consider the case where A(t) = L(t)A with L(t) is as in Assumption 4.6 and such that (A,B,C)
is an autonomous BCO-system. This implies that (L(t)A,B,C) is again an autonomous BCO-system
for each t ≥ 0 such that the associated operator B̃ is time-independent. In fact, if B̃ denotes the
operator associated with the autonomous BCO-system Σ(A,B,C), then it is easy to see that B̃ satisfies all
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properties listed in Definition 3.2-(ii) corresponding to (L(t)A,B,C).We consider the following perturbed
system

ẋ(t) = L(t)AM(t)x(t), x(0) = x0,(62)
BM (t)x(t) = u(t),(63)
CM (t)x(t) = y(t),(64)

which we denote by ΣN,M,L(A,B,C) = ΣN (LAM,BM,CM).
Clearly, the main operators associated with ΣM,N,L(A,B,C) are given by {L(t)AM(t) | t ≥ 0}.

Theorem 4.9. Assume that the main operators A : D∩ker(B)→ X generate a contraction C0-semigroup
on X. Then the perturbed system ΣN,M,L(A,B,C) is a NBCO-system on (X,U, Y ). Furthermore, if we
denote by W the associated evolution family, then for each s ≥ 0 and (xs, u) ∈ X × C2([0,∞);U) with
(M(s)xs, u(s)) ∈ V(s) the system (62)-(64) has a unique classical solution (x, y) given by

x(t) = W (t, s)xs +
∫ t

s

W (t, r)L(r)AB̃u(r)dr −
∫ t

s

W (t, r) d
dr
[
M−1(r)B̃u(r)

]
dr, t ≥ s,

y(t) = CM (t)W (t, s)xs + CM (t)
∫ t

s

W (t, r)L(r)AB̃u(r)dr − CM (t)
∫ t

s

W (t, r) d
dr
[
M−1(r)B̃u(r)

]
dr, t ≥ s.

The system ΣN,M,L(A,B,C) is well-posed if in addition
(65) 2 Re(L(t)Ax0 |x0)X ≤ (R(t)u0 |Bx0)U − (Cx0 | J(t)Cx0)Y
for all t ≥ 0 and (x0, u0) ∈ V where R = R∗ ∈ L∞Loc([0,∞);L(U)) and J = J∗ is uniformly coercive.

Proof. The first and the second assertion follow from Proposition 4.2 and Corollary 2.9, whereas the last
assertion follows from Lemma 4.7, Proposition 4.4 and Lemma 4.5. �

Remark 4.10. Theorem 4.9 is not a special case of Theorem 4.8 since we do not assume that P (t)A
generates a contractive C0-semigroup on X.

5. Mild solutions for NBC-systems

As mentioned in Section 3, for an autonomous BCO-system Σ(A,B,C), for smooth input u and initial
data x0, the classical solution of the corresponding boundary control system can be formulated as

(66) x(t) = T (t)xs +
∫ t

s

T−1(t− s)Bu(s)ds, t ≥ s.

We recall that B ∈ L(U,X−1) is given by (32). If xs ∈ X and u ∈ L2([0,∞);U), then the above formula
makes sense and it is called the mild solution in X−1 of (28)-(30). Moreover, it is well known that the
mild solution belongs to C([0,∞);X) if B is admissible for the semigroup (T (t))t≥0, i.e., if for some τ > 0
one has ∫ τ

s

T−1(τ − s)Bu(s)ds ∈ X,

see, e.g., [33, Proposition 4.2.4].
The main purpose of this section is to extend the conceps of mild solutions to non-autonomous boundary
control and observation systems ΣN (A,B,C). In contrast to the autonomous case, this is more delicate.
In fact, firstly we remark that the extrapolation spaces X−1,t associated with the family {A(t) | t ≥ 0}
of the main operators are in general time-dependent. Secondly, in contrast to semigroups, it is not clear
whether the evolution family U generated by {A(t) | t ≥ 0} can be extended to the extrapolation space
even if the spaces X−1,t are constant. However, if the latter condition holds, then we can still use the
adjoint problem, i.e, A∗(t), t ≥ 0, and the associated backward evolution family to extend U to L(X−1).
The idea to use a duality argument can be found in [7, 25, 29] to study some classes of non-autonomous
systems.
We will adopt here the notations of the previous sections. Let ΣN (A,B,C) be a NBCO-system. Then the
main operators {A(t) | t ≥ 0} generate, by definition, an evolution family U = {U(t, s) | (s, t) ∈ ∆} with



WELL-POSEDNESS FOR NON-AUTONOMOUS PASSIVE BOUNDARY CONTROL SYSTEMS 15

regularity space Yt, t ≥ 0. We restrict ourselves to case where {A(t) | t ≥ 0} have a common extrapolation
space X−1, i.e.,

(67) X−1 := X−1(t) = X−1(s) for all t, s ≥ 0.

According to [33, Proposition 2.10.2], (67) holds if and only if D(A∗(t)) = D(A∗(s)) for t, s ∈ [0,∞)
and the corresponding graph norms are locally uniformly equivalent. In fact, X−1(t) is the dual space
of D(A∗(t)) with respect to the pivot space X. This condition holds, if for instance A(t) = AM(t) or
A(t) = A+M(t) and M ∈ C1([0,∞);L(X)).
In the following we denote D∗ := D(A∗(0)) equipped with the graph norm and by 〈·, ·〉 the duality
between X−1 and D∗. Recall from (32)

(68) B(t) = A(t)B̃(t)−A−1(t)B̃(t), t ≥ 0.

Proposition 5.1. Assume that A∗ := {A∗(t) | t ≥ 0} generates a backward evolution family U∗. Then
U(t, s) has a unique extension U−1(t, s) ∈ L(X−1) for each (t, s) ∈ ∆ and for each T > 0 there is cT > 0
such that

(69) sup
0≤s≤t≤T

‖U−1(t, s)‖L(X−1) < cT .

Moreover, if the assumptions of Proposition 4.2 hold, then each classical solution x of the boundary control
system (42)-(43) satisfies

x(t) = U(t, s)xs +
∫ t

s

U−1(t, r)B(r)u(r)dr, t ≥ s ≥ 0.(70)

Proof. By [33, Proposition 2.9.3-(b)] we obtain that for each (t, s) ∈ ∆ the operator U(t, s) has a unique
extension U−1(t, s) ∈ L(X−1) since [U(t, s)]∗D∗ = U∗(t, s)D∗ ⊂ D∗. Next, similar to the proof of [29,
Proposition 2.7-(c)] we show the uniform boundedness of U−1 on compact intervals. Next, we claim that
for each y ∈ D∗, x ∈ X−1 we have

(71) 〈U−1(t, s)x, y〉 = 〈x, U∗(t, s)y〉

In fact, this equality holds for x ∈ X by Lemma 2.12-(ii) since

〈x, U∗(t, s)y〉 = (x |U∗(t, s)y) = (U(t, s)x | y) = 〈U−1(t, s)x, y〉.

Remark that U∗(t, s)y ∈ D∗, thus the claim follows since X is dense in X−1.
Using again Lemma 2.12 and (71), we obtain for each y ∈ D∗

d
ds 〈U(t, s)B̃(s)u(s), y〉 = d

ds (B̃(s)u(s), U∗(t, s)y)

= ( d
ds [B̃(s)u(s)], U∗(t, s)y)− (B̃(s)u(s), A∗(s)U∗(t, s)y)

= ( d
ds [B̃(s)u(s)], U∗(t, s)y)− 〈U−1(t, s)A−1(s)B̃(s)u(s), y〉

= (U(t, s) d
ds [B̃(s)u(s)], y)− 〈U−1(t, s)A−1(s)B̃(s)u(s), y〉.

Integrating over [s, t], we obtain

(72)
∫ t

s

U−1(t, r)A−1(r)B̃(r)u(r)dr = −B̃(t)u(t) + U(t, s)B̃(s)u(s) +
∫ t

s

U(t, r) d
dr [B̃(r)u(r)]dr.

Inserting this equality in (49), we obtain that a classical solution x of (42)-(43) satisfies (70). �

If the assumptions of Proposition 5.1 hold, then for xs ∈ X and u ∈ L2
Loc([0,∞);U) we see that (70) is

well defined with value in X−1 provided B(·)u(·) ∈ L1
Loc([0,∞);X−1). In fact, (69) guaranties that the

integral term on the right hand side of (73) is well defined. Thus the following definition makes sense.
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Definition 5.2. Let ΣN (A,B,C) be a NBCO-system and let U and {B(t) | t ≥ 0} the associated evolution
family and control operators, respectively. Let (xs, u) ∈ X × L2

Loc([0,∞);U). If U(t, s) has a unique
extension U−1(t, s) ∈ L(X−1) for each (t, s) ∈ ∆ such that U−1(t, ·)B(·)u(·) ∈ L1

Loc([0,∞);X−1), then
the function

x(t) = U(t, s)xs +
∫ t

s

U−1(t, r)B(r)u(r)dr, t ≥ s ≥ 0,(73)

is called the mild solution of (42)-(44) in X−1. Further, (73) is called a mild solution of (42)-(44) (in
X), if in addition

Φt,su :=
∫ t

s

U−1(t, r)B(r)u(r)dr ∈ X, for all (t, s) ∈ ∆,(74)

and x ∈ C([s,∞);X).

This definition is related to the notion of admissibility for non-autonomous linear systems. More precisely,
recall that a family {B(t) | t ≥ 0} ⊂ L(U,X−1) is L2-admissible for a given evolution family U that admit
an extension to L(X−1) if U−1(t, ·)B(·)u(·) ∈ L1

Loc([0,∞);X−1), (74) holds and for each T > 0 there
exists cT > 0 such that

(75)
∥∥∥∫ t

s

U−1(t, r)B(r)u(r)dr
∥∥∥2

X
≤ cT

∫ t

s

‖u(r)‖2
Udr

for each u ∈ L2
Loc([0,∞);U) and all 0 ≤ s ≤ t ≤ T [28, Definition 3.3]. For L2-admissible control

operators we have that (t, s) 7→ Φt,su is continuous on ∆ with value in X [28, Proposition 3.5-(2)].

Proposition 5.3. Assume that A∗ := {A∗(t) | t ≥ 0} belongs to the Kato-class and {B(t) | t ≥ 0} is
L2-admissible. Then for each (xs, u) ∈ X×L2

Loc([0,∞);U) with B(·)u(·) ∈ L1
Loc([0,∞);X−1) the system

(42)-(44) has a unique mild solution in X.

Proof. The proof follows from Lemma 2.12-(i) and Proposition 5.1. �

If ΣN (A,B,C) is a well-posed NBCO-system and the classical solutions is given by (70), then the corre-
sponding family {B(t) | t ≥ 0} is L2-admissible provided

U−1(t, ·)B(·)L2
Loc([0,∞);U) ⊂ L1

Loc([0,∞);X−1).

Thus the following corollary follows from Proposition 5.3, Lemma 4.5 and (69).

Corollary 5.4. Assume ΣN (A,B,C) is (R,P, J)-scattering passive such that R ∈ L∞Loc([0,∞);L(U)) and
J, P are uniformly coercive. In addition, we assume that A∗ := {A∗(t) | t ≥ 0} belongs to the Kato-class.
Then for each (xs, u) ∈ X × L2

Loc([0,∞);U) with B(·)u(·) ∈ L1
Loc([0,∞);X−1) the system (42)-(44) has

a unique mild solution in X.

Finally, if Assumption 4.6 holds such that A(t) generates contractive C0-semigroup on X for each t ≥ 0
then we can follow [29, Section 2, page 8] to deduce that the extrapolation spaces corresponding to
A(t)M(t), t ≥ 0 can be all identified with X−1 and that [A(t)M(t)]−1 = A−1(t)M(t) for every t ≥ 0.

Corollary 5.5. Assume that Assumption 4.6 holds such that the adjoint operators {A(t)∗ | t ≥ 0} have a
common domain. Then the perturbed system (58)-(59) has a unique mild solution in X if the unperturbed
system ΣN,id(A,B,C) is (R, I, J)-scattering passive with R ∈ L∞Loc([0,∞);L(U)) and J, P are uniformly
coercive.

Proof. The proof is an easy consequence of Corollary 5.4 and Lemma 4.7. �
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6. Application to non-autonomous Port-Hamiltonian systems

Let N,n ∈ N be fixed and let X := L2([a, b];Kn) where K = R or C. In this section we investigate
the well-posedness of the linear non-autonomous port-Hamiltonian systems of order N ∈ N, given by the
boundary control and observation system

∂

∂t
x(t, ζ) =

N∑
k=1

Pk(t) ∂
k

∂ζk
[
H(t, ζ)x(t, ζ)

]
+ P0(t, ζ)H(t, ζ)x(t, ζ), t ≥ 0, ζ ∈ (a, b)(76)

H(0, ζ)x(0, ζ) = x0(ζ), ζ ∈ (a, b),(77)
u(t) = WB,1τ(Hx)(t), t ≥ 0,(78)

0 = WB,2τ(Hx)(t), t ≥ 0,(79)
y(t) = WCτ(Hx)(t), t ≥ 0.(80)

Here τ denotes the trace operator τ : HN ((a, b);Kn)→ K2Nn defined by
τ(x) :=

(
x(b), x′(b), · · · , xN−1(b), x(a), x′(a) · · · , xN−1(a)

)
,

Pk(t) is n × n matrix for all t ≥ 0, k = 0, 1, · · · , N , H(t, ζ) ∈ Kn×n for all t ≥ 0 and almost every
ζ ∈ [a, b], WB,1 is a m × 2nN -matrix, WB,2 is (nN −m) × 2nN -matrix and WC is a d × 2nN -matrix.
Finally, u(t) ∈ U := Km denotes the input and y(t) ∈ Y := Kd is the output at time t.

Set WB :=
î
WB,1
WB,2

ó
, Σ := [ 0 I

I 0 ] and for each t ≥ 0 we set

Q(t) :=


P1(t) P2(t) · · · PN (t)
−P2(t) −P3(t) · · · −PN (t) 0

... . .. . ..
...

... . .. . ..
...

(−1)N−1PN (t) 0 · · · · · · 0

 .

Rext(t) :=
î
Q(t) −Q(t)

I I

ó
and WB(t) := WBR

−1
ext(t),WC(t) := WBR

−1
ext(t).

In this section we assume the following assumptions:
Assumption 6.1.

• WB has full rank and WB(t)ΣW ∗B(t) ≥ 0 for all t ≥ 0.
• PN (t) is invertible and P ∗k (t) = (−1)k−1Pk(t) for all k ≥ 1, t ≥ 0,
• Pk ∈ C1([0,∞);L∞(a, b;Cn×n)) for all t ≥ 0 and k = 0, 1, · · ·N .
• H ∈ C2([0,∞);L∞([a, b];Cn×n)) and there exist m,M ≥ 0 such that

m ≤ H(t, ξ) = H∗(t, ξ) ≤M, a.e. ξ ∈ [a, b], t ≥ 0.
Under these assumptions, the port-Hamiltonian system (76)-(80) can be written as a non-autonomous
boundary control and observation system in the sense of Definition 4.1-(ii). In fact, on the Hilbert space
X we consider the (maximal) port-Hamiltonian operators

(81) A(t)x =
N∑
k=0

Pk(t) ∂
k

∂ζk
x with domain D(A(t)) =

{
HN ([a, b];Kn) |WB,2τ(x) = 0

}
Then (A(t), D(A(t))) is a closed and densely defined operator and its graph norm ‖ ·‖D(A(t)) is equivalent
to the Sobolev norm ‖ · ‖HN ((a,b);Kn) as PN (t) is invertible. Moreover, for each t ≥ 0 the operator
A(t) : D(A(t)) ⊂ X → X defined by

A(t)x = A(t)x x ∈ D(A(t))(82)

D(A(t)) =
{
x ∈ HN ((a, b);Kn) |WBτ(x) = 0

}
(83)

generates a contractive C0-semigroup on X. Further, we define the input operator B and output operator
C a follows

B : HN ((a, b);Kn)→ U, Bx := WB,1τ(x),



18 BIRGIT JACOB1 AND HAFIDA LAASRI2

and
C : HN ((a, b);Kn)→ Y, Cx := WCτ(x).

The operator C is a linear and bounded operator from D(A(t)) to Y , since the trace operator τ is bounded
and the norm graph norm of D(A) is equivalent to the HN ((a, b);Kn)-norm. Moreover, Lemma 6.2 below
shows that there exists an operator B̃ ∈ L(U,X) which is independent of t ≥ 0 satisfying the assumption
(ii) of Definition 3.2. The proof of this fact follows by a minor modification of the proof of [17, Theorem
11.3.2] and that of [2, Lemma 3.2.19] (see also the second step of the proof of [22, Theorem 4.2]).

Lemma 6.2. There exists a linear operator B̃ ∈ L(Km, X) such that B̃Km ⊂ D(A(t)), A(t)B̃ ∈
L(Km, X) for each t ≥ 0 and BB̃ = IKm = IU .

Proof. Since the nN × 2nN -matrix WB has full rank nN there exists a 2nN × nN -matrix S such that

(84) WBS =
ï
WB,1
WB,2

ò
S =

ï
IKm 0

0 0

ò
.

In fact, one can choose S as follows

S = W ∗B(WBW
∗
B)−1

ï
IKm 0

0 0

ò
.

Let us write S =

 S11 S12
S21 S22
· ·
· ·
· ·

S(2nN)1 S(2nN)2

 =: [ S̃1 S̃2 ] , where Sj1, j = 1, · · · , 2nN, are 1×m matrices.

Next, let {ej}2Nn
j=1 be the standard orthogonal basis in K2nN . For each j = 1, 2, · · · 2nN we take fj ∈

HN (a, b;Kn) such that τ(fj) = ej [37, Lemma A.3], and we define the operator B̃ ∈ L(Km, X) by

(85) B̃u :=
2nN∑
j=1

Sj1ufj u ∈ Km.

Thus B ∈ L(Km, HN ((a, b);Kn)). Furthermore, (84) implies that WB,2S̃1 = 0 and thus

WB,2τ(B̃u) = WB,2

2nN∑
j=1

Sj1uτ(fj)

= WB,2

2nN∑
j=1

Sj1uej = WB,2S̃1u = 0

for every u ∈ Km. We deduce that B̃Km ⊂ D(A(t)) for all t ≥ 0. It follows that Σ(A(t),B,C) is for each
t ≥ 0 a BCO-system on (L2([a, b];Kn),Km,Kd). Using (84) once more, we obtain that

BB̃u = WB,1τ(B̃u) = WB,1S̃1u = u

for all u ∈ Km. This completes the proof. �

Moreover, if in addition the following assumption holds

Assumption 6.3.
• nN = m = d (and thus WB = WB,1 or equivalently WB,2 = 0),
• R = {R(t) | t ≥ 0} and J = {J(t) | t ≥ 0} are bounded and self adjoint operators on Kn,
• ReP0(t, ζ) ≤ 0 for all t ≥ 0 and a.e. ζ ∈ [a, b],
• the matrix WC has full rank,

then we obtain:

Lemma 6.4. Under assumptions 6.3 and 6.1 for each t ≥ 0 the autonomous port-Hamiltonian system
Σ(A(t),B,C) is (R(t), I, J(t))-scattering passive if

(86) PWB ,WC
(t) :=

( ï
WB(t)
WC(t)

ò
Σ
[
W ∗B(t) W ∗C(t)

] )−1
≤
ï
2R(t) 0

0 −2J(t)

ò
.
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Proof. Using [2, Lemma 3.2.13] we obtain

(87) Re(A(t)x |x) = Re(Rext(t)τ(x) |ΣRext(t)τ(x)) + Re(P0(t)x |x).

Inserting ï
WBτ(x)
WCτ(x)

ò
=
ï
WB

WC

ò
R−1
ext(t)Rext(t)τ(x) =

ï
WB(t)
WC(t)

ò
Rext(t)τ(x)

into (87) we obtain that

2 Re(A(t)x |x) ≤
〈 ï
WBτ(x)
WCτ(x)

ò ∣∣∣ [WB(t)∗ WC(t)∗
]−1 Σ

ï
WB(t)
WC(t)

ò−1 ï
WBτ(x)
WCτ(x)

ò〉
K2nN

t ≥ 0,(88)

holds for every x ∈ HN ([a, b];Kn), since ReP0(t, ζ) ≤ 0. Now the claim follows by Lemma 3.6. �

Finally, the assumption on H ensures that the family of operators M(t) := H(t)(·) := H(t, ·) as matrix
multiplication operators on L2(a, b;Kn) satisfies all assumptions of Section 4.3.

Our abstract results in the previous sections hence yield the following main result.

Theorem 6.5. If Assumption 6.1 holds, then the port-Hamiltonian system (76)-(80) is a non-autonomous
boundary control and observation system. Furthermore, there exists a unique evolution family W in
L2([a, b];Kn) such that for each x0 ∈ HN ((a, b);Kn) and u ∈ C2([a, b];Km) with, WB,1τ(x0) = u(0) and
WB,2τ(x0) = 0 we have

x(t) = W (t, 0)H−1(0, ζ)x0 +
∫ t

0
W (t, r)A(r)B̃u(r)dr+

∫ t

0
W (t, r)H−1(r)Ḣ(r)H−1(r)B̃u(r)dr

−
∫ t

0
W (t, r)H−1(r)B̃u̇(r)dr, t ≥ 0,

y(t) = CH(t)W (t, 0)H−1(0, ζ)x0+C

∫ t

0
H(t)W (t, r)

[
A(r)−H−1(r)Ḣ(r)H−1(r)

]
B̃u(r)dr

− C

∫ t

0
H(r)W (t, r)H−1(r)B̃u̇(r)dr, t ≥ 0.

is the unique classical solution of (76)-(80). If in addition Assumption 6.3 and (86) hold, then (76)-(80)
is (R,H, J)-scattering passive and the classical solution (x, y) satisfies the balance inequality

(89) m‖x(t)‖2 +
∫ t

s

(y(r) | J(r)y(r))dr ≤ ct,se
1
m

∫ t
s
‖Ḣ(r)‖dr

[ ∫ t

s

(u(r) |R(r)u(r))dr + ‖x(s)‖2
]

where ct,s = max{1, max
r∈[s,t]

‖H(r)‖}. Moreover, (76)-(80) is well posed if in addition J is uniformly coercive

and R ∈ L∞Loc([0,∞);L(Kn)).

Finally, we give a result on the existence of mild solution of the non-autonomous port-Hamiltonian system.
For that we assume that nN = m = d. Then it is known [22, Lemma A1] (see also [17, Section 7.3]) that
there exist a matrix V ∈ KnN×nN and an invertible matrix S ∈ KnN×nN such that

WB = S
[
I + V I − V

]
with V V ∗ ≥ I. Further, we have kerWB = Ran

[
I−V
−I−V

]
. For each t ≥ 0, the adjoint operator A∗(t) :

D(A∗(t))→ X of (82)-(83) is given by

A∗(t)x = −A(t)x x ∈ D(A∗(t))(90)

D(A∗(t)) =
{
x ∈ HN (a, b;Kn) |

[
I − V ∗ −I − V ∗

] ïQ(t) 0
0 −Q(t)

ò
τ(x) = 0

}
(91)

see e.g., [36, Theorem 2.24], [2, Proposition 3.4.3]. We deduce that the domain of A∗(t) are time-
independent if for instance all matrices Pk, k = 1, 2, · · ·N are constant. Thus using Corollary 5.5 we
obtain the followin proposition.
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Proposition 6.6. Assume that Assumption 6.1 and Assumption 6.3 hold with Pk, k = 1, 2, · · ·N are con-
stant and J is uniformly coercive and R ∈ L∞Loc([0,∞);L(Kn)). If (86) holds, then the non-autonomous
system (76)-(79) has a unique mild solution.

We closed this section by some examples of physical systems which can be modelled as a non-autonomous
port-Hamiltonian system. Then the existence of classical and mild solutions as well as well-posedness
can be checked by a simple application of the abstracts results presented in this section. Here we will
present just two relevant examples, however various other control systems fit into the framework of
port-Hamiltonian system and into the general class of NBCO-systems.

6.1. Vibrating string. Let us consider the model of vibrating string on the compact interval [a, b]. The
string is fixed at the left end point a and at the right end point b a damper is attached. The Young’s
modulus and the mass density of the string are assumed to be time- and spatial dependent. Let us denote
by ω(t, ζ) the vertical position of the string at position ζ ∈ [a, b] and time t ≥ 0. Then the evolution of
the controlled vibrating string can be modelled by a non-autonomous wave equation of the form

∂

∂t

(
α(t)ρ(t, ζ)∂w

∂t
(t, ζ)

)
= 1
α(t)

∂

∂ζ

(
T (t, ζ)∂w

∂ζ
(t, ζ)

)
, ζ ∈ [a, b], t ≥ 0,(92)

T (b, t)∂w
∂ζ

(t, b) + kα(t)∂w
∂t

(t, b) = u1(t),(93)

∂w

∂t
(t, a) = u2(t).(94)

We assume that k ≥ 0 and T, ρ ∈ C2([0,∞);L∞(a, b)) ∩ Cb([0,∞);L∞(a, b)) such that for some m > 0,
for a.e ζ ∈ [a, b] and all t ≥ 0 we have m−1 ≤ ρ(t, ζ), T (t, ζ) ≤ m, moreover, α ∈ C1([0,∞)) is strictly
positive. We take as state variable the momentum-strain couple x := (αρ∂w∂t ,

∂w
∂ζ ). Then the first equation

can be equivalently written as follows

(95) ∂

∂t
x(t, ζ) = A(t)H(t, ζ)x(t, ζ)

where
A(t) :=

ï
0 1/α(t)

1/α(t) 0

ò
∂

∂ζ
and H(t, ζ) :=

ñ 1
ρ(t,ζ) 0

0 T (t, ζ)

ô
.

Indeed, we have

A(t)H(t, ζ)x(t, ζ) =
ï

0 1/α(t)
1/α(t) 0

ò
∂

∂ζ

ñ 1
ρ(t,ζ) 0

0 T (t, ζ)

ô ñ
α(t)ρ(t, ζ)∂w∂t (t, ζ)

∂w
∂ζ (t, ζ)

ô
=
ï

0 1/α(t)
1/α(t) 0

ò
∂

∂ζ

ñ
α(t)∂w∂t (t, ζ)
T (t, ζ)∂w∂ζ (t, ζ)

ô
=
ñ

1/α(t) ∂∂ζ
(
T (t, ζ)∂w∂ζ (t, ζ)

)
∂
∂ζ

∂w
∂t (t, ζ)

ô
=
[
∂
∂t

(
α(t)ρ(t, ζ)∂w∂t (t, ζ)

)
∂
∂t
∂w
∂ζ (t, ζ)

]
= ∂

∂t
x(t, ζ).

Moreover, the boundary conditions (94)-(93) with u = (u1, u2) = 0 can be equivalently written as follows

WB

ï
H(t, b)x(t, b)
H(t, a)x(t, a)

ò
:=
ï
k 1 0 0
0 0 1 0

ò ï
H(t, b)x(t, b)
H(t, a)x(t, a)

ò
=
ï
0
0

ò
The 2× 4 matrix WB has full rank. Next,

WB(t) = WB


0 α(t) 1 0
α(t) 0 0 1

0 −α(t) 1 0
−α(t) 0 0 1

 =
ï
α(t) kα(t) k 1

0 −α(t) 1 0

ò
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and WB(t)ΣW ∗B(t) =
ï
4kα(t) 0

0 0

ò
≥ 0. The corresponding matrices WB,1,WB,2 and the corresponding

boundary operator B can be defined as follows:
Case u2 = 0 : WB,2 =

[
0 0 1 0

]
and

B :HN ((a, b);K2)→ U = K,

Bx : = WB,1τ(x) :=
[
k 1 0 0

] ïx(b)
x(a)

ò
.

Case u2 6= 0 : WB,2 = 0 and

B : HN ((a, b);K2)→ U = K2, Bx :=
ï
k 1 0 0
0 0 1 0

ò ï
x(b)
x(a)

ò
For each S, V ∈ K2×2 such that S is invertible and V V ∗ ≥ I we can we take

(96) y(t) = S
[
I + V I− V

] ïH(t, b)x(t, b)
H(t, a)x(t, a)

ò
as an output of (94)-(93). Thus, we are in the position to apply Theorem 6.5. However, Proposition 6.6
concerning mild solutions can be applied only if α(t) ≡ α > 0 is constant.

Proposition 6.7. Under the conditions on the physical parameters T, α, ρ, k listed above we have:
(1) The abstract linear system associated with the controlled vibrating string (92), (94) with output

(96) yields a non-autonomous boundary control and observation system on (L2([a, b];K2),K1,K2)
if u2 = 0, i.e., when the string is clamped at the end point a, and in (L2([a, b];K2),K2,K2) if
u2 6= 0.

(2) Let ω0, ω1 ∈ H1(a, b;K) be such that kω0(b) + ω1(b) = u1(0) and ω0(a) = u2(0). Then (92)-(94)
with output equation (96) and initial conditions

α(0)ρ(0, ·)∂w
∂t

(0, ·) = ω0,
∂ω

∂t
(0, ·) = ω1

has a unique solution (ω, y) such that y ∈ C([0,∞);K2) and

t 7−→
ñ

α(t)∂w∂t
T (t, ·)∂w(t,·)

∂ζ

ô
∈ C1((0,∞);L2(a, b;K2)

)
∩ C

(
[0,∞);L2(a, b;K2)

)
.

(3) Let u2 6= 0. Let R(t), J(t) be self adjoint 2 × 2-matrices such that R ∈ L∞Loc([0,∞);L(K2)) and
c−1

0 ≤ J(t) ≤ c0 for all t ≥ 0 and some constant c0 > 0. Choose V, S in (96) such that (86)
holds for all t ≥ 0. Then the linear system associated with the non-autonomous controlled vibrat-
ing string (92)-(94) and (96) is a well-posed non-autonomous boundary control and observation
system.

(4) Assume that α(t) ≡ α > 0 is constant such that the assumptions in (3) hold. Let ω0, ω1 ∈
L2(a, b;C). Then (92)-(94) with initial conditions

α(0)ρ(0, ·)∂w
∂t

(0, ·) = ω0,
∂ω

∂t
(0, ·) = ω1

has a unique (mild) solution ω such that

t 7−→
ñ

α(t)∂w∂t
T (t, ·)∂w(t,·)

∂ζ

ô
∈ C

(
[0,∞);L2(a, b;K2)

)
.

6.2. Timoschenko beam. Consider the following model of the Timoshenko beam with time-dependent
coefficient and time dependent boundary control

∂

∂t

(
ρ̃(t)ρ(t, ζ)∂w

∂t
(t, ζ)

)
= 1
ρ̃(t)

∂

∂ζ

[
K(t, ζ)

( ∂
∂ζ
w(t, ζ) + φ(t, ζ)

)]
(97)

∂

∂t

(
Ĩρ(t)Iρ(t, ζ)∂φ

∂t
(t, ζ)

)
= 1
Ĩρ(t)

∂

∂ζ

(
EI(t, ζ)∂

2

∂ζ
φ(t, ζ)

)
+ 1
ρ̃(t)K(t, ζ)

( ∂
∂ζ
w(t, ζ)− φ(t, ζ)

)
(98)
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∂w

∂t
(t, a) = u1, t ≥ 0(99)

∂φ

∂t
(t, a) = u2, t ≥ 0(100)

K(t, b)
[∂w
∂ζ

(t, b)− φ(t, b)
]

+ α1ρ̃(t)∂w
∂t

(t, b) = u3, t ≥ 0(101)

EI(t, b)∂φ
∂ζ

(t, b) + α2Ĩρ(t)
∂φ

∂t
(t, b) = u4, t ≥ 0(102)

for some positive constants α1, α2 ≥ 0. Here ζ ∈ (a, b), t ≥ 0, w(t, ζ) is the transverse displacement
of the beam and φ(t, ζ) is the rotation angle of the filament of the beam. We assume that K, ρ, EI,
Iρ ∈ C2([0,∞);L∞(a, b))∩Cb([0,∞);L∞(a, b)) and there exists m > 0 such that for a.e ζ ∈ [a, b] and all
t ≥ 0 we have

m−1 ≤ ρ(t, ζ),K(t, ζ), EI, Iρ ≤ m,
where ρ(t, ζ) and Iρ are strictly positive. Moreover, ρ̃, Ĩρ ∈ C1([0,∞)) are strictly positive.
Indeed, taking as state variable x := (∂w∂ζ − φ, ρ̃ρ

∂w
∂t ,

∂φ
∂ζ , ĨρIρ

∂φ
∂t ) one can easily see that (97)-(98) can be

written as a system of the form (76)-with

P1 =


0 ρ̃−1 0 0
ρ̃−1 0 0 0
0 0 0 Ĩ−1

ρ

0 0 Ĩ−1
ρ 0

, P0 =


0 0 0 −Ĩ−1

ρ

0 0 0 0
0 0 0 0
Ĩ−1
ρ 0 0 0

 and H =


K 0 0 0
0 ρ−1 0 0
0 0 EI 0
0 0 0 I−1

ρ

.
The boundary condition can be formulated as follows

0
0
0
0

 =


0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
1 α1 0 0 0 0 0 0
0 0 1 α2 0 0 0 0

 ïH(t, b)x
H(t, a)x

ò
=: WB

ï
H(t, b)x
H(t, a)x

ò
Thus WB has full rank and the corresponding 4× 8 matrix WB(t) is given by

WB(t) = WB

ï
P−1

1 (t) I
−P−1

1 (t) I

ò
=


−ρ̃(t) 0 0 0 0 1 0 0

0 0 −Ĩρ(t) 0 0 0 0 1
α1ρ̃(t) ρ̃(t) 0 0 1 α1 0 0

0 0 α2Ĩρ(t) Ĩρ(t) 0 0 1 α2

 .
Thus WB(t)ΣW ∗B(t) =

ñ 0 0 0 0
0 0 0 0
0 0 4α1ρ̃(t) 0
0 0 0 α2Ĩρ(t)

ô
≥ 0. As in Example 6.1, the output equation can be choosing

similarly as (96). Thus the above Timoshenko beam fit into the framework of port-Hamiltonian system
and thus one obtain a similar results to that presented in Proposition 6.7.
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