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Abstract

In this article we combine high-order (HO) finite difference discretisations with alternating direction
implicit (ADI) schemes for parabolic partial differential equations with mixed derivatives in a sparse
grid setting. In each implicit leg of the ADI schemes, we propose a high-order-compact (HOC)
discretisation, such that only tridiagonal systems have to be solved. With the help of HO spatial
discretisations and ADI schemes solutions with second order accuracy in time and fourth order
accuracy in space can be computed. In order to reduce the number of involved grid points we use
the combination technique to construct the so called sparse grid solution. The theoretical findings
are illustrated by numerical examples with European basket options.

1. Introduction

High dimensional parabolic partial differential equations (PDEs) arise in many fields of science,
for example in computational fluid dynamics or in computational finance for pricing derivatives,
e.g., which are driven by a basket of underlying assets. The exponentially growing number of
grid points in a tensor based grid makes it computationally demanding to solve problems in a
high dimensional setting. This growing complexity leads to unreasonable long run-times and an
excessive memory consumption. Even for a moderate number of spatial dimensions the so called
curse of dimensionality shows its effects very clearly. In this article we combine three numerical
methods in order to solve the equation numerically and to cope with the curse of dimensionality:

High-order-compact (HOC) schemes exploiting the structure of the governing partial differential
equation were proposed in [1, 7, 9, 21] to achieve a high order of consistency. Compared to central
standard high-order schemes relying on broad stencils, the compactness of HOC schemes signif-
icantly reduces the computational effort, while having the same order of consistency. However,
in the high dimensional case the sparsity is deteriorated. With operator splitting techniques, e.g.
Locally-One-Dimensional (LOD) or Alternating-Direction-Implicit (ADI) schemes, the discretisa-
tion matrix can be decomposed into tridiagonal systems, which can be solved sequentially in linear
run-time.

The combination technique can be employed to construct the sparse grid solution [10, 27], which
only has O

(
h−1 log(h−1)d−1

)
nodes compared to O(h−d) nodes using the full grid, where d denotes

the dimension of the problem. Thus, it suffers from the curse of dimensionality in a much lower
extent. The combination technique is based on linearly combining an anisotropic sequence of
solutions such that low order error terms cancel out. This results in a pointwise accuracy of
O
(
hp log(h−1)d−1

)
if a p-th order scheme is used to compute each sub-solution. The combination

technique has successfully been applied to option pricing problems in [24, 27] by Reisinger and
Leentvaar, who use spatial discretisations of order two and employ grid stretching as well as grid
transformation techniques. In their numerical experiments the sparse grid solution outperforms the
full grid solution and underlines the advantages of the combination technique in terms of accuracy
versus computationally effort.
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dependent coefficients

∂u

∂t
+ Lu = 0, (1)

where L is an elliptic operator of the form

Lu =

d∑

i=1

ai(x, t)∂
2u

∂x2
i
+

d∑

i,j=1
i 6=j

bi,j(x, t) ∂2u
∂xi∂xj

+

d∑

i=1

ci(x, t) ∂u
∂xi

on a rectangular domain Ωd×Ωt with suitable initial and boundary data. In the spatial domain we
use a fourth order scheme, which provides high accurate solutions. The time domain is discretised
via ADI splitting, such that the discretisation matrix is efficiently decomposed into a sequence
of sparse matrices. The linear systems occurring in the algorithm can then be solved in linear
run-time. To further reduce the number of grid nodes, we construct a sparse grid solution using
the combination technique. This significantly reduces the number of degrees of freedom, while
maintaining a high accuracy.

The article is organised as follows: in Section 2 we give an introduction to four well known ADI
schemes. In Section 3 we carry over the idea of dimensional splitting to the semi-discrete (space
discretisation) HO representation. Based on the stability results for second-order ADI schemes
in two spatial dimensions, we perform a von Neumann stability analysis for HO-ADI schemes
in the case of frozen coefficients. For the cases of three and four dimensional spatial domains
we investigate the stability behaviour experimentally. A brief introduction of the combination
technique and sparse grids is followed by numerical examples. We apply the numerical schemes to
the multi-dimensional Black-Scholes PDE to price European basket options.

2. ADI schemes

We consider numerical time integration of the PDE (1)

u′(t) = F (u(t)), t > 0,

with suitable initial and boundary data and u only depending on the time t. While fully implicit
schemes result in a non-sparse linear equation system, which is very expensive to solve, explicit
time-stepping suffers from restrictions on the time step-size to ensure stability. For an effective
time discretisation of this semi-discrete problem setting ADI schemes have been discussed in the
literature [4, 5, 6, 19, 20], relying on a decomposition of F

F (u(t)) = F0(u(t)) + F1(u(t)) + ...+ Fd(u(t)).

In this paper F0 stems from all mixed derivatives and Fi from all unidirectional contributions in the
i-th coordinate direction of PDE (1) for i = 1, ..., d. In the case of a finite difference discretisation
the mixed derivatives lead to broad stencils, which will be treated explicitly. The Fis for i = 1, ..., d
can be discretised with a compact three point stencil and will be treated implicitly. We consider
four ADI schemes.
Douglas scheme (DO):





Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

un+1 = Yd.

(2)

Craig-Sneyd scheme (CS):




Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F0(Yd)− F0(un))

Ỹi = Ỹi−1 + θ∆t

(
Fi(Ỹi)− Fi(un)

)
for i = 1, ..., d

un+1 = Ỹd.

(3)
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Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

Ŷ0 = Y0 + θ∆t (F0(Yd)− F0(un))

Ỹ0 = Ŷ0 + ( 12 − θ)∆t (F (Yd)− F (un))

Ỹi = Ỹi−1 + θ∆t

(
Fi(Ỹi)− Fi(un)

)
for i = 1, ..., d

un+1 = Ỹd.

(4)

Hundsdorfer-Verwer scheme (HV):




Y0 = un +∆tF (un),

Yi = Yi−1 + θ∆t (Fi(Yi)− Fi(un)) for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F (Yd)− F (un))

Ỹi = Ỹi−1 + θ∆t

(
Fi(Ỹi)− Fi(Yd)

)
for i = 1, ..., d

un+1 = Ỹd,

(5)

where ∆t > 0 is the step size in time, un ∼ u(n∆t) and θ > 0. The Douglas scheme was initially
developed for application to the heat equation, see [5], and exhibits order two in time if θ = 1

2
and F0 = 0, order one otherwise. In the case of θ = 1

2 the method is known as the Douglas
[5] and Brian [2] scheme, while it has also been considered by Douglas in [6] for θ = 1, F0 = 0.
The Craig-Sneyd scheme and the modified Craig-Sneyd scheme can be seen as an extension of the
Douglas scheme. The Craig-Sneyd scheme was introduced in [4] and has order two in time if θ = 1

2
independent of F0. The modified Craig-Sneyd scheme was defined by in’t Hout and Welfert in [19]
and exhibits order two in time for any θ. Please note, that for θ = 1

2 the modified Craig-Sneyd
scheme reduces to the Craig-Sneyd scheme. The Hundsdorfer-Verwer scheme was introduced in
[15] and shows consistency of order two for arbitrary θ. A small θ value in general leads to a
more accurate solution, but might cause instabilities if chosen too small. Hence, it is important to
carefully determine bounds to ensure a high accuracy, as well as an unconditional stable bahaviour.

In order to analyse the stability of the schemes, they are applied to the linear scalar test equation

u′(t) = (λ0 + λ1 + ...+ λd)u(t),

with complex values λi for i = 0, 1, ..., d. Let the stability matrix R of each of the scheme be given,
such that

un+1 = Run.

By application to the test equation R reduces to the scalar factor r(z0, z1, ..., zd) with zi = ∆tλi

for i = 0, 1, ..., d and the numerical scheme is stable iff

|r| ≤ 1

is fulfilled. Defining

z = z0 + z1 + ...+ zd, p = (1− θz1) · (1− θz2) · ... · (1− θzd)

the scalar functions r for the ADI schemes (2) - (5) are given by

rDO(z0, z1, ..., zd) = 1 + z
p , rCS(z0, z1, ..., zd) = 1 + z

p + 1
2
z0 z
p2 ,

rMCS(z0, z1, ..., zd) = 1 + z
p + θ z0 z

p2 + ( 12 − θ) z
2

p2 , rHV (z0, z1, ..., zd) = 1 + 2 z
p − z

p2 + 1
2
z2

p2 .

Conditions on θ ensuring unconditional stability have been derived in the pure diffusion case with
two and three spatial dimensions [18, 19]. For higher dimensions necessary lower bounds could
be given in [18], but it is not clear if these are sufficient. In [17, 20, 23] the stability of these
four schemes is analysed for convection-diffusion equations. There the following conditions for two
dimensional problems have been derived:

3
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Re(z1) ≤ 0, Re(z2) ≤ 0 and |z0| ≤ 2
√

Re(z1) ·Re(z2) (6)

hold for z0, z1, z2 ∈ C and θ ≥ 1
2 , then |rDO| ≤ 1 and |rCS | ≤ 1 holds. Mishra [17] shows for

F0 = 0 that for the modified Craig-Sneyd scheme it holds |rMCS(0, z1, z2)| ≤ 1 for all z1, z2 ∈ C
with negative real part Re(z1) ≤ 0, Re(z2) ≤ 0 if and only if θ ≥ 1

4 . For z0 ∈ R and z1, z2 ∈ C
fulfilling (6), he derives the necessary stability condition θ ≥ 2

5 . However, the scheme has been
applied successfully to convection-diffusion equations with mixed derivatives in [16] even for θ ≥ 1

3 .
An experimental analysis of this observation can be found in [17].

For pure diffusion equations stability could be shown in the three dimensional case [18]:

DO: θ ≥ max

{
1
2 ,

2(2γ+1)
9

}
, CS: θ ≥ 1

2 ,

MCS: θ ≥ max

{
1
4 ,

2
3 (2γ + 1)

}
, HV: θ ≥ max

{
1
4 ,

2γ+1

4+2
√
3

}
,

for a parameter γ ∈ [0, 1], which describes the relative size of the mixed derivative coefficient

|aij | ≤ γ
√
aiiajj for all i 6= j,

where A = (aij) denotes the symmetric, positive semi-definte diffusion coefficient matrix. In the
higher dimensional case necessary bounds on θ could be found [18]:

DO: θ ≥ max

{
1
2 ,

1
2 (1− 1

d )
d−1((d− 1)γ + 1)

}
, CS: θ ≥ max

{
1
2 ,

1
2 (1− 1

d )
ddγ

}
,

MCS: θ ≥ max

{
1
4 ,

1
2

(d− 1)γ + 1

1 + (1 + 1
d−1 )

d−1

}
, HV: θ ≥ max

{
1
4 ,

1
2ad((d− 1)γ + 1)

}
,

where ad ∈ (0, 1
2 ) is the unique solution of the equation 2ad (1 + 1−ad

d−1 )d−1 − 1 = 0. In [12]
the stability for convection-diffusion problems with three spatial dimensions was experimentally
analysed. The bounds derived for pure diffusion equations turned out to lead to a stable behaviour
in case of the DO, CS and MCS scheme. For the HV scheme with θ = 1

2 + 1
6

√
3 the error

decayed monotonically with ∆t. This θ-value was derived for two dimensional convection-diffusion
equations without mixed derivatives in [23].

3. High-order ADI schemes

In recent years high-order-compact finite difference schemes have been proposed to solve elliptic
[32] and parabolic [1, 7, 8, 21, 33] partial differential equations numerically. These schemes make
use of the structure and smoothness of the solution of the problem to algebraically derive a fourth-
order approximation while maintaining a compact stencil. This leads to a discretisation matrix
with small bandwidth and hence to a low computational effort and low memory consumption.
Combining this with ADI methods leads to an efficient time integrator. First, we introduce the
finite difference operators used throughout this paper, afterwards we derive a HOC discretisation
of the unidirectional contributions Fi for i = 1, ..., d and then apply them to the ADI framework
of the previous Section.

3.1. Finite difference operators

In this Section we discretise the occurring derivatives in (1) using central difference operators. With
Taylor expansions under the assumption that u is sufficiently smooth, a second order approximation
to the first and second derivative is given by

δ2xi
uk = 1

h2
i
(uk+1 − 2uk + uk−1) =

∂2u

∂x2
i

+O(h2
i ),

δ0xi
uk = 1

2hi
(uk+1 − uk−1) =

∂u

∂xi
+O(h2

i ),

4
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way, hence we use a broad stencil to approximate the first derivative with order four

δ̃0xi
uk = 1

12hi
(−uk+2 + 8uk+1 − 8uk−1 + uk−2) =

∂u

∂xi
+O(h4

i ).

Thus, we obtain a fourth order approximation of the cross derivative for i 6= j with

δ̃0xi
δ̃0xj

ukl =
1

144hihj

[
64
(
uk+1,l+1 − uk−1,l+1 + uk−1,l−1 − uk+1,l−1

)

+ 8
(
− uk+2,l+1 − uk+1,l+2 + uk−1,l+2 + uk−2,l+1

− uk−2,l−1 − uk−1,l−2 + uk+1,l−2 + uk+2,l−1

)

+ uk+2,l+2 − uk−2,l+2 + uk−2,l−2 − uk+2,l−2

]
.

3.2. HO finite differences

In this Section we derive HO approximation of the summands Fi arising in the decomposition of (1).
For brevity we streamline our notation and write ai := ai(x, t) and ci := ci(x, t), bi,j := bi,j(x, t).
The unidirectional contributions are given by

Fi(u) = ai
∂2u
∂x2

i
+ ci

∂u
∂xi

= f (7)

for i = 1, ..., d and some arbitrary smooth right hand side f . Inserting the finite difference operators
we obtain

Fi(uk) = aiδ
2
xi
uk − ai

h2
i

12
∂4u
∂x4

i
− ai

h4
i

360
∂6u
∂x6

i
+ ciδ

0
xi
uk − ci

h2
i

6
∂3u
∂x3

i
− ci

h4
i

120
∂5u
∂x5

i
+O(h6

i ) = fk. (8)

Since the leading error term in (8) is of order two, we can derive a fourth-order compact approxi-
mation if the third and fourth derivative is approximated with second order on the compact stencil.
In order to derive these approximations, we differentiate equation (7) once with respect to xi and
thus get

∂ai

∂xi

∂2u
∂x2

i
+ ai

∂3u
∂x3

i
+ ∂ci

∂xi

∂u
∂xi

+ ci
∂2u
∂x2

i
= ∂f

∂xi
.

Hence, the third derivative is given by the auxiliary equation

∂3u
∂x3

i
= 1

ai

∂f
∂xi

−
(

1
ai

∂ai

∂xi
+ ci

ai

)
∂2u
∂x2

i
− 1

ai

∂ci
∂xi

∂u
∂xi

. (9)

In a similar fashion we obtain an expression for the fourth derivative by differentiating (7) twice
with respect to xi. The third and fourth derivative can then be approximated with second-order
stencils via central difference operators. Replacing the truncation error in (8) leads to a fourth-order
accurate approximation

(
ai +

h2
i

12
∂2ai

∂x2
i
− h2

i ci
12ai

∂ai

∂xi
− h2

i

6ai

[
∂ai

∂xi

]2
+

h2
i c

2
i

12ai
+

h2
i

6
∂ci
∂xi

)
δ2xi

uk

+
(
ci − h2

i

6ai

∂ai

∂xi

∂ci
∂xi

+
h2
i ci

12ai

∂ci
∂xi

+
h2
i

12
∂2ci
∂x2

i

)
δ0xi

uk + h4
i τi

= fk +
h2
i

12 δ
2
xi
fk +

(
h2
i ci

12ai
− h2

i

6ai

∂ai

∂xi

)
δ0xi

fk (10)

on the compact stencil with

τi =
(
− 1

36ai

∂3ci
∂x3

i

∂ai

∂xi
+ ci

72ai

∂3ci
∂x3

i
+ 1

144
∂4ci
∂x4

i

)
∂u
∂xi

+
(

1
144

∂4ai

∂x4
i
+ ci

72ai

∂3ai

∂x3
i
− 1

12ai

∂ai

∂xi

∂2ci
∂x2

i
− 1

36ai

∂ai

∂xi

∂3ai

∂x3
i
+ ci

24ai

∂2ci
∂x2

i
+ 1

36
∂3ci
∂x3

i

)
∂2u
∂x2

i

+
(

1
36

∂3ai

∂x3
i
+ ci

24ai

∂2ai

∂x2
i
− 1

18ai

∂ai

∂xi

∂ci
∂xi

− 1
12ai

∂a
∂x

∂2ai

∂x2
i
+ ci

36ai

∂ci
∂xi

+ 1
36

∂2ci
∂x2

i

)
∂3u
∂x3

i

+
(

5
144

∂2ai

∂x2
i
+ ci

48ai

∂ai

∂xi
− 1

72ai

[
∂a
∂xi

]2
+

c2i
144ai

+ 1
72

∂ci
∂xi

)
∂4u
∂x4

i

+ 1
80ci

∂5u
∂x5

i
+ 1

240ai
∂6u
∂x6

i
+O(h2

i ). (11)
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ci have to be sufficiently smooth, such that their fourth derivative is bounded.

Rewriting this scheme in terms of matrices or symbolic operators gives

Axi
u = Bxi

f

for vectors u and f , where Axi
corresponds to the left hand side of (10) and Bxi

to its right hand
side. The semi-discrete scheme can then be written as

u′(t) = F0(u) +B−1
x1

Ax1u+ ...+B−1
xd

Axd
u+O(h4

1) + ...+O(h4
d) +

∑

i,j

O(h4
ih

4
j ). (12)

The mixed derivatives are approximated via

bi,j
∂2u

∂xi∂xj
= bi,j δ̃

0
xi
δ̃0xj

+ h4
i τ̃i + h4

j τ̃j + h4
ih

4
jτi,j

with

τ̃i = bi,j
1

30

∂6u

∂x5
i ∂xj

, τi,j = −bi,j
1

900

∂10u

∂x5
i ∂x

5
j

(13)

for i 6= j, i, j = 1, ..., d. Since the treatment of the mixed derivative requires to use a broad stencil,
the spatial approximation is not defined on a compact stencil anymore. Nevertheless, the usage
of ADI schemes allows us to treat the mixed derivatives explicitly. Therefore, the composition
of the derived HO approximation and ADI time splitting is compact in each implicit step and
non-compact in each explicit step.

3.3. HO-ADI schemes

Using the HO formulation in each of the ADI schemes from Section 2 thus gives

HOC Douglas scheme (HDO):




Y0 = un +∆t

(
F0(un) +B−1

x1
Ax1un + ...+B−1

xd
Axd

un

)

(Bxi
− θ∆tAxi

)Yi = Bxi
Yi−1 − θ∆tAxi

un for i = 1, ..., d

un+1 = Yd,

(14)

HOC Craig-Sneyd scheme (HCS):




Y0 = un +∆t

(
F0(un) +B−1

x1
Ax1un + ...+B−1

xd
Axd

un

)

(Bxi − θ∆tAxi)Yi = BxiYi−1 − θ∆tAxiun for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F0(Yd)− F0(un))

(Bxi
− θ∆tAxi

) Ỹi = Bxi
Ỹi−1 − θ∆tAxi

un for i = 1, ..., d

un+1 = Ỹd,

(15)

HOC Modified Craig-Sneyd scheme (HMCS):




Y0 = un +∆t

(
F0(un) +B−1

x1
Ax1un + ...+B−1

xd
Axd

un

)
,

(Bxi − θ∆tAxi)Yi = BxiYi−1 − θ∆tAxiun for i = 1, ..., d

Ŷ0 = Y0 + θ∆t (F0(Yd)− F0(un))

Ỹ0 = Ŷ0 + ( 12 − θ)∆t (F (Yd)− F (un))

(Bxi
− θ∆tAxi

) Ỹi = Bxi
Ỹi−1 − θ∆tAxi

un for i = 1, ..., d

un+1 = Ỹd.

(16)

and HO Hundsdorfer-Verwer scheme (HHV):




Y0 = un +∆t

(
F0(un) +B−1

x1
Ax1un + ...+B−1

xd
Axd

un

)
,

(Bxi
− θ∆tAxi

)Yi = Bxi
Yi−1 − θ∆tAxi

un for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F (Yd)− F (un))

(Bxi
− θ∆tAxi

) Ỹi = Bxi
Ỹi−1 − θ∆tAxi

Yd for i = 1, ..., d

un+1 = Ỹd.

(17)

6
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xi
for i = 1, ..., d, one can rewrite

the schemes by multiplying with Bxi
and introducing new variables Zi :=

∏d
j=i+1 Bxj

Yi, Z̃i :=
∏d

j=i+1 Bxj Ỹi, and Ẑ0 :=
∏d

j=i+1 Bxj . For a detailed derivation we refer to [14]. All mixed
derivatives are treated explicitly and the discretisation operator reads Bx1 · ... · Bxd

F0(u). This
formulation leads to broad stencils since Bxi

as well as δ̃0xi
act in coordinate direction i. The

involved discretisations in the single coordinate directions are given by δ0xi
δ̃0xi

and δ2xi
δ̃0xi

δ0xi
δ̃0xi

uk = 1
24h2

i
(−uk−3 + 8uk−2 + uk−1 − 16uk + uk+1 + 8uk+2 − uk+3)

= ∂2u
∂x2

i
+

h2
i

6
∂4u
∂x4

i
+O(h4

i ),

δ2xi
δ̃0xi

uk = 1
12h3

i
(uk−3 − 10uk−2 + 17uk−1 − 17uk+1 + 10uk+2 − uk+3)

= ∂3u
∂x3

i
+

h2
i

12
∂5u
∂x5

i
+O(h4

i ).

These operators are a discretisation of the second and third derivative with accuracy two. However,
they are not optimal in the sense of width and therefore we propose to use smaller stencils with
the same accuracy in our schemes

∂2u
∂x2

i
= 1

h2
i
(uk−1 − 2uk + uk+1) +O(h2

i ),

∂3u
∂x3

i
= − 1

2h3
i
(uk−2 − 2uk−1 + 2uk+1 − uk+2) +O(h2

i ).

Please note, that this does not effect the consistency of the scheme. The ghost points arising in
the approximation of the third derivative approximation or in δ̃0xi

can be computed via sixth order
extrapolation [8]

u−1 = 5u0 − 10u1 + 10u2 − 5u3 + u4, un+1 = 5un − 10un−1 + 10un−2 − 5un−3 + un−4.

4. Stability for frozen coefficients

In this Section we carry out a stability analysis of the HO-ADI schemes (14)− (17). We consider
the von Neumann stability analysis under the assumptions of frozen coefficients of the general
convection-diffusion PDE

ut = div(A∇u) + c · ∇u (18)

with A = (aij) and c = (c1, c2, ..., cd)
>. Please note that this causes all derivatives of the coefficients

in our scheme to vanish. Throughout this Section we will analytically investigate the stability for
d = 2 and experimentally in higher dimensions. In a first step we rewrite our schemes to the one
step form

un+1 = Run.

For brevity we streamline our notation and introduce

Z0 = ∆t

∑

i 6=j

Axi,xj
, Z = Z0 +∆tB

−1
x1

Ax1
+ ...+∆tB

−1
xd

Axd
,

Qi = Bxi
− θ∆tAxi

for i = 1, ..., d, P−1 =
d∏

i=1

Q−1
xi

Bxi
.

The stability matrices are then given by

RHDO = I + P−1 Z, RHCS = I + P−1 Z + 1
2 P

−2 Z0 Z,

RHMCS = I + P−1 Z + θP−2 Z0 Z + ( 12 − θ)P−2 Z2, RHHV = I + 2P−1 Z − P−2 Z + 1
2 P

−2 Z2.

A detailed derivation can be found in [14]. One readily observes that the stability matrices exhibit
the same structure like the stability functions in Section 2. Inserting Fourier modes into the

7
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z̃i = 2
(
aii +

h2
i c

2
i

12aii

)
1
h2
i
(cosφi − 1) + ci

1
hi
I sinφi for i = 1, ..., d,

z̄i = 1− 1
6 (1− cosφi) +

ci
12aii

hiI sinφi for i = 1, ..., d,

z0 = −
∑

i 6=j

aij
1
36

∆t

hihj
(8 sinφi − sin 2φi) (8 sinφj − sin 2φj) , (19)

with imaginary unit I. The eigenvalues z̃i stem from Axi
whereas ẑi from Bxi

and z0 from all cross
derivatives. The angles φi are integer multiples of 2π/mi with mi being the dimension of the grid
in xi-direction for i = 1, ..., d. Defining

zi = ∆tz̃i/z̄i, (20)

we obtain the scalar stability functions

rDO(z0, z1, ..., zd) = 1 + z
p , rCS(z0, z1, ..., zd) = 1 + z

p + 1
2
z0 z
p2 ,

rMCS(z0, z1, ..., zd) = 1 + z
p + θ z0 z

p2 + ( 12 − θ) z
2

p2 , rHHV (z0, z1, ..., zd) = 1 + 2 z
p − z

p2 + 1
2
z2

p2 ,

with p = (1 − θz1) · ... · (1 − θzd) and z = z0 + z1 + ... + zd. We see that the stability functions
of the HO-ADI schemes coincide with their standard ADI counterpart from Section 2. Thus, the
proof of stability reduces to the analysis of the eigenvalues.
Lemma 1. Let d = 2 and HO-ADI schemes (14)-(17) be applied to the convection-diffusion
problem (18) with symmetric positive semi-definite coefficient matrix A. Then it holds for the
eigenvalues, defined according to (19), (20), respectively,

Re(z1) ≤ 0, Re(z2) ≤ 0 and |z0| ≤ 2
√

Re(z1) ·Re(z2).

Proof. The positive semi-definiteness of A is equivalent to

a11 ≥ 0, a22 ≥ 0, (a12 + a21)
2 ≤ 4a11a22.

We first compute the real part of the eigenvalues zi for i = 1, 2 and obtain

Re(zi) = ∆t

2
(

ai

h2
i
+

c2i
12ai

)
(cosφi − 1)

(
1− 1

6 (1− cosφi)
)
+

c2i
12ai

sin2 φ

(
1− 1

6 (1− cosφi)
)2

+
(

cihi

12ai

)2

sin2 φi

.

With

αi :=
cos φi−1

1− 1
6 (1−cos φi)

,

βi := h2
i

c2i
a2
ii
,

γi := sin2 φi/
(
1− 1

6 (1− cosφi)
)2

,

it holds

Re(zi) = ∆t
aii
h2
i

2αi

1 + 1
24βi (2 + γi/αi)

1 + 1
144βiγi

.

Please note that

1 + 1
24βi (2 + γi/αi)

1 + 1
144βiγi

≥ 1, (21)

which can be verified by straightforward calculus

1 + 1
24βi (2 + γi/αi)

1 + 1
144βiγi

≥ 1 ⇔ 1
6 ≤ 2αi + γi

αiγi
=

5 + cosφi

18 cos2 φi/2
∈ [ 13 ,∞).

8
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1
36 (8 sinφi − sin 2φi)

2 ≤ −2αi (22)

is fulfilled. Due to αi ≤ 0 and inequality (21) we directly observe that the real parts of the eigenval-
ues zi lie on the left hand side of the complex plane. It remains to show |z0| ≤ 2

√
Re(z1) ·Re(z2).

Due to the positive semi-definiteness of A we obtain

|z0|2 ≤ 4a11a22

(
1

36

)2
∆2

t

h2
1h

2
2

(8 sinφ1 − sin 2φ1)
2
(8 sinφ2 − sin 2φ2)

2

Exploiting conditions (22), (21), we obtain

|z0|2 ≤ 16a11a22
∆2

t

h2
1h

2
2

α1α2

≤ 16a11a22
∆2

t

h2
1h

2
2

α1α2

1 + 1
24β1 (2 + γ1/α1)

1 + 1
144β1γ1

1 + 1
24β2 (2 + γ2/α2)

1 + 1
144β2γ2

= 4Re(z1) ·Re(z2).

Remark:
The Lemma ensures the unconditional stability of schemes (14), (15) and the necessary condition
on the lower bound for θ in scheme (16). For the HHV scheme (17) this leads to unconditional
stability if z0 = 0.

In Figures 1 and 2 we plot the stability regions of the HO-ADI schemes for three and four spatial
dimensions. The blue part shows the stability region for the special choice z0 = 0, z1 = ... = zd.
The green part shows the position of the eigenvalues zi given by equation (20). The sample points
have been computed for the parameter set hi = 10−1, ∆t = 1, ci = 1/2 and ai = ci · p̂. This case is
rather conservative as it considers a large parabolic mesh ratio. The parameter p̂ determines the
ratio between convection and diffusion and can be seen as the non-scaled reciprocal of the Péclet
number [30]; the smaller p̂, the stronger is the convection dominance. Note, in the case of z0 = 0
the stability functions of the Douglas and the Craig-Sneyd scheme coincide. Therefore, we omit
to plot the regions for the HCS scheme. The θ values have been chosen according to the results
for ADI schemes with second order spatial disrectisation applied to diffusion equations without
mixed derivative terms from literature, e.g. [18]. In [14] it was shown that these bounds are also
valid for HO-ADI schemes applied to pure diffusion problems. Hence, we also expect the HO-ADI
schemes for convection-diffusion equations to have similar stability properties as their second order
counterpart. Both in the three (Figure 1) and four dimensional (Figure 2) case the eigenvalues
(green) lie within the stability region (blue) in all plots except in Figure 2 (i). For strong convection
dominance in plot (i) the HHV scheme is unstable. At the current state we have only investigated
the stability if no mixed derivatives occur. In Section 6 we evaluate the behaviour of the schemes
in the case of non-vanishing mixed derivatives.

5. Spare grid combination technique

Solving high dimensional problems on a tensor based grid leads to a rapidly increasing complexity,
the so called curse of dimensionality. As the number of degrees of freedom grows with O(h−d)
the memory consumption quickly reaches the limit of available memory. Sparse grids and the
sparse grid combination technique can reduce the number of necessary grid points significantly,
but also maintain a rather high rate of accuracy. The sparse grid approach goes back to Smolyak
[31], who developed it for numerical integration. Zenger [36], Bungartz et al. [3] and Schiekofer
[29] transferred this idea to solve PDEs in the context of finite elements, finite volumes and finite
differences. These methods in general require hierarchical, tree-like data structures, which makes
the data structure management more complicated than in the full grid case [11]. With the help of
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(i) HHV θ = 0.789, p̂ = 1/8

Figure 1: 3d: stability region (blue) for z1 = z2 = z3 and eigenvalues zi (green) for special parameter
choices.
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Figure 2: 4d: stability region (blue) for z1 = z2 = z3 = z4 and eigenvalues zi (green) for special parameter
choices.
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are linearly combined to construct the sparse grid solution. This allows to use standard full grid
PDE solvers. Hence, this approach is very versatile and broadly applicable. Furthermore, each
sub-solution can be computed independently, which makes it easily parallelisable.

In the following we give a brief introduction to the sparse grid combination technique in two
dimensions. A more detailed derivation can be found in the literature [27] . We consider a problem
on the unit square Ω = [0, 1]2 and assume that our numerical solution uh1,h2 has a second order
error of the form

u− uh1,h2
= h2

1w1(h1) + h2
2w2(h2) + h2

1h
2
2w1,2(h1, h2).

The mesh sizes h1, h2 are independent of one another and the functions w1, w2 only depend on
either h1 or h2. Hence, we can subtract two numerical solutions with the same mesh width in one
dimensions from another, such that one wi term for either i = 1 or i = 2 cancels out. Pursuing
this idea further leads to the two dimensional combination technique

us
n =

∑

|l|1=n+1

u2−l1 ,2−l2 −
∑

|l|1=n

u2−l1 ,2−l2

with multi-index l = (l1, l2). Inserting the error structure from above all low order error terms
cancel out and one obtains

us
n = u+ 2−2(n+1)w1(2

−(n+1)) + 2−2(n+1)w2(2
−(n+1))

+ 2−2(n+1)
n+1∑

i=0

w1,2(2
−i, 2−(n+1−i))− 2−2n

n∑

i=0

w1,2(2
−i, 2−(n−i)).

If we assume that w1, w2 and w1,2 are bounded by K ∈ R+, we get a pointwise error

|us
n − u| = O(n 2−2n),

|us
n − u| = O(h2 log2(h

−1) for h = 2−n,

respectively. Compared to the original second order scheme the accuracy is deteriorated by
O(log2(h

−1)), but the loss of accuracy is compensated by a lower number of grid points. The
sparse grid has O(2d−1 ·2n) degrees of freedom, which is equal to O(h−1 log2(h

−1)d−1) for h = 2−n,
whereas the full grid has O(h−d) nodes. Thus, the combined sparse grid can achieve a high accuracy
with a low number of grid points.

The general d dimensional combination technique for an order p scheme assumes an error structure
of the form

u− ul =
d∑

k=1

∑

{j1,...,jk}
⊆{1,...,d}

wj1,...jk(.;hj1 , ..., hjk)h
p
j1
· · · hp

jk

with multi-index l = (l1, l2, ..., ld), step sizes h = (2−l1 , 2−l2 , ..., 2−ld) and bounded functions |w| ≤
K. The combination technique reads

us
n =

d−1∑

q=0

(−1)q
(
d− 1

q

) ∑

|l|1=n−q

ul

with a pointwise accuracy O(hp log2(h
−1)d−1), see [28]. The crucial point is the existence of such

an error splitting structure. In [28], Reisinger investigated under which conditions such a splitting
can be shown and notes the following properties, which have to be fulfilled:

Properties:
1. The scheme has a truncation error of the form

(A−Ah)u =
d∑

k=1

∑

{j1,...,jk}
⊆{1,...,d}

νj1,...jk(.;hj1 , ..., hjk)h
p
j1
· · · hp

jk
,

where A is a differential operator (e.g. ∂
∂t − L) and Ah its discrete finite difference approxi-

mation.
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3. The initial data has to be sufficiently smooth and compatible boundary data is required, such
that the mixed derivatives of required order are bounded.

In option pricing one is in general interested in an accurate solution at the present time t = 0.
Therefore, we intent to construct a space sparse grid at the final time slice of the numerical solution.
In Section 3.2 we derived the truncation errors for the spatial discretisation, hence we have in the
spatial domain

(L− Lh)u =
d∑

i=1

h4
i νi(.;hi) +

d∑

i,j=1
i 6=j

hihjνi,j(.;hi, hj),

where νi = τi + τ̃i and νi,j = τi,j with τ , τ̃ given by equations (11), (13), respectively. Thus, the
spatial error is of the desired form. In the case of a second order finite difference in [28] it was
shown that if the mixed derivatives ∂|α|u

∂x
α1
1 ...∂x

αd
d

with α = (α1, ..., αd) and αi ∈ {0, 1, ..., 4} exist and
are bounded, then such a splitting exists for the Poisson equation. For a fourth order scheme the
analogue condition for the mixed derivatives with αi ∈ {0, 1, ..., 6} was derived in [13].

6. Numerical experiments

In this Section we apply the numerical schemes to the multivariate Black-Scholes PDE

∂V

∂t
+ 1

2

d∑

i,j=1

ρijσi(Si)σj(Sj)SiSj
∂2V
∂SiSj

+
d∑

i=1

µi(Si)Si
∂V
∂Si

− rV = 0 (23)

in the space-time cylinder Ω×Ωt with Ω = [0, Smax
1 ]× ...× [0, Smax

d ], Ωt = [0, T ]. The volatility σi,
as well as the drift µi of the i-th asset are allowed to depend on the underlying Si for i = 1, ..., d.
The correlation between assets i and j is denoted by ρij . The risk-free interest rate is given by r.
The option value at the maturity T is defined by its payoff profile g(S1, ..., Sd). In the remainder
of this article we restrict ourselves to basket put options with

g(S1, ..., Sd) = max{K −
d∑

i=1

Si, 0}.

As the spatial domain of each asset Si is truncated at [0, Smax
i ], boundary values have to be

prescribed. At Si = 0 the PDE reduces to a lower dimensional PDE. Hence, we solve the lower
dimensional PDE at each boundary. This is called the natural boundary condition [24, 27]. At the
upper boundary we imply Dirichlet boundary conditions and set the option value to zero. This
means that the computational domain has to be chosen large enough, such that the option is far
out of the money at the upper boundary and the introduced error is negligible small.

For our numerical experiments we employ the four parameter sets A to D given in Table 1. They
range from large negative to large positive correlation, small to high volatility and cover different
risk-less interest rates. Thus, we expect to receive realistic results, reflecting the performance of
the HO-ADI schemes in practical financial engineering applications. Unless noted otherwise, we
use the maturity T = 1 and the strike price K = 20. We investigate the accuracy both in the
temporal and spatial domain and compute

errt2 = ‖u∆t

h − u∆̃t

h̃
‖2, errs2 =

‖u∆t

h − u∆̃t

h̃
‖2

‖u∆̃t

h̃
‖2

,

where u∆t

h denotes a highly accurate reference solution with step size in time ∆t and spatial mesh
width h. The numerical approximation is denoted by u∆̃t

h̃
with ∆̃t → ∆t and h̃ → h. The solutions

are compared at the final time level. In financial applications in general the maximal error is of a
high interest. Therefore, we also compute both errors in the ∞-vector-norm.

13



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt A B C D

σ1 0.5 0.9 0.2 0.5
σ2 0.5 0.8 0.3 0.6
σ3 0.7 0.8 0.4 0.5
σ4 0.7 0.5 0.4 0.7
ρ12 0.8 -0.8 0.2 0.5
ρ13 0.8 0.5 0.4 0.5
ρ14 0.7 -0.5 0.4 0.4
ρ23 0.5 -0.1 -0.3 0.3
ρ24 0.7 0.6 -0.3 0.5
ρ34 0.9 0.5 -0.3 0.5
r 0.025 0.05 0.0 0.1

Table 1: Parameter sets for numerical experiments

6.1. Non-smooth initial data

The analysis of consistency for numerical methods typically relies on smoothness assumptions of
the initial data. However, in practice and especially in financial option pricing the payoff function
usually exhibits discontinuities: plain vanilla options have a discontinuity in the first derivative at
the strike price, while for example digital options have a discontinuous payoff profile. This leads
to a maximal error in the at-the-money region in the numerical solution. Since the option values
close to the strike price are in general of highest interest from the viewpoint of practitioners in
finance this is a severe problem. In [26] several methods have been discussed to overcome this issue
and to recover a high rate of accuracy.

An intuitive approach is to place more grid points in the region of interest. For example Sydow
et al. [25] solve a sub-problem with O(h−2) grid nodes around the strike price to gain sixth order
accuracy in space. Kreiss et al. [22] propose to smooth the initial condition. With this averaging
a high rate of convergence can be recovered, while the initial condition converges to the original
initial condition as the grid spacing goes to zero. This approach was successfully applied to option
pricing problems in one dimension [26] and two dimensions [9]. An additional method to cope with
the non-smooth initial data was given by Wahlbin [35] where the initial payoff profile undergoes
an L2 projection onto a set of basis functions. Besides these techniques in [34] grid shifting is
suggested. Here the grid is sequentially shifted, such that the discontinuity falls between two grid
nodes. The discrete payoff for the shifted grid reveals that this method can be interpreted as a
kind of smoothing.

The latter three approaches have been investigated in [26] for one dimensional option pricing
problems in the case of second order accuracy: in the numerical test all techniques showed the
desired order of convergence. Furthermore, they give an brief outlook how to apply these methods
to higher dimensional problems: at the current state it is not clear if grid shifting is possible for
higher dimensions since the grid is not allowed to coincide with the discontinuity. In the case of
the projection Wahlbin reports technical difficulties if the discontinuities do not match with the
grid nodes.

In the remainder of this article we restrict ourself to smooth the initial condition via a convolution
operator. This approach can be easily extended for arbitrary dimension via a tensor product of
one dimensional convolutions. Compared to the first method it can be computed during an offline
phase and the smoothed data can be reused to price options with different parameter sets.

Let hp(sinω) be the polynomial of lowest degree p, such that

hp(sinω) = ωp +O(ω2 p), for ω → 0, (24)

holds and define

Φ̂p(ω) =
hp(sin

1
2ω)

( 12ω)
p

.
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(p)
hi

via

S
(p)
hi

g = h−1
i Φp(h

−1
i x) ∗ g,

where g is the initial condition and Φ denotes the Fourier inverse of Φ̂p. The higher dimensional
smoothing operator can be formed as a tensor-product of one dimensional operators

S
(p)
h =

d∏

i=1

S
(p)
hi

.

In the case of a fourth order finite difference scheme one needs to find the lowest degree polynomial
satisfying equation (24). By straightforward Taylor expansion one verifies that h4(x) = x4 + 2

3x
6

fulfills this condition. Hence we have

Φ̂4(ω) =
sin4 1

2ω + 2
3 sin

6 1
2ω

( 12ω)
4

.

The inverse Fourier transform Φ4 is a polynomial of degree three with support [−3, 3]. Hence the
smoothed initial condition is given by

S
(p)
h g(x1, ..., xd) = h−1

1 ...h−1
d

∫ 3h1

−3h1

...

∫ 3hd

−3hd

Φ4(h
−1
1 x̃1)...Φ4(h

−1
d x̃d)g(x1 − x̃1, ..., xd − x̃d)dx̃1...dx̃d. (25)

6.2. European basket put options

In this Section we solve the multi-dimensional Black-Scholes equation (23) with fixed coefficients

σi(Si) = σi, µi(Si) = r for i = 1, ..., d.

We apply the following coordinate transformations xi = log(Si) for i = 1, ..., d, τ = T − t and
u = erτV and obtain

∂u

∂τ
− 1

2

d∑

i,j=1

ρijσiσj
∂2u

∂xi∂xj
−

d∑

i=1

(
r − 1

2σ
2
i

) ∂u

∂xi
= 0.

The payoff transforms to g(x1, ..., xd) = max{K − ∑d
i=1 e

xi , 0}. The HOC formulation of Fi for
i = 1, ..., d according to Section 3.2 can be derived by inserting ai :=

1
2σ

2
i and ci := r − 1

2σ
2
i into

equation (10). In a first experiment we investigate the spatial accuracy of the full grid, as well as
of the sparse grid, for a basket put with two underlying assets. In Figure 3 (a) - (d) the full grid
solution exhibits fourth order accuracy. In the case of negative correlation in experiment B the
sparse grid shows a reduced rate of convergence. In the last refinement the rate is 2.64 and 2.56 in
the 2-, ∞-norm, respectively. In experiments A, C and D the sparse grid accuracy is only slightly
lower compared to the full grid. The achieved accuracy versus number of grid points in plots (e),
(g), (h) show a better performance of the sparse grid approach. Only for the parameter set B the
full grid has a higher accuracy per grid node than the sparse grid.
In Figure 4 all numerical schemes show the desired rate of convergence in the time domain. The
HDO scheme exhibits order one in time, while the HCS, HMCS and HHV scheme show order two.
According to the stability results in Section 4 we see a stable behaviour.

In Figures 5, 6 we numerically analyse the performance for basket options with three assets. The
full grid solution in Figure 5 states fourth order convergence. The sparse grid has again a slightly
lower accuracy. Similar to the two dimensional case the negative correlation in B adverse effects
the rate of convergence. However, if the accuracy is compared to the number of grid nodes, the
sparse and full grid error are very close to another. In experiments A, C and D the sparse grid
shows its ability to gain a high accuracy with a significant lower number of grid nodes than the
full grid.
For the parameter choices A-D we only have a slight convection dominance ( p̂ ≥ 0.81). Hence, we
expect from the stability region plots in Figure 1 a stable behaviour. The numerical experiments
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Figure 3: 2d spatial error for h̃ → h = 2−9 · gridlength. In case of the sparse grid solution, the finest steps
size is used. Figures (a)− (d) show the error for different mesh widths in the ∞/2-norm, respectively. In
Figures (e)− (h) the number of nodes of the sparse and full grid are plotted against the achieved accuracy.
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Figure 4: 2d temporal error for ∆̃t → ∆t = 2−14. The following values of θ were used: HDO θ = 0.5,
HCS θ = 0.5, HMCS θ = 0.334, HHV θ = 0.79. The spatial discretisation is computed on a grid with 129
nodes in both coordinate directions. The first four figures show the error in the 2-norm, while the lower
row shows the ∞-error.
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Figure 5: 3d spatial error: the sparse grid solution at level 14 is used as a reference solution. Figures
(a)− (d) show the error for different mesh widths in the ∞/2-norm, respectively. In Figures (e)− (h) the
number of nodes of the sparse and full grid are plotted against the achieved accuracy.
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Figure 6: 3d temporal error for ∆̃t → ∆t = 2−11. The following values of θ were used: HDO θ = 0.67,
HCS θ = 0.5, HMCS θ = 0.462, HHV θ = 0.79. The spatial discretisation is computed on a grid with 65
nodes in each coordinate direction. The first four figures show the error in the 2-norm, while the last four
show the ∞-error.

17



P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt

–
P
re
p
ri
nt in Figure 6 confirm this and the error decreases monotonically with a rate of accuracy according

to theory.

Remark:
During our numerical tests the initial condition is smoothed according to the convolutions described
above. Heuer [9] suggests to only smooth the grid points around the discontinuity to reduce the
computational workload. Doing so the full grid performed according to the theoretical results, but
the sparse grid solution showed oscillations near the discontinuity in our numerical experiments.
This issue could be cured by smoothing all grid points. In the case of the above given payoff an
analytical solution to the integral (25) is available, if the domain of integration does not intersect
the discontinuity. Thus, smoothing the initial condition on the entire grid does not introduce a
large additional computational effort.

6.3. Powered European basket options

In this Section we compute powered European basket put options with three and four underlying
assets. The power parameter q ∈ N allows to control the smoothness of the payoff profile and of
the solution. Let the payoff under logarithmic transformed coordinates be given by

g(x1, ..., xd) = max{K −
d∑

i=1

exi}q,

then the initial condition fulfills g ∈ Cq−1. In the following we investigate the influence of the
regularity on the rate of convergence. Recall that according to Section 5 the combination technique
has stronger regularity requirements than the full grid solution. The full grid needs the derivatives
in the truncation error to be bounded, namely

∂6u
∂x6

i
, ∂10u

∂x5
i∂x

5
j
, ∂6u

∂x5
i∂xj

for i, j = 1, . . . , d and i 6= j

arising in (11) and (13), respectively. The combination technique requires the mixed derivatives
∂|α|

∂x
α1
1 ...∂x

αd
d

with αi ∈ {0, 1, ..., 6} to be bounded1. These derivatives arise due to the anisotropic
splitting within the combination technique and do not stem from mixed derivatives in PDE (1). A
detailed discussion of the error splitting can be found in [13, 28].
Figure 7 (a) shows the result for q = 6, q = 9 with three spatial dimensions and strike price K = 1.
The sparse grid solution shows a significant better performance for a smoother initial condition.
In contrast, the full grid solution shows no noticeable improvement. This underlines the stronger
regularity requirements of the combination technique compared to standard full grid solvers. In
Figure 7 (b) we compute the error of the sparse grid for q = 6, q = 9 and q = 12 for a four
dimensional problem with strike price K = 1. The error decay again shows a strong sensitivity
towards the smoothness of the initial condition. Please note, that we did not compute the full grid
solution here, since due to the high dimensionality the memory constraints make it impossible to
compute a full grid solution with a reasonable large number of grid nodes per coordinate direction
on our test machine.
In Figure 6 we compare the rate of convergence in time of the four HO-ADI schemes. The HDO
and HCS scheme exhibit order one, while the HMCS and HHV show order two. Note, that the rate
of the HCS scheme is reduced to order one due to θ 6= 1/2. All schemes show a stable behaviour.

6.4. European basket options with space-dependent coefficients

In this Section we consider the Black-Scholes PDE (23) with space dependent volatility. In com-
parison to the previous examples we do not assume a fixed volatility, but volatilities following a
cubic polynomial

σ(Si) = ai,0 + ai,1Si + ai,2S
2
i + ai,3S

3
i

for i = 1, ..., d. Note, that also more sophisticated models for the volatilities can be used if they are
sufficiently smooth. Figure 9 shows the numerical results for a basket option with two underlying

1see e.g. [13] for a fourth order approximation to the Poisson equation.
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Figure 7: Spatial error for options with three and four underlying assets and powered payoff.
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Figure 8: 4d temporal error for ∆̃t → ∆t = 2−10 and q = 12. The following values of θ were used: HDO
θ = 0.85, HCS θ = 0.663, HMCS θ = 0.5935, HHV θ = 0.79. The first three choices are the lower bounds
derived for pure diffusion equations, while the latter one is the bound for 2-d convection-diffusion equations
without mixed derivative terms. The spatial discretisation is computed on a grid with 17 nodes in each
coordinate direction. The first four figures show the error in the 2-norm, while the last four show the
∞-error.

assets, which are correlated with ρ12 = 0.5. The temporal error decay in (b), (c) is monotone and
of the desired order. In the spatial domain the sparse grid has a slightly lower rate of convergence
than the full grid solution. The numerical results are in line with the theoretical findings and show
a similar behaviour like in the fixed coefficient case.
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Figure 9: Numerical example with space dependent coefficients σ1(S) = 0.5− 0.008 ·S +0.001 ·S2 − 0.36 ·
10−6 ·S3, σ2(S) = 0.4− 0.01 ·S+0.0002 ·S2 − 0.87 · 10−6 ·S3, maturity T = 0.5 and risk-free interest rate
r = 0.05.

7. Conclusion

In this paper we introduced a fourth-order spatial discretisation for multi-dimensional convection-
diffusion equations with space dependent coefficients. In the time domain we applied ADI schemes
to achieve up to second order accuracy. Due to the ADI splitting the spatial discretisation could be
decomposed in such a way, that all implicitly treated approximations are defined on the compact
stencil, which results in tridiagonal linear systems. These systems can be solved very efficiently
in linear run-time. Broad stencils only occur in the explicit steps of the algorithm. In the two
dimensional case we were able to show that the stability regions coincide with the standard central
second order ADI schemes. For the HDO and HCS scheme sufficient conditions on θ, ensuring
unconditional stability, could be proven. For the HMCS scheme a necessary lower bound on θ was
found, while for the HHV scheme a lower bound on θ for vanishing correlation was derived. In the
three and four dimensional case the proposed schemes showed good stability properties for prob-
lems with moderate convection dominance. The numerical experiments revealed that also for large
correlation the temporal error decayed monotonically and the high-order spatial discretisation does
not have any negative effects regarding the stability compared to second order discretisations in
space. In order to reduce the computational complexity, we applied the sparse grid combination
technique in the spatial domain. This allows to lower the number of grid nodes and to reduce the
effects of the curse of dimensionality. In terms of accuracy per grid node the sparse grid performed
better than the full grid solution in three of the four test cases. Only for large negative correlation
the full grid showed a better accuracy. Based on experiments with a powered payoff the regularity
requirements of the combination technique could be compared to the ones of full grid solvers. The
sparse grid showed a significant better performance with sufficiently smooth data, which underlines
the stronger smoothness requirements of the combination technique.
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