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Abstract

We consider the well-posedness of a class of hyperbolic partial differential equa-
tions on a one dimensional spatial domain. This class includes in particular infinite-
dimensional networks of transport, wave and beam equations, or even combinations
of these. Equivalent conditions for contraction semigroup generation are derived.
In the first part we assume a finite interval and in the second part, we consider
partial differential equations on the semi-axis.

Keywords: C0-semigroups, contraction semigroup, hyperbolic partial differential
equations, port-Hamiltonian differential equations, networks of partial differential equa-
tions.
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1 Introduction

We consider on an interval I a system of partial differential equations of the following
form

∂x

∂t
(ζ, t) =

(
N∑
k=0

Pk
∂k

∂ζk

)
(H(ζ)x(ζ, t)), ζ ∈ I, t ≥ 0, (1)

x(ζ, 0) =x0(ζ),

where PN is an invertible operator on a Hilbert space H and Pk ∈ L(H), k = 0, · · · , N ,
with P ∗k = (−1)k+1Pk, k = 1, · · · , N . H(ζ) is a positive operator on H for a.e. ζ ∈ I
satisfying H,H−1 ∈ L∞(I;L(H)). Thereby, the interval I is either a finite interval
or a semi-axis. Without lost of generality we consider the finite interval [0, 1] and the
semi-axis [0,∞). This class of partial differential equations covers coupled wave and
beam equations and in particular infinite networks of these equations. There has been
enormous development in the study of the Cauchy problem (1) in the case of a finite-
dimensional Hilbert space H and a finite interval I, see for example [BaCo16, En13,
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JaZw12, LeZwMa05, VaMa02, Vi07] and the references therein. These systems are also
known as port-Hamiltonian systems, Hamiltonian partial differential equations or systems
of linear conservation laws. In particular, contraction semigroup generation has been
studied in [Au16, AuJa14, JaMoZw15, JaZw12, LeZwMa05]. In this paper we aim to
generalize these results to the infinite-dimensional situation and to the semi-axis. In order
to guarantee unique solutions of equation (1), we have to impose boundary conditions,
which will be of the form

ŴB(Φ(Hx))(·, t) = 0. (2)

In the case of the finite interval I = [0, 1], we assume ŴB ∈ L(HN ×HN , HN ) and that
Φ is given by

Φ :WN,2(I;H)→ H2N , Φ(x) := [Φ1(x),Φ0(x)],

where Φi(x) :=
[
x(i), . . . , d

N−1x
dζN−1 (i)

]
for i ∈ {0, 1} and WN,2(I;H) denotes the Sobolev

space of order N . If I = [0,∞), then ŴB ∈ L(HN , H̃N ), where H̃ is a subspace of H,
and Φ is given by

Φ :WN,2(I;H)→ HN , Φ(x) := Φ0(x).

Clearly, whether or not equation (1) possesses unique and non-increasing solutions depend
on the boundary conditions, or equivalently on the operator ŴB . The partial differential
equation (1) with the boundary conditions (2) can be equivalently written as the abstract
Cauchy problem

ẋ(t) = AHx(t), x(0) = x0,

where A is a linear operator on the Hilbert space X := L2(I;H) given by

Ax :=

(
N∑
k=0

Pk
∂k

∂ζk

)
(x), x ∈ D(A), (3)

D(A) :=
{
x ∈ WN,2(I;H) | ŴBΦ(x) = 0

}
. (4)

We equip X with 〈·, ·〉L2 , the standard scalar product of L2(I;H). For convenience, we
often write 〈·, ·〉 instead.

The aim of the paper is to give equivalent conditions for the fact that AH generates
a contraction semigroup on X. If I = [0, 1], then under a weak condition, we show
that AH generates a contraction semigroup if and only if the operator A is dissipative.
Moreover, equivalent conditions in terms of the operator ŴB are presented. We note
that the mentioned weak condition is in particular satisfied if the Hilbert space H is
finite-dimensional. However, even if H is finite-dimensional, our result contains new
equivalent conditions for the contraction semigroup characterization [AuJa14]. For the
case I = [0,∞), the contraction semigroup property has been shown for some specific
examples [EnNa99, I.4.16], [MuNoSe16], however, we are not aware of any general result.
If I = [0,∞), N = 1 and H = Cd or Rd, we provide a characterization of the contraction
semigroup property of the operator AH. Again AH generates a contraction semigroup
if and only if the operator A is dissipative. The main difference to the case I = [0, 1]
is that the number of boundary conditions depends on P1. We conclude the paper with
some examples to illustrate our results.
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2 Main results

In this section, we formulate the main results of the paper for both cases I = [0, 1] and
I = [0,∞). The proof of all theorems and corollaries are given in Sections 3 and 4. We
define

Q = (Qij)1≤i≤N
1≤j≤N

=

{
(−1)i−1Pi+j−1 if i+ j ≤ N + 1

0 else.
(5)

Clearly, Qij ∈ L(H), i.e. Q ∈ L(HN ) and

Q =



P1 P2 P3 · · · PN−1 PN
−P2 −P3 −P4 · · · −PN 0

P3 P4 . .
.

. .
.

0 0

−P4 . .
.

. .
.

. .
. ...

... . .
.

. .
. ...

(−1)N−1PN 0 · · · · · · · · · 0


.

Thus, Q ∈ L(HN ) is a selfadjoint block operator matrix and invertible due to the fact
that PN is invertible. Let

WB :=
[
W1 W2

]
:= ŴB

[
Q −Q
I I

]−1

and Σ :=

[
0 I
I 0

]
∈ L(HN ×HN ).

2.1 Main results for I = [0, 1]

In this subsection, we consider the operator AH on the Hilbert space X = L2(0, 1;H),
where H is a (probably infinite-dimensional) Hilbert space.

Theorem 2.1. Let A be given by (3)-(4). Further, assume

ran (W1 −W2) ⊆ ran (W1 +W2). (6)

Then the following statements are equivalent:

1. The operator AH with domain

D(AH) = H−1D(A) = {x ∈ X | Hx ∈ WN,2(0, 1;H) and ŴBΦ(Hx) = 0}

generates a contraction semigroup on (X, 〈·,H·〉);

2. A is dissipative, that is, Re 〈Ax, x〉 ≤ 0 for every x ∈ D(A);

3. ReP0 ≤ 0, W1 +W2 is injective and WBΣW ∗B ≥ 0;

4. ReP0 ≤ 0, W1 +W2 is injective and there exists V ∈ L(H) with ‖V ‖ ≤ 1 such that
WB = 1

2 (W1 +W2)
[
I + V I − V

]
;

5. ReP0 ≤ 0 and u∗Qu− y∗Qy ≤ 0 for every [ uy ] ∈ ker ŴB.
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Remark 2.2. 1. Condition (6) is in general not satisfied: Let H = `2 and WB =[
W1 W2

]
∈ L((`2)2, `2) with W1ei := ei+1 + ei and W2ei := ei+1 − ei, where

{ei}i∈N is a orthonormal basis of `2. Then ran(W1 − W2) = `2 whereas e1 6∈
ran(W1 +W2).

2. We point out that the implications 1⇒ 2, 4⇒ 3, and the equivalence 2⇔ 5 hold
even without the additional condition (6). Moreover, condition (6) is not needed
for the fact that 2 implies W1 +W2 is injective.

3. We note that WB is not uniquely determined, only the kernel of WB is. However, if
WB does not satisfy condition (6), then in general it is not possible to chose another
operator instead of WB with the same kernel such that condition (6) holds.

4. If H is finite-dimensional, then AH has a compact resolvent, see Theorem 2.3 in
[AuJa14]. However, in general, AH has not a compact resolvent. Take for example
N = 1, P1 = 1, P0 = 0, H = `2, ŴB = [I S] and H(ζ) = 1. Here S denotes the
left shift on H, that is, Sej = ej+1. Thus, A generates the left shift semigroup on
X = L2(0, 1; `2), which is isometric isomorph to the left shift on X = L2(0,∞).
However, 0 is a spectral point of A, but not in the point spectrum.

As a corollary of Theorem 2.1 we receive the well-known contraction semigroup char-
acterization for the case of a finite-dimensional Hilbert space H, see [AuJa14]. However,
we remark that Conditions 3 and 4 are even new in the finite-dimensional situation.

Theorem 2.3. Let A be given by (3)-(4) and assume that H is finite-dimensional. Then
the following statements are equivalent:

1. AH with domain D(AH) := {x ∈ X | Hx ∈ D(A)} = H−1D(A) generates a
contraction semigroup on (X, 〈·,H·〉);

2. Re 〈Ax, x〉 ≤ 0 for every x ∈ D(A);

3. ReP0 ≤ 0, W1 +W2 is injective and WBΣW ∗B ≥ 0;

3’. ReP0 ≤ 0, WB surjective and WBΣW ∗B ≥ 0;

4. ReP0 ≤ 0, W1 +W2 is injective and there exists V ∈ L(H) with ‖V ‖ ≤ 1 such that
WB = 1

2 (W1 +W2)
[
I + V I − V

]
;

4’. ReP0 ≤ 0, WB surjective and there exists V ∈ L(H) with ‖V ‖ ≤ 1 such that
WB = 1

2 (W1 +W2)
[
I + V I − V

]
;

5. ReP0 ≤ 0 and u∗Qu− y∗Qy ≤ 0 for every [ uy ] ∈ ker ŴB.

Remark 2.4. If H is infinite-dimensional, then in general Conditions 3’ and 4’ of the pre-
vious theorem are not equivalent to the fact that AH generates a contraction semigroup.
Let H = `2(N), N ∈ N, and Pi and H are operators satisfying the general assumptions.
First, we consider WB =

[
W1 W2

]
with W1 := 3

2R and W2 := 1
2R, where R denotes

the right shift on `2(N). Then ran(W1−W2) = ran(W1 +W2), W1 +W2 is injective and
WBΣW ∗B ≥ 0 but WB is not surjective. Thus, AH generates a contraction semigroup
on (X, 〈·,H·〉), but Conditions 3’ and 4’ are not satisfied. Conversely, for the choice
WB =

[
I − L −I − L

]
, where L denotes the left shift on `2(N). Surjectivity of WB
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holds, ran(W1 −W2) ⊆ ran(W1 +W2) and WBΣW ∗B ≥ 0, but W1 +W2 is not injective.
Thus, for these boundary conditions Conditions 3’ and 4’ are satisfied, but AH does not
generate a contraction semigroup on (X, 〈·,H·〉).

Next, we characterize the property of unitary group generation of AH.

Theorem 2.5. Let A be given by (3)-(4). Further assume

ran (W1 −W2) = ran (W1 +W2). (7)

Then the following statements are equivalent:

1. AH with domain D(AH) := {x ∈ X | Hx ∈ D(A)} = H−1D(A) generates a unitary
C0-group on (X, 〈·,H·〉);

2. Re 〈Ax, x〉 = 0 for every x ∈ D(A);

3. ReP0 = 0, W1 +W2 and −W1 +W2 are injective and WBΣW ∗B = 0;

4. ReP0 = 0, W1 +W2 and −W1 +W2 are injective and there exists V ∈ L(H) with
‖V ‖ = 1 such that WB = 1

2 (W1 +W2)
[
I + V I − V

]
;

5. ReP0 = 0 and u∗Qu− y∗Qy = 0 for every [ uv ] ∈ ker ŴB.

Corollary 2.6. Let A be given by (3)-(4) and assume that H is finite-dimensional. Then
the following statements are equivalent:

1. AH with domain D(AH) := {x ∈ X | Hx ∈ D(A)} = H−1D(A) generates a unitary
C0-group on (X, 〈·,H·〉);

2. Re 〈Ax, x〉 = 0 for every x ∈ D(A);

3. ReP0 = 0, W1 +W2 and −W1 +W2 is injective and WBΣW ∗B = 0;

3’. ReP0 = 0, WB surjective and WBΣW ∗B = 0;

4. ReP0 = 0, W1 + W2 and −W1 + W2 is injective and there exists V ∈ L(H) with
‖V ‖ = 1 such that WB = 1

2 (W1 +W2)
[
I + V I − V

]
;

4’. ReP0 = 0, WB surjective and there exists V ∈ L(H) with ‖V ‖ = 1 such that
WB = 1

2 (W1 +W2)
[
I + V I − V

]
;

5. ReP0 = 0 and u∗Qu− y∗Qy = 0 for every [ uy ] ∈ ker ŴB.

2.2 Main results for I = [0,∞)

In this subsection, we choose I = [0,∞), N = 1 and H = Fd with F = R or F = C, that
is, we consider the operator AH,

AHx = P0Hx+ P1
∂

∂ζ
(Hx) with (8)

D(AH) =
{
x ∈ L2(0,∞;Fd) | Hx ∈ W1,2(0,∞;Fd), ŴB(Hx(0)) = 0

}
(9)
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on the space X = L2(0,∞;Fd). Here P1 is an invertible Hermitian d × d-matrix, P0 ∈
Fd×d, ŴB ∈ Fk×d with k ∈ {0, 1, · · · , d} and H(ζ) ∈ Fd×d is positive definite for a.e. ζ ∈
[0,∞) satisfying H,H−1 ∈ L∞(0,∞;Fd×d). Since P1 is an invertible, Hermitian matrix,
its eigenvalues are real and non zero.

We denote by n1 the number of positive and by n2 = d− n1 the number of negative
eigenvalues of P1 and write

P1 = S−1∆S = S−1

[
Λ 0
0 Θ

]
S, (10)

with a unitary matrix S ∈ Fd×d, a positive definite, diagonal matrix Λ ∈ Rn1×n1 and a
negative definite, diagonal matrix Θ ∈ Rn2×n2 . We define ∆ = [ Λ 0

0 Θ ].

Theorem 2.7. Assume AH is given by (8)-(9), ŴB ∈ Fk×d with k ≤ n2 has full row
rank. Then the following statements are equivalent:

1. AH generates a contraction semigroup on (X, 〈·,H; ·〉);

2. Re 〈Ax, x〉 ≤ 0 for every x ∈ D(A);

3. ReP0 ≤ 0, k ≤ n2 and y∗P1y ≥ 0 for every y ∈ ker ŴB;

4. ReP0 ≤ 0, k = n2 and ŴB = B
[
U I

]
S, with B ∈ Fn2×n2 invertible, U ∈ Fn2×n1 ,

Λ + U∗ΘU ≥ 0.

Further, we are able to characterize the property of unitary group generation in the
case I = [0,∞).

Theorem 2.8. Let AH be given by (8)- (9), ŴB ∈ Fk×d with k ≤ min{n1, n2} has full
row rank. Then the following statements are equivalent:

1. AH generates a unitary C0-group on (X, 〈·,H·〉);

2. Re 〈Ax, x〉 = 0 for every x ∈ D(A);

3. Re P0 = 0 and y∗P1y = 0 for every y ∈ ker ŴB;

4. k = n1 = n2, Re P0 = 0 and ŴB =
[
U1 U2

]
S; where U1, U2 ∈ Fn1×n1 invertible

with Λ + U∗1U
−∗
2 ΘU−1

2 U1 = 0.

3 Proofs of the main results: I = [0, 1]

Throughout this section we will assume that I = [0, 1], X = L2(0, 1;H), A is given by
(3)-(4), and WB and Σ are defined as in Section 2. In order to prove the main statements
it is convenient to introduce the following linear combinations of the boundary values
[LeZwMa05].

Definition 3.1. For x ∈ H−1WN,2(0, 1;H) we define so called boundary port variables
namely boundary flow and boundary effort by[

f∂,Hx
e∂,Hx

]
:=

1√
2

[
Q −Q
I I

]
Φ(Hx) = RextΦ(Hx), (11)

where Q is defined by (5) and Rext := 1√
2

[
Q −Q
I I

]
∈ L(H2N ).
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Remark 3.2. Thanks to the invertibility of Q, the operator Rext is invertible. Thus, we
can use the boundary port variables to reformulate the domain of the operator AH:

D(AH) =
{
x ∈ X | Hx ∈ WN,2(0, 1;H) and ŴBΦ(Hx) = 0

}
=

{
x ∈ X | Hx ∈ WN,2(0, 1;H) and WB

[
f∂,Hx
e∂,Hx

]
= 0

}
,

where WB = ŴBR
−1
ext.

Next, we determine the adjoint operator of A. We define Q̃ = −Q and[
f̃∂,Hx
ẽ∂,Hx

]
= R̃extΦ(Hx) with R̃ext =

1√
2

[
Q̃ −Q̃
I I

]
.

Lemma 3.3. The adjoint operator of the operator A defined in (3) with domain (4) and
a boundary operator WB of the form WB = S

[
I + V I − V

]
where S, V ∈ L(HN ) and

S is left invertible, is given by

A∗y = P ∗0 y −
N∑
k=1

Pk
dk

dζk
y, y ∈ D(A∗), (12)

D(A∗) =

{
y ∈ WN,2(0, 1;H) : S

[
I + V ∗ I − V ∗

] [f̃∂,y
ẽ∂,y

]
= 0

}
. (13)

Proof. The statement can be proved in a similar manner as Proposition 3.4.3 in [Au16],
where the statement is shown for finite-dimensional Hilbert spaces H.

Definition 3.4. We define the operators A0 : D(A0) ⊂ X → X and (A∗)0 : D((A∗)0) ⊂
X → X by

A0x :=

(
N∑
k=0

Pk
∂k

∂ζk

)
(x), (A∗)0y := P ∗0 y −

N∑
k=1

Pk
dk

dζk
y

D(A0) = D(A∗0) =WN,2(0, 1;H).

Remark, that A0 and (A∗)0 are extensions of A and A∗, respectively. Integration by
parts yields the following lemma.

Lemma 3.5. We have for x ∈ WN,2(0, 1;H)

Re 〈A0x, x〉 = Re 〈f∂,x, e∂,x〉HN + Re 〈P0x, x〉
= Φ1(x)∗QΦ1(x)− Φ0(x)∗QΦ0(x) + Re 〈P0x, x〉,

Re 〈(A∗)0x, x〉 = Re 〈f̃∂,x, ẽ∂,x〉HN + Re 〈P0x, x〉
= Φ1(x)∗Q̃Φ1(x)− Φ0(x)∗Q̃Φ0(x) + Re 〈P0x, x〉.

Furthermore, we need some technical results. First, we give a generalization of the
technical Lemma 7.3.2 in [JaZw12] for N ≥ 1 and arbitrary Banach spaces Z.

7



Lemma 3.6. Let Z be a Banach space and V ∈ L(Z). Then it yields

ker
[
I + V I − V

]
= ran

[
I − V
−I − V

]
,

where
[
I + V I − V

]
∈ L(Z × Z,Z) and

[
I−V
−I−V

]
∈ L(Z,Z × Z).

Proof. Assume [ xy ] ∈ ker
[
I + V I − V

]
. Thus, it yields

x+ V x+ y − V y = 0.

For l := 1
2 (x− y) ∈ Z we get

(I − V )l =
1

2
(x− y)− 1

2
V (x− y) = x and (−I − V )l = −1

2
(x− y)− 1

2
V (x− y) = y.

Thus, it follows [ xy ] ∈ ran
[
I−V
−I−V

]
. Conversely, assume [ xy ] ∈ ran

[
I−V
−I−V

]
. Then, we have

[
I + V I − V

]
[ xy ] =

[
I + V I − V

] [ I − V
−I − V

]
l = 0

for some l ∈ Z and the lemma is proved.

Lemma 3.7. [KuZw15, Lemma 2.4] Let W =
[
W1 W2

]
∈ L(H2N , HN ) such that

W1 +W2 is injective and

ran(W1 −W2) ⊆ ran(W1 +W2).

Then there exist an unique operator V ∈ L(HN ) such that

W =
[
W1 W2

]
=

1

2
(W1 +W2)

[
I + V I − V

]
. (14)

Moreover,
ker
[
W1 W2

]
= ker

[
I + V I − V

]
,

and [
W1 W2

] [0 I
I 0

] [
W1 W2

]∗ ≥ 0⇔ V V ∗ ≤ I.

Lemma 3.8. Let A0 be defined as in Definition 3.4. For an arbitrary element [ uv ] ∈
HN ×HN exist a function x ∈ D(A0) such that Φ(x) = [ uv ].

Proof. We give a constructive proof: Consider [ uv ] ∈ HN ×HN where

u =

u1

...
uN

 and v =

 v1

...
vN

 ,
with entries u1, . . . , uN , v1, . . . , vN ∈ H. To construct a proper function Φ(x), we define
two polynomials Pu(ζ) and Pv(ζ) by

Pu(ζ) :=

N∑
i=0

ui+1

i!
(ζ − 1)i and Pv(ζ) :=

N∑
i=0

vi+1

i!
ζi.

8



Furthermore, we define the functions ϕ0 ∈ C∞[0, 1] and ϕ1 ∈ C∞[0, 1] such that ϕ0|[0,ε] =
0 and ϕ0|[1−ε,1] = 1 and analogously ϕ1|[0,ε] = 1 and ϕ1|[1−ε,1] = 0 hold. Thus, for

x := (ϕ0 · Pu + ϕ1 · Pv)IHN ∈ C∞([0, 1];HN ) ⊂ D(A0)

we get Φ(x) = [ uv ].

Lemma 3.9. Let A be defined by (3)-(4). Then A is dissipative if and only if A− P0 is
dissipative and it holds ReP0 ≤ 0.

Proof. ”‘⇒”’: Let A be dissipative. Hence, the operator A−P0 is dissipative if ReP0 ≤ 0
holds. We will prove Re 〈P0z, z〉 ≤ 0 for all z ∈ H: Let z ∈ H and Ψ(ζ) ∈ C∞c (0, 1) with
ζ ∈ [0, 1] an arbitrary, scalar-valued function with Ψ 6≡ 0. We define

x := Ψ(ζ)z ∈ C∞c (0, 1;H) ⊆ D(A)

and it yields, since the derivation equals zero at the boundary,

0 ≥ Re 〈Ax, x〉L2 = Re 〈P0x, x〉L2 = Re 〈P0Ψz,Ψz〉L2

= Re

∫ 1

0

|Ψ(ζ)|2 〈P0z, z〉Hdζ

= ‖Ψ‖2L2 Re 〈P0z, z〉H .

”‘⇐”’: We assume ReP0 ≤ 0 and Re 〈(A − P0)x, x〉L2 ≤ 0 for all x ∈ D(A). Thus,
we get for x ∈ D(A)

Re 〈Ax, x〉 = Re 〈(A− P0)x, x〉L2 + Re 〈P0x, x〉L2 ≤ 0 .

We are now in the position to prove the main results for I = [0, 1].

Proof of Theorem 2.1. Without loss of generality we may assume H = I, see [JaZw12,
Lemma 7.2.3]. The implication 1 ⇒ 2 follows by the Lumer-Phillips Theorem, c.f.
[EnNa06, Theorem II.3.15], and the equivalence 3⇔ 4 has been shown in Lemma 3.7.

Next, we prove the equivalence 2⇔ 5: Lemma 3.5 implies for x ∈ D(A)

Re 〈Ax, x〉 = Φ1(x)∗QΦ1(x)− Φ0(x)∗QΦ0(x) + Re 〈P0x, x〉.

Note that x ∈ WN,2(0, 1;H) satisfies x ∈ D(A) if and only if
[

Φ1(x)
Φ0(x)

]
∈ ker ŴB . This

proves the implication 5 ⇒ 2. We now assume that 2 holds. Then Lemma 3.9 shows
that ReP0 ≤ 0 and that A− P0 is dissipative, that is,

Φ1(x)∗QΦ1(x)− Φ0(x)∗QΦ0(x) ≤ 0

for every x ∈ WN,2(0, 1;H) satisfying
[

Φ1(x)
Φ0(x)

]
∈ ker ŴB . Further, by Lemma 3.8, for an

arbitrary element [ uv ] ∈ ker ŴB there exists a function x ∈ D(A) such that
[

Φ1(x)
Φ0(x)

]
= [ uv ].

This proves 5.
Next, we prove the implication 2 ⇒ 4: Lemma 3.9 shows that ReP0 ≤ 0 and that

A− P0 is dissipative, that is, using Lemma 3.5

Re 〈f∂,x, e∂,x〉HN ≤ 0, x ∈ D(A). (15)
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For an arbitrary element [ fe ] ∈ kerWB ⊂ HN ×HN a function x ∈ D(A) exists due to

Lemma 3.8 such that RextΦ(x) =
[
f∂,x
e∂,x

]
= [ fe ]. With equation (15) we get e∗f+f∗e ≤ 0

for all [ fe ] ∈ kerWB , where WB :=
[
W1 W2

]
. For y ∈ ker(W1+W2) we have WB [ yy ] = 0

and thus y∗y + yy∗ ≤ 0. Since the norm of an element is non negative, it follows y = 0
and therefore ker(W1 +W2) = {0}, which shows the injectivity of W1 +W2. Due to this
fact, by Lemma 3.7 there exists an operator V satisfying (14). It remains to show that
‖V ‖ ≤ 1. Let l ∈ HN be arbitrarily. By Lemma 3.6 we obtain

[
I−V
−I−V

]
l ∈ kerWB .

From Lemma 3.8 we conclude that a function x ∈ D(A0) exists, such that RextΦ(x) =[
f∂,x
e∂,x

]
=
[
I−V
−I−V

]
l. Therefore,

[
f∂,x
e∂,x

]
∈ kerWB and even x ∈ D(A). In conclusion, we

obtain with (15)

2Re 〈f∂,x, e∂,x〉HN = 〈f∂,x, e∂,x〉HN + 〈e∂,x, f∂,x〉HN
= 〈(I − V )l, (−I − V )l〉HN + 〈(−I − V )l, (I − V )l〉HN
= 2〈l, (−I + V ∗V )l〉HN ≤ 0 (16)

and therefore ‖V ‖ ≤ 1.
Finally, we show the implication 4 ⇒ 1: A is a closed operator, see [Au16, Lemma

3.2.2]. To prove that A generates a contraction semigroup, it is sufficient to verify that
A and A∗ are dissipative; c.f. [JaZw12, Theorem 6.1.8]. Let x ∈ D(A). Then, we have[
f∂,x
e∂,x

]
∈ kerWB and from Lemma 3.6 it follows the existence of l ∈ HN such that[

f∂,x
e∂,x

]
=
[
I−V
−I−V

]
l. Using Lemma 3.5 and Lemma 3.7, we obtain

2Re 〈Ax, x〉L2 = 2Re 〈f∂,x, e∂,x〉HN + 2〈P0x, x〉
≤ 2〈l, (−I + V ∗V )l〉HN ≤ 0.

Now we consider the adjoint operator A∗: Let y ∈ D(A∗). Due to Lemma 3.3, it yields[
f̃∂,y
ẽ∂,y

]
∈ kerS

[
I + V ∗ I − V ∗

]
. We apply Lemma 3.6 and Lemma 3.7 to the operator

V ∗ and obtain the existence of m ∈ HN such that
[
f̃∂,x
ẽ∂,x

]
=
[
I−V ∗

−I−V ∗

]
m. Using again

Lemma 3.5 we get

2Re 〈A∗y, y〉L2 ≤ 2〈m, (−I + V V ∗)m〉HN ≤ 0, (17)

which concludes the proof.

Proof of Theorem 2.3. If dimH < ∞, then W1 + W2 injective implies the surjectivity
of W1 + W2 and hence condition (6). We want to apply Theorem 2.1 for the proof of
Theorem 2.3. Therefore, we have to check condition (6). Due to Remark 2.2.2 and the
fact that injectivity of W1 +W2 implies condition (6), Part 1, 2, 3, 4 and 5 of Theorem
2.3 are equivalent. The implications 3⇒ 3′ and 4⇒ 4′ follows, since we have W1 +W2

injective, and thus, W1 + W2 is also surjective. Clearly, it follows WB surjective. It
remains to show that 3′ ⇒ 3 and 4′ ⇒ 3′. A straightforward calculation shows the
implication 4′ ⇒ 3′. In order to show 3′ ⇒ 3 we prove that in the finite-dimensional
setting WB surjective and WBΣWB ≥ 0 implies the injectivity of W1 + W2: It yields
WB =

[
W1 W2

]
. Thus,

WBΣWB ≥ 0⇔W2W
∗
1 +W1W

∗
2 ≥ 0,

10



which shows

W1W
∗
1 +W2W

∗
1 +W2W

∗
2 +W1W

∗
2 = (W1 +W2)(W1 +W2)∗ ≥ (W1−W2)(W1−W2)∗ ≥ 0.

Let x be in ker(W1 +W2)∗. Then it yields x ∈ ker(W1 −W2)(W1 −W2)∗. With

‖(W1 −W2)∗x‖2 = 〈(W1 −W2)∗x, (W1 −W2)∗x〉
= 〈x, (W1 −W2)(W1 −W2)∗x〉 = 〈x, 0〉 = 0

we get x ∈ ker(W1 −W2)∗ and thus, x ∈ kerW ∗1 ∩W ∗2 . Since WB is surjective, W ∗B
injective and thus it follows x = 0. This implies W1 +W2 is injective.

Proof of Theorem 2.5. Without loss of generality we consider again just the case H = I.
In the following proof we will apply often Theorem 2.1 to the operators A and −A.
So, first of all, we have to verify, that also the boundary condition operator W̄B of −A
satisfies the condition (6).

We define analogously to (11) the boundary flow and the boundary effort for −A:[
f̄∂,x
ē∂,x

]
:=

1√
2

[
−Q Q
I I

]
Φ(Hx). (18)

Therefore, it yields f̄∂,x = −f∂,x and ē∂,x = e∂,x. Due to D(A) = D(−A), we get

D(A) =

{
x ∈ WN,2(0, 1;H)|WB

[
f∂,x
e∂,x

]
= 0

}
= D(−A) =

{
x ∈ WN,2(0, 1;H)|W̄B

[
f̄∂,x
ē∂,x

]
= 0

}
=

{
x ∈ WN,2(0, 1;H)|W̄B

[
−f∂,x
e∂,x

]
= 0

}
and thus,

W̄B =
[
−W1 W2

]
. (19)

It is easy to check that under condition (7) the operator W̄B satisfied (6).
Then the equivalences 1⇔ 2⇔ 5 follow by Theorem 2.1 applied for A and −A.
1 ⇒ 4: Let A be the generator of a unitary group. Then, due to Theorem [JaZw12,

Theorem 6.2.5] A and −A are generators of contraction semigroups. It follows ReP0 = 0,
W1 + W2 and −W1 + W2 are injective and Re 〈Ax, x〉 = 0 ∀ x ∈ D(A) by Theorem 2.1.
Thus, we get with the estimation (16)

0 = 2Re 〈Ax, x〉 = 2〈l, (−I + V ∗V )l)〉HN∀ l ∈ HN (20)

and therefore ‖V ‖ = 1.
4 ⇒ 3: Let ReP0 = 0, ‖V ‖ = 1, W1 + W2 and −W1 + W2 injective. Define S :=

1
2 (W1 +W2) and with the technical Lemma 3.7 (Lemma 2.4 in [KuZw15]) it yields

WBΣW ∗B = S
[
I + V I − V

] [0 I
I 0

]
(S
[
I + V I − V

]
)∗

= S(2I − 2V V ∗)S∗ = 0.

The implication 3⇒ 1 follows analogously to the proof of 3⇒ 1 in Theorem 2.1 for the
operator −A. However, instead of the boundary effort and the boundary flow for A we
need to consider them for −A and have to determine the boundary condition operator
W̄B for −A.

11



4 Proofs of the main results: I = [0,∞)

Throughout this section we will assume that I = [0,∞), A is given by (8)-(9). For the
proof of the main statements we need the following two technical assertions.

Lemma 4.1. Assume Λ ∈ Rn1×n1 is a positive, invertible diagonal matrix and y ∈
L2(0,∞;Fn1). Then the function

x(t) :=

∫ ∞
0

e−sΛ
−1

Λ−1y(s+ t) ds, t ≥ 0, (21)

satisfies x ∈ W1,2(0,∞;Fn1) and x− Λx′ = y.

Proof: Λ > 0 and y ∈ L2(0,∞;Fn1) imply that x(t) is well defined for every t ≥
0. Minkowski’s integral inequality shows x ∈ L2(0,∞;Fn1). Further, the solution of
x− Λx′ = y, or equivalently, of x′ = Λ−1x− Λ−1y is given by

x(t) = etΛ
−1

x(0)−
∫ t

0

e(t−s)Λ−1

Λ−1y(s) ds, t ≥ 0.

The choice of x(0) =
∫∞

0
e−sΛ

−1

Λ−1y(s) ds, implies (21). Moreover, x′ = Λ−1x − Λ−1y
and hence x ∈ W1,2(0,∞;Fn1). �

Lemma 4.2. Let Θ ∈ Rn2×n2 be a negative, invertible diagonal matrix, y ∈ L2(0,∞;Fn2)
and x0 ∈ Fn2 . Then the differential equation

x−Θx′ = y, x(0) = x0, (22)

has a unique solution satisfying x ∈ W1,2(0,∞;Fn2).

Proof: We first note that (22) is equivalent to x′ = Θ−1x − Θ−1y. Now the state-
ment of the lemma follows from ODE-Theory for linear stable systems, since Θ < 0 and
y ∈ L2(0,∞;Fn2). �

Proof of Theorem 2.7. Thanks to [JaZw12, Lemma 7.2.3] and the Theorem of Lumer-
Phillips Part 1 implies Part 2.
Next, we show the implication 2⇒ 3. For x ∈ D(A) we have

Re 〈Ax, x〉 = −x(0)∗P1x(0) + 2Re

∫ ∞
0

x(ζ)∗P0x(ζ) dζ, (23)

since limζ→∞ x(ζ) = 0 for x ∈ W1,2(0,∞;Fd). Choosing x ∈ W1,2(0,∞;Fd)\{0} with
x(0) = 0, we obtain ReP0 ≤ 0. For every y ∈ Fd and every ε > 0 there exists a function
in x ∈ W1,2(0,∞;Fd) such that x(0) = y and the L2-norm of x is less than ε. Choosing
this function in equation (23) and letting ε go to zero implies the second assertion in 3.

In order to prove the implication 3⇒ 4, for x ∈ D(A) we define
[
f1
f2

]
:= Sx(0). Using

(10), the second condition in 3 can be written as

[
f∗1 f∗2

] [ Λ 0
0 Θ

] [
f1

f2

]
≥ 0, for

[
f1

f2

]
∈ ker ŴBS

−1. (24)
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Since ŴBS
−1 is a full row rank k×d-matrix with k ≤ n2, its kernel has dimension d−k.

By the assumptions on Λ and Θ, we have d − k ≤ n1, or equivalently, k ≥ n2. Thus
k = n2.

We write ŴBS
−1 =

[
U1 U2

]
with U1 ∈ Fn2×n1 and U2 ∈ Fn2×n2 . Assuming U2 is

not invertible, there exists u ∈ Fn2 such that [ 0
u ] ∈ ker ŴBS

−1 which is in contradiction

to (24), since Θ < 0. Thus, the matrix ŴBS
−1 is of the form B

[
U I

]
, with U ∈ Fn2×n1

and B ∈ Fn2×n2 invertible. Hence, (24) is equivalent to

[
f∗1 f∗2

] [ Λ 0
0 Θ

] [
f1

f2

]
≥ 0 and Uf1 + f2 = 0, for

[
f1

f2

]
∈ Fn1+n2 (25)

which is equivalent to Λ + U∗ΘU ≥ 0. This shows Part 4.
It remains to show that Part 4 implies Part 1. By [JaZw12, Lemma 7.2.3] it is sufficient
to prove that A generates a contraction semigroup on (X, 〈·, ·〉). Due to the fact that
ReP0 ≤ 0, and bounded, dissipative perturbations of generators of contraction semi-
groups, again generate a contraction semigroup, see [EnNa99, Theorem III.2.7], without
loss of generality we may assume P0 = 0.

First, we prove the dissipativity of the operator A. Let x ∈ D(A) and define
[
f1
f2

]
:=

Sx(0), where the unitary matrix S is given by (10). This implies Uf1 + f2 = 0 as
ŴB = B

[
U I

]
S.

Thus, it yields

Re 〈Ax, x〉 = −〈x(0), P1x(0)〉Fd = −〈x(0), S−1

[
Λ 0
0 Θ

]
Sx(0)〉Fd

= −〈Sx(0),

[
Λ 0
0 Θ

]
Sx(0)〉Fd = −(f∗1 Λf1 + f∗2 Θf2)

= −(f∗1 Λf1 + f∗1U
∗ΘUf1) ≤ 0

by the last assertion of Part 4.
Further, thanks to the Theorem of Lumer-Phillips it remains to show that for every

y ∈ L2(0,∞;Fd) there exists x ∈ D(A) such that x − Ax = y. Equivalently, by (10) it
is sufficient to show that for every y1 ∈ L2(0,∞;Fn1) and y2 ∈ L2(0,∞;Fn2) there exist
functions x1 ∈ W1,2(0,∞;Fn1) and x2 ∈ W1,2(0,∞;Fn2) such that

x1 − Λx′1 = y1, x2 −Θx′2 = y2 and Ux1(0) + x2(0) = 0.

Let y1 ∈ L2(0,∞;Fn1) and y2 ∈ L2(0,∞;Fn2) be arbitrarily. Lemma 4.1 implies the

existence of x1 ∈ W1,2(0,∞;Fn1) with x1(0) =
∫∞

0
e−sΛ

−1

Λ−1y1(s) ds and x1 − Λx′1 =
y1. Finally, Lemma 4.2 shows that there exists a function x2 ∈ W1,2(0,∞;Fn1) with
x2(0) = −Ux1(0) and x2 −Θx′2 = y2. This concludes the proof.

Proof of Theorem 2.8. Since AH generates a unitary C0-group if and only if AH and
−AH generate contraction semigroups c.f. [JaZw12, Theorem 6.2.5], the equivalence of
Part 1, Part 2, and Part 3 follows directly from Theorem 2.7 for −AH and AH.

Fomulating Part 4 of Theorem 2.7 for −A , we get Re − P0 ≤ 0, k = n1,

ŴB = B̄
[
I Ū

]
S
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and Θ + Ū∗ΛŪ ≤ 0, where B̄ ∈ Kn1×n1 is invertible. Thus, Part 4 of Theorem 2.7 for
−A and A is equivalent to ReP0 = 0, k = n1 = n2 and ŴB = B̄

[
I Ū

]
S = B

[
U I

]
S

with B and B̄ invertible. It yields B̄ = BU and B = B̄Ū with B, B̄ invertible. Therefore,
we get ŪU = I and Ū , U invertible. Thus, we have Θ + Ū∗ΛŪ ≤ 0 ⇔ U∗ΘU + Λ ≤ 0.
Choosing U1 = BU and U2 = B we get the assertion.

5 Examples

In this section we now illustrate our results by a number of examples. Networks of dis-
crete partial differential equations on infinite-dimensional networks are also considered
in [Mu14]. Examples of infinite-dimensional networks are given in Figure 1 and 2.

Figure 1: Arbitrary infinite-dimensional net-
work Figure 2: Infinite-dimensional tree

Examples with I = [0, 1] and a finite-dimensional Hilbert space H can be found in
[JaZw12].

Example 5.1. We choose I = [0, 1], H = `2(N) and consider the operator A given by

Af =
∂

∂ζ
f (26)

on the domain
D(A) =

{
f ∈ W1,2(0, 1; `2(N))|WBΦ(f) = 0

}
(27)

on a line graph, see Figure 3.

Figure 3: Line graph

Clearly, A denotes a port-Hamiltonian operator with N = 1, P1 = I and P0 = 0. We
consider the operator A without boundary condition, such that WB is just containing the
information about the graph. We get WB =

[
I + L I − L

]
, where L denotes the left

shift and L∗ = R the right shift with L : `2(N) → `2(N) is defined by L(x1, x2, . . .) 7→
(x2, x3, . . .) and R : `2(N) → `2(N) is given as R(x1, x2, . . .) 7→ (0, x1, x2, . . .). Clearly,
it yields W1 + W2 = 2I, and thus, condition (6) is fulfilled. Therefore, we can apply
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Theorem 2.1 and check Condition 3: W1 +W2 is injective and

WBΣWB =
[
I + L I − L

]
Σ
[
I + L I − L

]∗
=
[
I − L I + L

] [
I + L∗ I − L∗

]
= (I − L)(I + L∗) + (I + L)(I − L∗) = 2I − 2LL∗ = 0.

Hence, A generates a contraction semigroup. In the finite-dimensional setting we would
expect that A also generates a unitary C0-group, since WBΣWB = 0. However, it can be
shown that A does not generate a unitary C0- group and Theorem 2.5 is not applicable
as (7) is not satisfied.

Example 5.2. Let I = [0,∞) and A be given by (8)- (9).

1. Let with P1 < 0, that is, n2 = d, and ReP0 ≤ 0. In this situation AH with domain

D(AH) = H−1D(A) = {x ∈ X | Hx ∈ W1,2(0,∞;Cd) and (Hx)(0) = 0}

generates a contraction semigroup on (X, 〈·,H; ·〉).

2. Let P1 > 0, that is, n2 = 0 and ReP0 ≤ 0. Then AH with domain

D(AH) = H−1D(A) = {x ∈ X | Hx ∈ W1,2(0,∞;Cd)}

generates a contraction semigroup on (X, 〈·,H; ·〉);

3. An (undamped) vibrating string can be modelled by

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂w

∂ζ
(ζ, t)

)
, t ≥ 0, ζ ∈ (0,∞), (28)

where ζ ∈ [0, 1] is the spatial variable, w(ζ, t) is the vertical position of the string
at place ζ and time t, T (ζ) > 0 is the Young’s modulus of the string, and ρ(ζ) > 0
is the mass density, which may vary along the string. We assume that T and ρ
are positive functions satisfying ρ, ρ−1, T, T−1 ∈ L∞(0,∞). By choosing the state
variables x1 = ρ∂w∂t (momentum) and x2 = ∂w

∂ζ (strain), the partial differential

equation (28) can equivalently be written as

∂

∂t

[
x1(ζ, t)
x2(ζ, t)

]
=

[
0 1
1 0

]
∂

∂ζ

([ 1
ρ(ζ) 0

0 T (ζ)

] [
x1(ζ, t)
x2(ζ, t)

])
= P1

∂

∂ζ

(
H(ζ)

[
x1(ζ, t)
x2(ζ, t)

])
, (29)

where P1 = [ 0 1
1 0 ] and H(ζ) =

[
1
ρ(ζ)

0

0 T (ζ)

]
.

The boundary conditions for (29) are

ŴB(Hx)(0, t) = 0,

where ŴB is a k × 2-matrix with rank k ∈ {0, 1, 2}, or equivalently, the partial
differential equation (28) is equipped with the boundary conditions

ŴB

[ ∂w
∂t (0, t)
T ∂w
∂ζ (0, t)

]
= 0.
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The matrix P1 can be factorized as

P1 =

[
1 −1
1 1

] [
1 0
0 −1

] [
1/2 1/2
−1/2 1/2

]
,

This implies n2 = 1. Thus, by Theorem 2.7 the corresponding operator

(AHx)(ζ) =

[
0 1
1 0

]
∂

∂ζ

([ 1
ρ(ζ) 0

0 T (ζ)

]
x(ζ)

)
;

D(AH) =
{
x ∈ W1,2(0, 1;F2) | ŴB(Hx)(0, t) = 0

}
,

generates a contraction semigroup on (L2(0, 1;C2), 〈·,H; ·〉) if and only if

ŴB =
b

2

[
u− 1 u+ 1

]
for b ∈ F\{0} and u ∈ F. More precisely, the partial differential equation

∂2w

∂t2
(ζ, t) =

1

ρ(ζ)

∂

∂ζ

(
T (ζ)

∂w

∂ζ
(ζ, t)

)
, t ≥ 0, ζ ∈ (0,∞),

(u− 1)
∂w

∂t
(0, t) + (u+ 1)T (0)

∂w

∂ζ
(0, t) = 0, t ≥ 0,

ρ(ζ)
∂w

∂t
(ζ, 0) = z0(ζ), ζ ≥ 0,

∂w

∂ζ
(ζ, 0) = z1(ζ), ζ ≥ 0,

where u ∈ F and z0, z1 ∈ L2(0,∞), possesses a unique solution satisfying∫ ∞
0

ρ(ζ)

[
∂w

∂t
(ζ, t)

]2

+ T (ζ)

[
∂w

∂ζ
(ζ, t)

]2

dζ ≤
∫ ∞

0

z2
0(ζ)

ρ(ζ)
+ T (ζ)z2

1(ζ)dζ

for t > 0.
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