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Abstract

A new type of Rosenbrock-Wanner (ROW) methods for solving semi-explicit DAEs of index-1
is introduced. The scheme considers arbitrary approximations to Jacobian entries resulting for
the differential part and thus corresponds to a first attempt of applying W methods to DAEs.
Besides, it is a generalized class covering many ROW-type methods known from literature. Order
conditions are derived by a consistent approach that combines theories of ROW methods with exact
Jacobian for DAEs [13] and W methods with arbitrary Jacobian for ODEs [15]. In this context,
rooted trees based on Butcher’s theory that include a new type of vertices are used to describe
non-exact differentials of the numerical solution. Resulting conditions up to order four are given
explicitly, including new conditions for realizing schemes of higher order. Numerical tests emphasize
the relevance of satisfying these conditions when solving DAEs together with approximations to
Jacobian entries of the differential part.

Keywords: Rosenbrock methods, W methods, Differential-algebraic equations, Order conditions,
Approximated Jacobian

1. Introduction

Solving ordinary differential equations (ODEs), efficient time-integration is mainly determined
by given stiff and non-stiff characteristics that demand implicit or explicit strategies. In this context,
W methods introduced by Steihaug and Wolfbrandt [15] are an appropriate choice for numerical
computation. Belonging to the class of linearly implicit Rosenbrock-Wanner (ROW) type schemes,
they realize implicit solution without having to solve non-linear equations. Besides, W methods
allow for arbitrary approximations of occurring Jacobians. Thus, they also enable explicit inte-
gration by reduction to underlying explicit Runge-Kutta (RK) schemes. Due to this property, W
methods can be used to reduce computational effort by combining explicit RK methods and implicit
ROW methods in order to adapt solutions to requirements of a given ODE problem. In literature
these combinations are implemented by strategies such as partitioning [11] or additive splitting via
approximate-matrix factorization (AMF) [2, 5]. Also, as effort of ROW-type methods is mainly de-
termined by Jacobian computations, the possibility of applying arbitrary Jacobian approximations
is utilized to decrease the number of Jacobian updates [7, 18].
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In contrast, linearly implicit ROW-type schemes solving differential algebraic equations (DAEs)
seem to be completely derived just with respect to exact or special approximated Jacobians. The
theory of ROW methods for semi-explicit DAEs of index-1 based on Buthcher’s theory of rooted
trees is introduced by Roche [13] using exact Jacobians. In [12] Rentrop, Roche and Steinebach
derive new conditions realizing a ROW-type scheme for DAEs whose Jacobian entries are set to
zero with respect to the differential part. Thus, computational effort is decreased by restricting
implicit solution to algebraic constraints, solving the differential part assumed to be non-stiff by
the underlying RK method.

Regarding methods for DAEs based on arbitrary Jacobian approximations Strehmel, Weiner
and Dannehl [17] describe linearly-implicit Runge-Kutta methods that cover ROW-type schemes
with special and arbitrary approximations to Jacobian entries of the algebraic part. But focusing
on aspects of stability a derivation of order conditions based on Butcher’s theory of rooted trees is
not taken into account. Also, the scheme is restricted to Jacobian entries of the differential part
set to zero, thus solving it exclusively by the underlying explicit RK method as in [12]. However,
the differential part of DAEs might not always be completely stiff or non-stiff. It might include
single stiff components such as source terms. For this reason, we introduced a ROW-type method
in [6] that regards Jacobian entries of the differential part reduced to stiff components. Thus, given
differential equations can be solved partially implicit while given algebraic constraints are solved
fully implicit. The scheme corresponds to an adapted ROW-AMF method for DAEs. But focusing
on aspects of application, we derived no order conditions.

In fact, in literature there seems to be no detailed theory for deriving ROW-type schemes
with arbitrarily approximated Jacobian entries when solving DAEs, especially regarding aspects
of order conditions. That is, realizing W methods for DAEs requires further research. In this
context, regarding arbitrarily approximated Jacobians for ROW-type methods applied to DAEs
should yield a generalized scheme that enables to cover different known ROW-type schemes by
special approximations and to connect them by a consistent theory.

For these reasons, the purpose of this article is given by two aspects: First, we intend to
introduce an appropriate generalized ROW-type method for semi-explicit DAEs of index-1 that
corresponds to a first attempt of realizing W methods for DAEs. Second, we intend to formulate
a consistent theory in order to realize W methods for DAEs, especially regarding derivation of
order conditions based on Butcher’s theory of rooted trees. In this context, we will focus on
arbitrary Jacobian approximations given with respect to the differential part combining approaches
introduced by Roche [13] and Hairer, Wanner [4] regarding ROW methods for DAEs as well as
approaches introduced by Steihaug, Wolfbrand [15] and Hairer, Wanner [4] regarding W methods
for ODEs. Extensions to additional approximations given with respect to the algebraic part as
presented in [17] will be considered in a further contribution.

The paper is organized as follows: Section 2 introduces the generalized ROW-type method
and its properties, Section 3 describes Taylor expansions for analytical and numerical solution
using rooted trees that include a new type of vertices, Section 4 defines order conditions and their
properties up to order four, Section 5 shows numerical results and Section 6 gives a conclusion and
outlook.
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2. A Generalized ROW-Type Method for DAEs of Index-1

Below, we regard a semi-explicit DAE system given by

y′(x) = f (y(x), z(x)) , f = fN + fS , y(x0) = y0 (1a)

0 = g (y(x), z(x)) z(x0) = z0 (1b)

with consistent initial values, i.e. g(y0, z0) = 0. The right hand side of differential part (1a) is
assumed to allow for additive splitting into a non-stiff part fN and a stiff part fS . By defining
corresponding vectors, this strategy also covers the special case of partitioning the differential
part into non-stiff and stiff equations. Both the functions f and g are supposed to be sufficiently
differentiable. Moreover, we assume partial derivatives gz to be regular, i.e. the given DAE system
is assumed to be of index-1. Without loss of generality, we restrict problem formulation (1) to the
autonomous case. Explicit dependencies on x can be taken into account by introducing x′ = 1 to
the system.

In order to solve the given DAE system, we apply an adapted linearly implicit ROW-type
method for DAEs defined by

y1 = y0 +

s∑
i=1

biki, z1 = z0 +

s∑
i=1

bik
alg
i (2a)

(
ki
0

)
= h

(
f (vi, wi)
g (vi, wi)

)
+ h

i∑
j=1

γij

[
Ay Az

(gy)0 (gz)0

](
kj
kalgj

)
(2b)

vi = y0 +

i−1∑
j=1

αijkj , wi = z0 +

i−1∑
j=1

αijk
alg
j . (2c)

Here, y1 and z1 are numerical solutions of the differential and algebraic part, respectively, given
at x1 = x0 + h, i.e. after a single step with step-size h. Weights bi and coefficients αij , γij with
i = 1, ..., s, j = 1, ..., i correspond to real parameters, s denotes the number of internal stages. We
assume γii = γ. Thus, computing stage-values ki and kalgi by (2b) yields a linear system for each
i = 1, ..., s whose matrices [

I − γiihAy −γiihAz
−γiih(gy)0 −γiih(gz)0

]
are all equivalent. As a consequence, just one LU-decomposition is required within every step
[13, 18]. The Jacobian given in (2b) regards exact partial derivatives (gy)0 and (gz)0 of the algebraic
part evaluated at initial values (y0, z0). However, exact partial derivatives (fy)0 and (fz)0 of the
differential part are replaced by arbitrary approximations Ay and Az, respectively.

Due to the characteristic property of using arbitrary Jacobian approximations with respect to
the differential part, scheme (2) corresponds to a new ROW-type class and could be interpreted
as a first extension of W methods to the DAE case. Indeed, many ROW-type methods for ODEs
and DAEs defined in literature are based on Jacobians with exact or specially approximated entries
regarding the differential part. Thus, choosing appropriate approximations of matrices Ay and Az
most of these schemes are covered by ROW-type method (2) already. For this reason, it could be
also considered as some generalized ROW-type scheme for DAEs. A list of schemes that result when
choosing the Jacobian approximations of ROW-type method (2) appropriately is shown for problem
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Table 1: Schemes covered by the generalized ROW-type method (ODE case).

Problem Ay Az Method Properties Ref.

y′ = f(y) 0 / RK expl. [3]

y′ = f(y) fy / ROW impl. [4]

y′ = f(y) Ay / W impl. [15]

y′ = fN (y) + fS(y) (fS)y / ROW-AMF expl./impl. [5](
y′N
y′S

)
=

(
fN (yN , yS)
fS(yN , yS)

) [
0 0
0 (fS)yS

]
/ part. RK expl./impl. [11]

Table 2: Schemes covered by the generalized ROW-type method (DAE case).

Problem Ay Az Method Properties Ref.

y′ = f(y, z)
0 = g(y, z)

fy fz ROW impl. [13]

y′ = f(y, z)
0 = g(y, z)

0 0 part. ROW expl./impl. [12]

y′ = fN (y) + fS(y)
0 = g(y, z)

(fS)y fz ROW-AMF (DAEs) expl./impl.

y′ = fN (y) + fS(y) ROW-AMF (DAEs)
0 = g(y, z)

(fS)y (fS)z
(adapted)

expl./impl. [6]

formulations of the ODE case in Table 1 and for problem formulations of the DAE case in Table
2. Among the schemes covered are purely explicit and implicit methods as well as implicit/explicit
schemes that separate given stiff and non-stiff components by partitioning or additive splitting.

3. Taylor Expansions of Exact and Numerical Solution

In this section, we derive Taylor expansions of DAE system (1) with respect to its exact and
numerical solution. Regarding Butcher’s theory of rooted trees, we supplement the approach by
Roche [13] introducing a new type of vertices to describe all occurring elementary differentials.
The resulting strategy finally provides a consistent theory that combines ROW methods for DAEs
with W methods for ODEs. In this context, we proceed analogously to derivations and descriptions
given by Hairer and Wanner [4] and Roche [13], however, adapted to our numerical scheme including
arbitrary Jacobian approximations with respect to the differential part.
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3.1. Derivatives and Taylor Expansion of Exact Solution

We start regarding derivatives required to realize Taylor expansions with respect to analytical
solutions of DAE system (1). As originally derived by Roche [13] they read for the differential part

y′ =f

y′′ =fyf + fz(−gz)−1gyf
y′′′ =fyy(f, f) + fyfyf + fyz

(
f, (−gz)−1gyf

)
+ fzy

(
(−gz)−1gyf, f

)
+ fy(−gz)−1gyy(f, f) + fz(−gz)−1gyfyf + fyfz(−gz)−1gyf
+ fz(−gz)−1gyfz(−gz)−1gyf + fzz

(
(−gz)−1gyf, (−gz)−1gyf

)
+ fz(−gz)−1gyz

(
f, (−gz)−1gyf

)
+ fz(−gz)−1gzy

(
(−gz)−1gyf, f

)
+ fz(−gz)−1gzz

(
(−gz)−1gyf, (−gz)−1gyf

)
y′′′′ =...

and for the algebraic part

z′ =(−gz)−1gyf
z′′ =(−gz)−1gzy

(
(−gz)−1gyf, f

)
+ (−gz)−1gzz

(
(−gz)−1gyf, (−gz)−1gyf

)
+ (−gz)−1gyy(f, f) + (−gz)−1gyz

(
f, (−gz)−1gyf

)
+ (−gz)−1gyfyf

+ (−gz)−1gyfz(−gz)−1gyf
z′′′ =...

All elementary differentials resulting within these derivatives of differential and algebraic part
can be described by Butcher’s theory of rooted trees. For this purpose, Roche [13] introduced the
set of differential algebraic rooted trees.

Definition 1. Let DAT = DATy ∪ DATz (DATy ∩ DATz = ∅) denote the set of differential
algebraic rooted trees recursively defined by

a) τy = ∈ DATy, τz = ∈ DATz;

b) [t1, ..., tm, u1, ..., un]y ∈ DATy,
if t1, ..., tm ∈ DATy and u1, ..., un ∈ DATz;

c) [t1, ..., tm, u1, ..., un]z ∈ DATz,
if t1, ..., tm ∈ DATy, u1, ..., un ∈ DATz and m+ n ≥ 2;

d) [t1]z ∈ DATz, if t1 ∈ DATy.

With [t1, ..., tm, u1, ..., un]y,z unordered (m+n)-tuples [4].

Regarding graphical representation, elements of DATy are characterized by a meager root and
elements of DATz are characterized by a fat root. In this context, [.]y denotes attaching a new
meager root and [.]z denotes attaching a new fat root to all sub-trees given within brackets.

Definition 2. The order of a tree t ∈ DATy or u ∈ DATz, denoted by ρ(t) and ρ(u), respectively,
is the number of its meager vertices [13].
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By the trees of set DAT all elementary differentials occurring in the derivatives for exact solution
of DAE problem (1) can be identified distinctly [4, 13].

Definition 3. Elementary differentials F (t) and F (u) that correspond to trees of the set DAT are
defined recursively by

a) F (τy) = f , F (τz) = (−gz)−1gyf ;

b) F (t) = ∂m+nf
∂ym∂zn (F (t1), ..., F (tm), F (u1), ..., F (un)),

if t = [t1, ..., tm, u1, ..., un]y ∈ DATy;

c) F (u) = (−gz)−1 ∂m+ng
∂ym∂zn (F (t1), ..., F (tm), F (u1), ..., F (un)),

if u = [t1, ..., tm, u1, ..., un]z ∈ DATz, m+ n ≥ 2;

d) F (u) = (−gz)−1gyF (t1), if u = [t1]z ∈ DATz.

Functions F (t) and F (u) are well defined as Definition 3 is unaffected by permutations of t1,
..., tm, u1, ..., un due to the symmetry of partial derivatives [4]. Some of these differentials occur
multiple times in derivatives of the given DAE system. In order to distinguish these elements
distinctly Roche introduced the set of monotonically labeled trees LDAT [13].

Definition 4. A tree t ∈ DATy or u ∈ DATz is called monotonically labeled if all of its meager
vertices are labeled by an integer i with 1 ≤ i ≤ ρ(t) or 1 ≤ i ≤ ρ(u), respectively, that monoton-
ically increases following any of its branches starting from the root. The set of all monotonically
labeled trees is denoted by LDAT , where LDAT = LDATy ∪ LDATz.

Based on these definitions, Taylor expansion of the analytical solution is given by derivatives of
y and z resulting from following theorem by Roche [13].

Theorem 1. Derivatives of an index-1 semi-explicit DAE system are given by

y(q)(x0) =
∑

t∈LDATy
ρ(t)=q

F (t)(y0, z0) and z(q)(x0) =
∑

u∈LDATz
ρ(u)=q

F (u)(y0, z0).

3.2. Derivatives of Numerical Solution

Based on elements of DAT derivatives of numerical solutions by generalized ROW-type method
(2) can be determined. Their derivation is given in analogy to steps described by Hairer and Wanner
[4] to obtain derivatives of ROW methods with exact Jacobian applied to DAEs. However, we will
adapt their approach taking into account arbitrary Jacobian approximations with respect to the
differential part.

In this context, interpreting numerical solutions given in (2a) as functions of step-size h deriva-
tives at h = 0 read [4]:

y
(q)
1 (0) =

s∑
i=1

bi(ki)
(q)(0) and z

(q)
1 (0) =

s∑
i=1

bi(k
alg
i )(q)(0). (3)

6
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Using Leibniz’ rule as well as Faà di Bruno’s formula, corresponding derivatives of stage-values ki
and kalgi defined by (2b) can be expressed by

(ki)
(q) = q

∑
t∈SLDATy

ρ(t)=q

∂m+nf(y0, z0)

∂ym∂zn

(
v
(µ1)
i , ..., v

(µm)
i , w

(ν1)
i , ..., w

(νn)
i

)

+ qAy

i∑
j=1

γij(kj)
(q−1) + qAz

i∑
j=1

γij(k
alg
j )(q−1) (4)

and

(kalgi )(q) =

(−gz)−10

i∑
j=1

ωij
∑

u∈SLDATz
ρ(u)=q
m+n≥2

∂m+ng(y0, z0)

∂ym∂zn

(
v
(µ1)
j , ..., v

(µm)
j , w

(ν1)
j , ..., w

(νn)
j

)

+ (−gz)−10 (gy)0(ki)
(q). (5)

when assuming all components computed at h = 0. Here, (ωij)
s
i,j=1 = B−1 with B = (βij)

s
i,j=1

and βij = αij + γij [4, 9]. Elements t ∈ SLDATy and u ∈ SLDATz correspond to special labeled
trees of DAT with orders ρ(t) and ρ(u). They are characterized by having no ramification except
at the root and fat vertices occurring just directly connected to the root or being the root itself
[4]. Parameters m and n denote the number of their sub-trees starting with a meager or fat root,
respectively. Besides, occurring derivatives of vi and wi defined by (2c) read

v
(µξ)
i =

i−1∑
κξ=1

αiκξ(kκξ)
(µξ) and w

(νξ)
i =

i−1∑
κm+ξ=1

αiκm+ξ
(kalgκm+ξ

)(νξ) (6)

where µξ denote orders of sub-trees tξ having a meager root and νξ denote orders of sub-trees uξ
having a fat root [4].

By inserting resulting formulations (4) and (5) into (3), derivatives of y1 and z1 can be given
explicitly. For the differential part they read

y′1 =
∑

bif

y′′1 =2 ·
∑

biαij · fyf + 2 ·
∑

biαij · fz(−gz)−1gyf

+ 2 ·
∑

biγij ·Ayf + 2 ·
∑

biγijAz(−gz)−1gyf

y′′′1 =3 ·
∑

biαijαik · fyy(f, f) + 3 ·
∑

biαijαik · fyz(f, (−gz)−1gyf)

+ 3 ·
∑

biαijαik · fzy((−gz)−1gyf, f)

+ 3 ·
∑

biαijαikfzz((−gz)−1gyf, (−gz)−1gyf)

+ 6 ·
∑

biαijαjk · fyfyf + 6 ·
∑

biαijαjk · fyfz(−gz)−1gyf

+ 6 ·
∑

biαijγjk · fyAyf + 6 ·
∑

biαijγjkfyAz(−gz)−1gyf

...
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while for the algebraic part they read

z′1 =
∑

bi(−gz)−1gyf

z′′1 =
∑

biωijαjkαjl · (−gz)−1gyy(f, f)

+
∑

biωijαjkαjl · (−gz)−1gyz(f, (−gz)−1gyf)

+
∑

biωijαjkαjl · (−gz)−1gzy((−gz)−1gyf, f)

+
∑

biωijαjkαjl · (−gz)−1gzz((−gz)−1gyf, (−gz)−1gyf)

+ 2 ·
∑

biαij · (−gz)−1gyfyf + 2 ·
∑

biαij · (−gz)−1gyfz(−gz)−1gyf

+ 2 ·
∑

biγij · (−gz)−1gyAyf + 2 ·
∑

biγij · (−gz)−1gyAz(−gz)−1gyf

z′′′1 =...

3.3. Trees and Elementary Differentials

Derivatives of the numerical solution by generalized ROW-type method (2) consider besides
exact differentials known for the analytical solution additional non-exact differentials. Non-exact
differentials are characterized by arbitrarily approximated Jacobian components Ay and Az. These
cannot be described by meager and fat vertices known for set DAT that correspond to exact
representations of f and (−gz)−1g already. Hence, a new type of vertices must be introduced to
identify the non-exact differentials by appropriate trees.

We describe this new type of vertices representing approximated differential components A using
a meager vertex framed by a square. Together with meager vertices describing exact differential
components f and fat vertices describing exact algebraic components (−gz)−1g introduced by Roche
[13] this enables to express all elementary differentials occurring for the numerical solution by
distinct trees without violating definition of set DAT . Analogously to trees known for the set
DAT , derivatives of f and g will be given by a branch leaving a meager or a fat vertex, respectively,
while derivatives of A will be described by a branch leaving a meager vertex with square frame. In
this context, any branch being followed by a meager vertex with or without a square frame now
corresponds to a derivative with respect to y while any branch being followed by a fat vertex still
corresponds to a derivative with respect to z.

Example.

Components of derivatives y′ and y′′ can be described by trees

Components of derivatives z′ and z′′ can be described by trees

8
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Constructing trees that consist just of meager and fat vertices is still given by rules of set DAT
according to Definition 1. However, new trees including additional meager vertices framed by a
square are not yet defined. In the following, we will refer to such trees representing non-exact
differentials with respect to DAE system (1) as approximated differential algebraic rooted trees.

Definition 5. Let ADATD = ADATDy ∪ ADATDz (ADATDy ∩ ADATDz = ∅) denote the set of
approximated differential algebraic rooted trees with respect to the differential part of DAE system
(1). Elements of ADATD include at least one meager vertex framed by a square representing an
arbitrary approximation to differential function f . Elements of ADATDy consider a meager root

with or without square frame, elements of ADATDz consider fat root.

For constructing elements of ADATD properties of trees used to describe W methods for ODEs
as considered in [4] can be applied. Hence, arbitrary approximations of fy and fz denoted by Ay
and Az can be described only by new vertices given within singly branched trees. They will never
be the center of a ramification and they will never be the end of a branch. This follows from (4).
Indeed, due to this property new trees can be determined by permuting a square frame over all
inner meager vertices given within single branches of trees resulting for DAT , including possible
singly branched meager roots.

Example.

∈ DATy yields trees , , ∈ ADATDy

∈ DATz yields tree ∈ ADATDz

Definition 6. Let Φ(t) = {t, t1, t2, ...} and Φ(u) = {u, u1, u2, ...} denote compilations of trees
characterized by following properties:

a) Φ(t) includes t ∈ DATy and all elements t1, t2, ... ∈ ADATDy that result from permuting a
square frame over all inner meager vertices given within single branches of t ∈ DATy and its
possible singly branched meager root.

b) Φ(u) includes u ∈ DATz and all elements u1, u2, ... ∈ ADATDz that result from permuting a
square frame over all inner meager vertices given within single branches of u ∈ DATz.

Remark 1. All elements of Φ(t) and Φ(u) equal t ∈ DATy and u ∈ DATz, respectively, when
using Ay = fy and Az = fz, i.e. replacing meager vertices with square frame by meager vertices
without square frame.

For convenience of subsequent definitions we describe construction of all trees representing dif-
ferentials of the numerical solution by a superior set that combines elements of DAT and ADATD.

Definition 7. Let CDATD = CDATDy ∪ CDATDz (CDATDy ∩ CDATDz = ∅) denote the set of

combined differential algebraic rooted trees characterized by CDATD = DAT ∪ADATD (DAT ∩
ADATD = ∅). The set is recursively defined by

a) τy = ∈ CDATDy , τz = ∈ CDATDz ;

9
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b) [t1, ..., tm, u1, ..., un]y ∈ CDATDy ,

if t1, ..., tm ∈ CDATDy and u1, ..., un ∈ CDATDz ;

c) [t1]ỹ ∈ CDATDy , if t1 ∈ CDATDy ;

d) [u1]ỹ ∈ CDATDy , if u1 ∈ CDATDz ;

e) [t1, ..., tm, u1, ..., un]z ∈ CDATDz ,
if t1, ..., tm ∈ CDATDy and u1, ..., un ∈ CDATDz , m+ n ≥ 2;

f) [t1]z ∈ CDATDz , if t1 ∈ CDATDy

with [t1, ..., tm, u1, ..., un]y,ỹ,z corresponding to unordered (m+n)-tuples.

Remark 2. By Definitions 1 and 7 it holds ADATD = CDATD\DAT.

Remark 3. CDATDy = DATy ∪ADATDy and CDATDz = DATz ∪ADATDz .

Remark 4. Φ(t) and Φ(u) are subsets of CDATDy and CDATDz , respectively.

Regarding graphical representation, [.]y denotes attaching a meager root and [.]z denotes at-
taching a fat root to all sub-trees given within brackets as known for set DAT . Analogously, [.]ỹ
denotes attaching a meager root framed by a square. By definition, all trees t characterized by a
meager root with or without square frame correspond to elements of CDATDy while all trees u with

a fat root correspond to elements of CDATDz .

Example.

t1 t2 u1
are sub-trees that enable to construct trees such as

t = [t2]y ∈ CDATDy u = [t1, t2]z ∈ CDATDz t = [u1]ỹ ∈ CDATDy

Definition 8. The order of a tree t ∈ CDATDy or u ∈ CDATDz , denoted by ρ(t) or ρ(u), re-
spectively, corresponds to the number of all its meager vertices given with and without a square
frame.

Trees of set CDATD enable to identify all exact and non-exact differentials resulting for deriva-
tives of DAE system (1) regarding its analytical solution and numerical computation by generalized
ROW-type method (2).

Definition 9. The elementary differentials F (t) and F (u) corresponding to trees of the set CDATD

are defined recursively by

a) F (τy) = f , F (τz) = (−gz)−1gyf ;

10
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b) F (t) = ∂m+nf
∂ym∂zn (F (t1), ..., F (tm), F (u1), ..., F (un)),

if t = [t1, ..., tm, u1, ..., un]y ∈ CDATDy ;

c) F (t) = AyF (t1), if t = [t1]ỹ ∈ CDATDy ;

d) F (t) = AzF (u1), if t = [u1]ỹ ∈ CDATDy ;

e) F (u) = (−gz)−1 ∂m+ng
∂ym∂zn (F (t1), ..., F (tm), F (u1), ..., F (un)),

if u = [t1, ..., tm, u1, ..., un]z ∈ CDATDz , m+ n ≥ 2;

f) F (u) = (−gz)−1gyF (t1), if u = [t1]z ∈ CDATDz .

Remark 5. Analogously to Definition 3, the elementary differentials in Definition 9 are unaffected
by permutation of t1, ..., tm, u1, ..., un due to symmetry of partial derivatives. Hence, F (t) and F (u)
are well defined [4, 13].

Example.

corresponds to differential
F (t) = fyAz(−gz)−1gzy((−gz)−1gyy(f, f), Ayf)

As for derivatives of the exact solution, elementary differentials can occur several times within
a derivative of the numerical solution even with respect to non-exact differentials. In order to
identify these multiple differentials the concept of labeled trees given in Definition 4 is also applied
to elements of CDATD.

Definition 10. LCDATD denotes the set of monotonically labeled rooted trees of CDATD with
LCDATD = LCDATDy ∪LCDATDz . Elements t ∈ LCDATDy and u ∈ LCDATDz are characterized
by integer labels i with 1 ≤ i ≤ ρ(t) and 1 ≤ i ≤ ρ(u). Labels are given for each meager vertex
with and without square frame and monotonically increase for every branch starting from the root.

Example.

can be monotonically labeled by:
1 2

3

,
2 1

3

,
3 1

2

Remark 6. It holds LCDATD = LDAT ∪ LADATD with LADATD the set of monotonically
labeled trees of ADATD.

Remark 7. Labeling of trees t ∈ LDATy and u ∈ LDATz is adopted by every element of corre-
sponding subsets Φ(t) and Φ(u). Thus, for Ay = fy and Az = fz all elements of Φ(t) and Φ(u)
equal t ∈ LDATy and u ∈ LDATz, respectively.

Example.

2 1
3

4

u ∈ LDATz

yields 2 1
3

4

,

u1 ∈ LADATDz

2 1
3

4

,

u2 ∈ LADATDz

2 1
3

4

u3 ∈ LADATDz
Φ(u) = {u, u1, u2, u3}

11
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3.4. Taylor Expansion of the Numerical Solution

In order to completely describe Taylor expansions of the numerical solution by generalized
ROW-type method (2) we first define corresponding coefficients.

Definition 11. Let φi(t) and φi(u) be the coefficients in front of differentials occurring for stage-
value derivatives of generalized ROW-type method (2). Regarding trees of CDATD, φi(t) and
φi(u) are recursively defined by

a) φi(τy) = 1, φi(τz) = 1;

b) φi(t) =
∑
αiκ1 · ... · αiκm · αiκm+1 · ... · αiκm+n ·

φκ1
(t1) · ... · φκm(tm) · φκm+1

(u1) · ... · φκm+n
(un),

if t = [t1, ..., tm, u1, ..., un]y ∈ CDATDy ;

c) φi(t) =
∑
γiκφκ(t1), if t = [t1]ỹ ∈ CDATDy ;

d) φi(t) =
∑
γiκφκ(u1), if t = [u1]ỹ ∈ CDATDy ;

e) φi(u) =
∑
ωij · αjκ1

· ... · αjκm · αjκm+1
· ... · αjκm+n

·
φκ1

(t1) · ... · φκm(tm) · φκm+1
(u1) · ... · φκm+n

(un),
if u = [t1, ..., tm, u1, ..., un]z ∈ CDATDz , m+ n ≥ 2;

f) φi(u) = φi(t1), if u = [t1]z ∈ CDATDz .

Given sums run over all j, κ, κ1, ..., κm, κm+1, ..., κm+n.

Definition 12. Let γ(t) and γ(u) be the integer coefficients in front of differentials occurring for
stage-value derivatives of generalized ROW-type method (2). Regarding trees of CDATD, γ(t) and
γ(u) are recursively defined by

a) γ(τy) = 1, γ(τz) = 1;

b) γ(t) = ρ(t) · γ(t1) · ... · γ(tm) · γ(u1) · ... · γ(un),
if t = [t1, ..., tm, u1, ..., un]y ∈ CDATDy ;

c) γ(t) = ρ(t)γ(t1), if t = [t1]ỹ ∈ CDATDy ;

d) γ(t) = ρ(t)γ(u1), if t = [u1]ỹ ∈ CDATDy ;

e) γ(u) = γ(t1) · ... · γ(tm) · γ(u1) · ... · γ(un),
if u = [t1, ..., tm, u1, ..., un]z ∈ CDATDz , m+ n ≥ 2;

f) γ(u) = γ(t1), if u = [t1]z ∈ CDATDz .

Example.

i

j
p

q

kl

m n

yields
φi(t) =

∑
γijαjkωklαlmαlnαjpγpq

and
γ(t) = 120

Based on Definitions 9, 11 and 12 derivatives of stage-values ki and kalgi corresponding to (4)
and (5) can be formulated using trees of LCDATD.

12
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Theorem 2. Stage-value derivatives for generalized ROW-type method (2) read

(ki)
(q) =

∑
t∈LCDATDy

ρ(t)=q

γ(t)φi(t)F (t)(y0, z0)

(kalgi )(q) =
∑

u∈LCDATDz
ρ(u)=q

γ(u)φi(u)F (u)(y0, z0)

with elementary differentials and coefficients according to Definitions 9, 11, 12.

Proof. Analogously to ROW methods for DAEs given in [4] by induction on q for (4) and (5) and
rearranging resulting summations afterwards. �

Based on Theorem 2, Taylor expansions of numerical solutions by (2) can finally be constructed
considering subsequent Theorem 3.

Theorem 3. Numerical solution of generalized ROW-type method (2) satisfies

y
(q)
1

∣∣∣
h=0

=
∑

t∈LCDATDy
ρ(t)=q

γ(t) ·
s∑
j=1

biφi(t)F (t)(y0, z0)

z
(q)
1

∣∣∣
h=0

=
∑

u∈LCDATDz
ρ(u)=q

γ(u) ·
s∑
j=1

biφi(u)F (u)(y0, z0)

with elementary differentials and coefficients according to Definitions 9, 11, 12.

4. Order Conditions

By comparing components of Taylor expansions for analytical and numerical solution according
to Theorem 1 and Theorem 3 conditions for realizing generalized ROW-type method (2) up to a
certain order can be determined.

Theorem 4. A generalized ROW-type method (2) consistent of order q satisfies

y(x0 + h)− y1 = O(hq+1) iff
s∑
i=1

biφi(t) = 1/γ(t) for t ∈ DATy, ρ(t) ≤ q

s∑
i=1

biφi(t) = 0 for t ∈ ADATDy , ρ(t) ≤ q

z(x0 + h)− z1 = O(hq) iff
s∑
i=1

biφi(u) = 1/γ(u) for u ∈ DATz, ρ(u) ≤ q

s∑
i=1

biφi(u) = 0 for u ∈ ADATDz , ρ(u) ≤ q

13
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with coefficients φi(t), φi(u) and γ(t), γ(u) according to Definitions 11 and 12.

Remark 8. Theorem 4 is given in analogy to descriptions by Hairer and Wanner regarding W
methods for ODEs and ROW methods for DAEs [4].

Remark 9. We assume gz to be regular in a neighborhood of solution y(x), z(x) resulting from
DAE system (1) with consistent initial values y(x0), z(x0). Thus, consistency of order q yields
convergence of order q for both differential and algebraic part if the stability function satisfies
|R(∞)| < 1. This follows from the Global Convergence Theorem 1 by Deuflhard, Hairer, Zugck
[1, 4, 12].

Numerous order conditions of generalized ROW-type method (2) can be saved as many trees of
CDATD yield identical coefficients.

Proposition 1. Analogously to Proposition (4.6) by Roche [13] conditions for trees including fat
vertices directly followed by a meager vertex with or without square frame are redundant. That
is, order conditions for trees u = [t1]z with u ∈ CDATDz are equal to conditions of their sub-tree
t1 ∈ CDATDy .

Proof. By Theorem 4 together with f) given in Definitions 11 and 12. �

Example.

, , yield conditions equal to

Proposition 2. Order conditions of trees t = [[t1, ..., tm, u1, ..., un]z]ỹ regarding m + n ≥ 2 are
already satisfied by a combination of conditions resulting for trees t∗ = [t1, ..., tm, u1, ..., un]y and
t∗∗ = [[t1, ..., tm, u1, ..., un]z]y with t, t∗, t∗∗, t1, ..., tm ∈ CDATDy and u1, ..., un ∈ CDATDz . It holds:

γ(t) ·
∑
biφi(t) = γ(t∗) ·

∑
biφi(t

∗)− γ(t∗∗) ·
∑
biφi(t

∗∗).

Proof. By Theorem 4 together with b), d), e) in Definitions 11 and 12, taking into account
B = (βij)

s
i,j=1 with βij = αij + γij and (ωij)

s
i,j=1 = B−1. �

Example.

t = i

jk
ml

yields condition∑
biγijωjkαklαkm = 0

t∗ = i
jk

yields condition∑
biαijαik = 1/3

t∗∗ = i

jk
ml

yields condition∑
biαijωjkαklαkm = 1/3∑

biγijωjkαklαkm =
∑
bi(βij − αij)ωjkαklαkm

=
∑
biβijωjkαklαkm −

∑
biαijωjkαklαkm

=
∑
biαijαik −

∑
biαijωjkαklαkm = 1/3− 1/3 = 0

14
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Table 3 shows conditions that result for generalized ROW-type method (2) up to order four.
In order to identify characteristic properties below, it includes elements that can be saved by
Proposition 2. This enables to completely define subsets Φ(t) and Φ(u) that result for occurring
trees t ∈ DATy and u ∈ DATz. Elements belonging to such subsets are given between horizontal
lines. However, conditions necessarily required for implementation are additionally marked.

The conditions listed in Table 3 directly cover order conditions known for explicit RK schemes
for ODEs (RK) [3], W methods for ODEs (W) [15] and ROW-type methods for DAEs introduced
by Rentrop, Roche, Steinebach (Re/Ro/St) [12]. Besides, there are up to ten additional conditions
(AC).

Due to listed elements of set ADATD, order conditions of ROW methods for DAEs by Roche
[13] are implicitly included. They result replacing arbitrary approximations Ay and Az by their
exact representatives fy and fz, i.e. replacing meager vertices with square frame by meager vertices
without square frame. Doing so, trees of ADATD following a tree of DAT in Table 3 will turn
into this element of DAT . As a consequence, all elements of subsets Φ(t) and Φ(u) given between
horizontal lines in Table 3 then yield same elementary differentials. Hence, their coefficients sum
up to conditions introduced by Roche [13].

By this property, conditions for trees of ADATD can be interpreted as coupling conditions. In
the DAE case, they connect the ROW method by Roche [13] resulting for Ay = fy, Az = fz with
the ROW-type method by Rentrop, Roche, Steinebach [12] resulting for Ay = 0, Az = 0. Moreover,
they supplement conditions by Rentrop, Roche, Steinebach [12] to regard arbitrarily approximated
Jacobian entries of the differential part. In the ODE case, they connect ROW methods resulting
for Ay = fy and RK methods resulting for Ay = 0.

By Proposition 2 seven of the ten additional conditions listed in Table 3 can be saved. Remaining
additional conditions are (26), (33) and (40). Condition (40) follows directly from (39) and condition∑
biωijαjkαjlβlm = 1/2 originally introduced by Roche [13] as βij = αij+γij . However, conditions

(26) and (33) seem to be new conditions, not considered in literature so far.
New conditions occur not before order four. Thus, a corresponding method of order three can

be realized by known conditions (1) - (9) and (37) already.

Theorem 5. Any stiffly accurate ROW-type method of order three with four internal stages that
satisfies

• conditions of W methods for ODEs (1)-(8) [4, 15], plus

• conditions by Scholz [14] or, equivalently, Ostermann and Roche [8]

enables to save conditions (9) and (37) and thus proves to be appropriate for realizing generalized
ROW-type method (2) up to order three.

Remark 10. A stiffly accurate ROW-type method is characterized by [9]

βsi = bi, i = 1, ..., s, and αs =

s−1∑
j=1

αsj = 1.

Remark 11. Relevant conditions by Scholz [14] or Ostermann and Roche [8] reduce effects of order
reduction. They read [9]

bTBj(2B2e− α2) = 0, 1 ≤ j ≤ 2
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with B = (βij)
s
i,j=1, α2 = (α2

1, ..., α
2
s)
T , αi =

∑i−1
j=1 αij , e = (1, ..., 1)T ∈ Rs [9]. For third order

schemes with four stages satisfying (1) - (8) they simplify to [9]

(38a) b4β32β43α
2
2 = 2γ4 − 2γ3 +

1

3
γ2

(39a) b3β32α
2
2 + b4(β42α

2
2 + β43α

2
3) = 2γ3 − 3γ2 +

2

3
γ

(40a) b4β43β32β21 = 0.

For stiffly accurate schemes (38a) and (39a) are equal. Thus, it follows [9]

(38b) b3β32α
2
2 = 2γ3 − 2γ2 +

1

3
γ

(40b) b3β32β2 = 0.

Remark 12. As is known, ROW-type methods of order three with four stages satisfying (1) - (8)
plus (38a) - (40a) also fulfill (37) [9]. Hence, proving Theorem 5 just requires to show that (9) is
satisfied by (1) - (8) and (38b), (40b).

Proof. We assume the stiffly accurate case and four internal stages. By using (ωij)
s
i,j=1 = B−1

with B = (βij)
s
i,j=1, βij = αij + γij condition (9) thus reads

b3α32α
2
2/γ + b4α42α

2
2/γ + b4α43α

2
3/γ − b4α43β32α

2
2/γ

2 = 1/3.

Multiplying by γ, considering b4 = γ and b3α32α
2
2 + b4α42α

2
2 = 1

6α2 − b4α43α3α2 resulting from
condition (5) after multiplying by α2, condition (9) reads

1
6α2 − b4α43α3α2 + b4α43α

2
3 = 1

3γ + α43β32α
2
2.

Using b4 = γ and α2 = 2γ that results from (38b) together with summation of (5) and (6) including
(2), above equation reads after division by γ and α43 6= 0

−2γα3 + α2
3 = 4γβ32.

Replacing the right hand side by 4γβ32 = ( 1
3 − 2γ+ 2γ2)/b3 that results from two times the sum of

(5) and (6) including (2) and α2 = 2γ we get

−2γb3α3 + b3α
2
3 = 1

3 − 2γ + 2γ2.

Replacing b3α
2
3 given on left hand side by b3α

2
3 = 1

3 − γ − b2α
2
2 that results from condition (4),

reformulating after division by α2 = 2γ finally yields

b2α2 + b3α3 = 1
2 − γ

that is condition (2) in the stiffly accurate case regarding four internal stages. Hence, (9) can be
completely described by (1)-(8) and (38b), (40b). �
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Table 4: Properties for different sets of coefficients.

Set p s W Ro Re/Ro/St Sc Stiffly Acc. R(∞) Ref.

ROS34PRW 3 4 • • • • Yes 0 [10]
ROS34PW2 3 4 • • • • Yes 0 [9]
ROS34PW1a 3 4 • • • No 0 [9]
ROS34PW1b 3 4 • • • No 0 [9]

RKF4DA 3 6 • No 0 [12]
RODASP 4 6 • • Yes 0 [16]

W: Conditions by Steihaug/Wolfbrandt [15], Ro: Conditions by Roche [13], Re/Ro/St: Conditions by
Rentrop/Roche/Steinebach [12],

Sc: Conditions by Scholz [14] (see Remark 11)

5. Numerical Results

We investigate orders of convergence by comparing sets of coefficients listed in Table 4. For this
purpose, we apply an artificial DAE test problem given by

y′1 = −z
3
1

y23

(
3(y2 − y1 + y−13 −

z1
10

)2 +
1

5
(y2 − y1 + y−13 −

z1
10

)

)
− y4 (7a)

y′2 =
1

10
z1 − y4 (7b)

y′3 = z31

(
3(y2 − y1 + y−13 −

z1
10

)2 +
1

5
(y2 − y1 + y−13 −

z1
10

)

)
(7c)

y′4 = y1 − y−13 (7d)

0 = (y1 − y−13 )2 + y24 −
1

10
z1 (7e)

with consistent initial values y1(0) = 2, y2(0) = 2, y3(0) = 1, y4(0) = 0, z1(0) = 10 and exact
solution

y1(x) = (100x2(10x+ 1) + 1)−1 + cos(x), y2(x) = 1 + x+ cos(x),

y3(x) = 100x2(10x+ 1) + 1, y4(x) = sin(x), z1(x) = 10.

DAE system (7) satisfies the index-1 assumption as gz = −1/10. It will be solved up to
xend = 1.5 applying four test cases. These tests correspond to computations by generalized ROW-
type method (2) using different approximations for Jacobian entries of the differential part Ay and
Az. Each test case is solved applying constant step-sizes h = 1/(1000 · 2k) with k = 0, ..., 6 and
analytically determined Jacobians. For determining the order of convergence, we compute global
errors in discrete L2-norm by err = ‖ỹnum(xend) − ỹana(xend)‖2 where ỹ = (y, z)T . Terms ỹnum
and ỹana denote the numerical and analytical solution, respectively. Order of convergence is then
given by q = log2(err2h/errh) [9].

Among the sets of coefficients in Table 4, just ROW34PW2 and ROS34PRW satisfy all conditions
required for realizing a generalized ROW-type method (2) up to order three. Hence, we expect
ROS34PW2 and ROS34PRW to preserve order for any choice of Ay and Az given below. In
contrast, remaining coefficient sets should cause order reduction except for special choices of Ay
and Az.
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Figure 1: Results for Test Case 1 (left) and Test Case 2 (right).

5.1. Test Case 1: Applying Standard ROW Method

We solve DAE system (7) regarding Ay = fy and Az = fz, so we compute the full Jacobian
with every time-step. Hence, generalized ROW-type method (2) corresponds to a ROW method
for DAEs as defined by Roche [13].

Results for the different coefficient sets are shown in Figure 1 (left). They all preserve order
of convergence except for RKF4DA that reduces order to one. Order reduction of RKF4DA is
due to its assignment solving differential equations of a DAE system by its underlying RK method
exclusively. Thus, it does not satisfy all conditions required to solve the differential part implicitly.

5.2. Test Case 2: Applying Constant Jacobian Regarding Differential Part

We choose Ay = fy +O(h) and Az = fz +O(h) by keeping Jacobian entries of the differential
part constant for several time-steps. This approach corresponds to an usual strategy of W methods
for ODEs [4, 18], however, now regarding a first attempt to the DAE case. The full Jacobian of
(7) is updated just with every tenth step. For all other steps updates are reduced to algebraic part
(7e).

Results are given in Figure 1 (right). Except for RODASP and RKF4DA all sets of coeffi-
cients preserve order. Order of RODASP reduces to three and order of RKF4DA reduces to one.
ROS34PW1a and ROS34PW1b preserve order three although they do not satisfy condition (9) that
is required to realize generalized ROW-type method (2). This is due to the given special choice of
Jacobian approximation. Choosing Az = fz + O(h) conditions (9) and (10) combine to satisfied
condition (4). Condition (10) itself switches to higher order.

5.3. Test Case 3: Applying Explicit Integration of Differential Part

We compute DAE system (7) with Ay = 0 and Az = 0, that is all Jacobian entries of the dif-
ferential part are neglected. Remaining components are updated with every time-step. Hence, the
strategy by Rentrop, Roche, Steinebach [12] is realized, using the underlying explicit RK method
to solve differential equations while applying the implicit ROW method to compute algebraic con-
straints.
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Figure 2: Results for Test Case 3 (left) and Test Case 4 (right).

Results are given in Figure 2 (left). ROS34PRW, ROS34PW2 and RKF4DA reach full order.
The order for remaining coefficient sets drops down: Order of ROS34PW1a and ROS34PW1b
reduces to two, order of RODASP reduces to one. ROS34PW1a and ROS34PW1b attain higher
order than RODASP because they satisfy all W method conditions up to order three. Thus,
condition (9) is the first violated. However, RODASP violates condition (2) already.

5.4. Test Case 4: Applying Partial Explicit Integration of Differential Part

DAE system (7) is solved using Ay = (fS)y and Az = (fS)z. So, Jacobian entries with respect
to the differential part are reduced to components assumed to be stiff. Explicit solution can thus
be applied partially to single elements of the differential part. Hence, an adapted ROW-AMF
scheme for DAEs as presented in [6] is used that allows for additive splitting and partitioning of
given differential equations. Regarding (7), we neglect Jacobian entries that result for y4 in (7a)
and (7b). Also, we neglect all entries resulting for (7c). So, additive splitting and partitioning
are combined, solving these components explicitly. Remaining elements are solved implicitly using
updates with every time-step.

Results are shown in Figure 2 (right). ROS34PRW and ROS34PW2 are the only coefficient sets
that preserve full order. ROS34PW1a and ROS34PW1b reduce order to two. RODASP reduces
order to three for first steps, afterwards to values smaller than one. RKF4DA reduces order to one.

6. Conclusion and Outlook

We introduced a generalized ROW-type method for index-1 DAEs that allows for arbitrarily
approximated Jacobian entries with respect to the differential part. Hence, it is a first attempt of
realizing W methods for DAEs. Order conditions were derived using a consistent approach based
on Butcher’s theory of rooted trees that includes a new type of vertices to express occurring non-
exact differentials. Resulting order conditions include known conditions of different schemes covered
and introduce new conditions for realizing schemes of higher order. Numerical tests showed the
relevance of satisfying all conditions predicted when using arbitrarily approximated Jacobian entries
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with respect to the differential part of DAE problems, especially when realizing additive splitting
and partitioning. Only ROS34PRW and ROS34PW2 that satisfy all conditions for a generalized
ROW-type method of order three preserved order for each Jacobian approximation applied. Other
sets of coefficient showed order reduction unless special approximations were considered.

Continuative works will focus on trying to realize a set of coefficients for generalized ROW-type
methods up to order four. As well, we will try to extend the approach introduced to additional
approximations of Jacobian entries given with respect to the algebraic part.
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