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Robust topology optimization of a permanent
magnet synchronous machine using multi-level
set and stochastic collocation methods

Piotr Putek1,3, Kai Gausling1, Andreas Bartel1, Konstanty M. Gawrylczyk2, Jan ter
Maten1, Roland Pulch3, and Michael Günther1

Abstract The aim of this paper is to incorporate the stochastic collocation method
(SCM) into a topology optimization for a permanent magnet (PM) synchronous ma-
chine with material uncertainties. The variations of the non-/linear material charac-
teristics are modeled by the Polynomial Chaos Expansion (PCE) method. During the
iterative optimization process, the shapes of rotor poles, represented by zero-level
sets, are simultaneously optimized by redistributing the iron and magnet material
over the design domain. The gradient directions of the multi-objective function with
constraints, composed of the mean and the standard deviation, is evaluated by utiliz-
ing the continuous design sensitivity analysis (CDSA) with the SCM. Incorporating
the SCM into the level set method yields designs by using already existing deter-
ministic solvers. Finally, a two-dimensional numerical result demonstrates that the
proposed method is robust and effective.

1 Introduction

Nowadays, permanent-magnet (PM) machines have become more popular due to
their attractive features such as a high performance, efficiency, and power den-
sity [2]. Therefore, they have found a broad use in industrial applications such as
robotics, computer peripherals, industrial drivers or automotive industry, for exam-
ple, in commercialized hybrid vehicles with different hybridization level, e.g. [3,5].
However, this type of motor construction suffers inherently from a relatively high
level of acoustic noise and mechanical vibration. In the case of a PM machine, the
interaction between the stator slot driven air-gap performance harmonics and the

1 University of Wuppertal, Chair of Applied Mathematics & Numerical Analysis, Germany,
{putek,gausling,bartel,termaten,guenther}@math.uni-wuppertal.de ·
2 West Pomeranian University of Technology, Department of Electrotechnology and Diagnostic,
Szczecin, Poland, Konstanty.Gawrylczyk@zut.edu.pl ·
3 Ernst-Moritz-Arndt-Universität Greifswald, Germany, pulchr@uni-greifswald.de.

1



2 Piotr Putek et al.

magnet driven magnetomotive force (MMF) harmonics is mainly responsible for
producing a high cogging torque (CT). On the other hand, the torque ripple de-
veloped in electromagnetic torque is caused by the cogging torque and harmonic
contents in the back-electromotive force (EMF). In addition, magnetic saturations
in the stator and rotor cores with the converted related issue may further disturb the
electromagnetic torque of the machine [4]. Therefore, the designers aim above all at
reducing the torque fluctuations. In turn, this may significantly affect the machine
performance.

In this paper, we focus on optimizing the topology a PM machine, as the machine
topology itself is a major contributor to the electromagnetic torque fluctuation. Be-
cause the result of the design procedure is strongly affected by the unknown material
characteristics [6], the uncertainties in modeling the soft ferromagnetic material are
taken into account. In some applications [7], especially the relative permeability
of the magnetic material itself should be accounted to model more accurately the
magnetic flux density of permanent magnets. This parameter is also in our model
assumed as uncertain. The novel aspect of the proposed method is the incorpo-
ration of stochastic modeling into the topology optimization method for the low
cogging torque (CT) design of an Electric Controlled Permanent Magnet Excited
Synchronous Machine (ECPSM).

2 Model description

In the design of a PM machine, the shape/fabrication and the placement of magnets,
iron poles and air-gaps primarily determine the torque characteristic. A part of an
assembly drawing of such a device, considered as a case study in our paper, is given
in Fig. 1. The structure of the rotor comprises two almost identical parts, which dif-
fer only in the magnetization direction of the constructed PM poles of the rotor. The
key feature of the machine is the installation of an additional DC control coil that is
fixed in the axial center of the machine, between two laminated stators. The proper
supply of this coil by the DC-chopper enables to control the effective excitation of
the machine. In the end, this results in a field weakening of 1:4, which is of great im-
portance in electric vehicles applications. The magnetic behavior can be described
in terms of the unknown magnetic vector potential (MVP) A for the quasi-linear
curl-curl equation. In fact, in order to reduce the computational burden, we consider
two dimensional (2-D) model that is additionally simplified by neglecting the eddy
current phenomena, i.e., (σ ∂A

∂ t = 0). Then, the curl-curl equation becomes a Poisson
equation

∇ ·
(
υ(x, |∇A(x)|2)∇A(x)−υPMM(x)

)
= J(x), x ∈ D⊂ R2, (1)

equipped with the periodic boundary condition ΓPBC on ∂D in order to further de-
crease the computational burden. This establishes the computational domain D, cf.
Fig. 3. Here, the current density is denoted by J ∈ L2(D) and the remanent flux
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Fig. 1 Cross-section of an ECPSM and its main parameters (surface-mounted PM rotor, three-
phase windings, fixed excitation control auxiliary coil) [5].

density of the PM is denoted by M. Furthermore, the reluctivity υ is as a real pa-
rameter, which describes the isotropic material relation H = υ(|B|2)B between the
flux density B = ∇A and the field strength H. The parameter υ depends on ∇A. In
the air-gap, the vacuum reluctivity υ(|B|2) = υ0 is taken into account. The quality
of the design of a PM motor, on the one hand, is assessed by the cogging torque fluc-
tuation T . This quantity is calculated by using the Maxwell stress tensor method [2]

T (θ) = υ0

∮

S
r×
(
(n · B(x))B(x)− |B(x)|

2

2
n
)

dS, (2)

where n is unit outward normal vector and S denotes any closed integration sur-
face in the air gap surrounding the rotor and r denotes the position vector. Its main
contributor is the machine topology. Additionally in the bi-objective optimization
problem, the root mean square (rms) value of the magnetic field density calculated
in the air-gap along the path l is treated as the second criterion [15]

B2
r−rms =

1
L

∫ θ2

θ1

|Br|2dl ≥ α, (3)

where the coefficient α denotes an assumed level of the magnetic flux density in the
air-gap (the fraction of Br−rms calculated for the initial configuration), L refers to the
length of the path l (from θ1 to θ2).

A further difficulty regards the reluctivty υ : it is discontinuous across material
borders and it is nonlinear in ferromagnetic materials. Moreover, the ferromag-
netic material characteristics (deduced from measurements) suffers from uncertain-
ties [6]. In certain applications, especially the relative permeability of the magnetic
material should be modeled to obtain a more accurate magnetic flux density of per-
manent magnets [7]. Since the uncertainties affect the results of the design pro-
cedure, we have to include these uncertainties to enable a robust design. That is,
the reluctivity becomes a random variable. To this end, we consider the following
parameters as uncertain υυυ :=

(
υPM,υFe,υair−gap

)
:= p in the stochastic reluctivity
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model. The uncertainty of υair−gap is rather mathematical; it could account for inac-
curacies of the gap or material inside the gap.

3 Stochastic forward problem

For uncertainty quantification, we replace the parameters υυυ : Ω→Π ⊂R3 by inde-
pendent random variables υυυ (ξξξ ) defined on some probabilistic space (Ω,F ,P) with
a joint density ρ : Π → R. In our case, it will be a uniform distribution (ranging
±10% around the respective nominal values).1 Consequently, the direct problem is
governed by the random-dependent PDEs system





∇ ·
(
υFe
(
x, |∇A(x)|2,ξ1

)
∇A(x)

)
= 0, in ΩFe,

∇ ·
(
υair−gap (x,ξ2)∇A(x)

)
= 0, in Ωair,

∇ · (υPM(ξ3)∇A(x)) = ∇ · υPM(ξ3)M(x), in ΩPM,
(4)

where A : D×Ω→ R with D = Ωair ∪ΩFe ∪ΩPM, becomes a random field. The
statistical information like the expected value for a function f : Π → R reads as

〈 f (υυυ)〉 := E [ f (υυυ)] =
∫

Π
f (υυυ)ρ(υυυ) dυυυ , (5)

provided that the integral is finite. Furthermore, for two functions f ,g : Π → R this
operator yields an inner product 〈 f ,g〉 := E( f (υυυ)g(υυυ)) on L2(Ω), see e.g. [8, 11].
If each component υi exhibits a finite second moment, then the random field A can
be expanded in the truncated polynomial chaos (PC) series [11]

A(x,υυυ) =
N

∑
i=0

vi (x)Φi (υυυ) (6)

with unknown a priori coefficient functions vi. Here, the basis functions (Φi)i∈N
with Φi : Π → R are orthonormal polynomials, i.e., 〈Φi(υυυ),Φ j(υυυ)〉 = δi j with the
Kronecker delta δi j. To calculate vi the SCM with Stroud integration formula [9,10]
is used. The basic concept is to provide the solution of the deterministic problem
at each quadrature grid point υυυ(k), k = 0, . . . , K. The Stroud rules yield a rela-
tively small number of grid points for a quadrature of a fixed order. Thus, finally we
approximate statistical quantities like the mean and the standard deviation

E [A(x, υυυ)] = v0(x), std [A(x, υυυ)] =

√
N

∑
i=1
|vi(x)|2 (7)

1 For the UQ, the stochastic reluctivity model for the iron pole with the same variance as in the
paper [1]was applied. Due to the used Stroud formulas, the same distribution had to be assumed
with a relatively high variance based on [7] for the reluctivity of a PM. The last parameter was
rather of ”the mathematical relevance” and simulates the high impact of the air-gap parameters
into the electromagnetic torque [6].
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by using a multi-dimensional quadrature rule with corresponding weights wk

vi(x) := 〈A(x, υυυ) , Φi(υυυ)〉 ≈
K

∑
k=0

wkA
(

x, υυυ(k)
)

Φi(υυυ(k)). (8)

4 Multi-level set representation

The level set method, first proposed in [12], has recently found a wide application in
electrical engineering to address the design, shape and topology optimization prob-
lems, see e.g. [5, 14]. To trace the two interfaces between different materials with
some assumed variations such as air, iron and PM poles of rotor, the modified mul-
tilevel set method (MLSM) has been used [13,15]. Thus, we extend this framework
into the situation, where the material parameter exhibit some uncertainty. These do-
mains are described using two signed distance functions

D1 = {x ∈ D|φ1 > 0 and φ2 > 0}, D2 = {x ∈ D|φ1 > 0 and φ2 < 0},
D3 = {x ∈ D|φ1 < 0 and φ2 > 0}, D4 = {x ∈ D|φ1 < 0 and φ2 < 0}, (9)

with φ(x) a signed distance function that is shown on Fig. 2.2 In this situation, the
reluctivity υ and the remanent flux density coefficient br (of the PM-material) read

υ(φφφ ,ξξξ ) = υ1(ξ1)H(φ1)H(φ2)+υ2(ξ2)H(φ1)(1−H(φ2))+
+υ3(ξ3)(1−H(φ1))H(φ2)+υ4(ξ4)(1−H(φ1))(1−H(φ2)) ,

(10)

br(φφφ) = br1(H(φ1)H(φ2)+br2(H(φ1)(1−H(φ2))+
+br3((1−H(φ1))H(φ2)+br4 (1−H(φ1))(1−H(φ2))

(11)

with H(·) the Heaviside function. The evolution of φi is described by the Hamilton-

Fig. 2 Distribution of the signed distance function.

Jacobi-type equation [12] (during optimization with pseudo-time t)

2 Notice, D4 is an auxilliary set. We need in our application D1,D2,D3, only.
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∂φi

∂ t
=−∇φi (x, t)

dx
dt

=Vn,i |∇φi| , (12)

where Vn,i is the normal component of the zero-level set velocity corresponding to
the objective function (14) and the forward problem (4). Fig. 2 shows the exemplary
the distance function in fifth iteration of the optimized process, where shapes of
rotors poles (the blue shape with black lines) is described by the zero-level set.

5 Robust topology optimization problem

The cogging torque minimization in the 2-D magnetostatic setting can be equiva-
lently formulated as minimization of the magnetic energy Wr variation [15,16]. The
advantage of the latter formulation is the calculation of the sensitivity in efficient
way as follows [16]:

∂Wr

∂p
=
∫

γ
(υ1−υ2)B1 ·B2− (M1−M2) ·B2dγ, in D., (13)

with υ1 and υ2 the reluctivities for different domains. Since the energy operator is
self-adjoint, the dual and primary problem are the same. However, for the shape
optimization problem constrained by the elliptic PDEs (4) with random material
variations, the magnetic energy is defined as

Wr(υ(φ1,φ2,ξ )) =
∫

D
B(φ1,φ2)H(φ1,φ2)dx+

I

∑
i=0

βiTV (φi), (14)

which is subjected to the constraint (3) with Br replaced by Br(φ1,φ2)
3 and B(φ1,φ2),

while the TV () denotes the Total Variation regularization with the coefficients βi
that account for controlling the geometrical complexity of obtained shapes [15] .
Finally, this constraint has been introduced approximately to the optimization prob-
lem as two area constraints (for each rotor pole separately), which are involved in
the level set method scheme, see, e.g., [14, 15]. Furthermore, we formulate the op-
timal shape optimization in the framework of the robust optimization [17] using the
statistical moments such as the expectation and the standard deviation

min
φφφ

: E [Wr(υυυ)]+κ1
√

Var [Wr(υυυ)]

s.t. : K
(
υυυk
)

Ak = fk, k = 0, ...,K,
υmax j ≤ υ j ≤ υmin j, j = 1,2,

(15)

where κ1 is a prescribed parameter, K denotes the stiffness matrix (at K+1 quadra-
ture grid points). In this case, it is possible to calculate the total derivative of the

3 To avoid to impose explicitly the constraints related to Br two area constraint for each rotor poles
separately as in work by [15] : G1(φ) = |DFE|/|DFE0 | − SFE = 0 and G2(φ) = |DPM|/|DPM0 | −
SPM = 0 with the prescribed coefficients SFE and SPM were introduced.



Robust topology optimzation of a PM synchronous machine 7

function eq. (14) based on only the analysis of the forward model in the collocation
points and taking eqs. (10), (11) and (13) and then (8), (7) into account. The similar
approach, but for different type of the functional was used in [?] for the solution of
stochastic identification/control problems for constrained PDEs with random input
data.

6 Numerical results

The procedure described in the previous section has been applied to design the rotor
poles of the ECPSM for no-load state (the excitation current is J = 0). The main
parameters of the machine are given in Table 1. The initial configuration of the
ECPS machine is depicted in Fig 3 (left). The quantities that are taken subject to
variations are the reluctivity of the iron pole and the PM pole. Also the reluctivity
of the air-gap is assumed to be uncertain. To model the uncertainty, we choose a
uniform distribution of the reluctivity with a maximum deviation from a nominal
value υN(x, |∇A|2) of 10%. The application of Stroud-5 points for a system of the
ECPSM machine with three parameters yields K = 19 sample points {ξξξ i}18

i=0 in the
three-dimensional parameter space. The optimized rotor poles are shown in Fig. 3
(right).4 For the optimal configuration the CT is calculated over a half of the period

Fig. 3 Topology of the ECPSM: initial (left), optimal (right)

to assess the stator teeth interaction with the rotor poles, shown in Fig. 4 (left). The
pick value of the CT expected value is reduced around 75%.

4 The construction of a PM machine under consideration was a topic of the scientific project called
”The Electrically Controlled Permanent Magnet Excited Synchronous Machine (ECPSM) with
application to electro-mobiles” under the Grant No. N510 508040, where among others a small
prototype of the deterministically optimized machine with the similar topology as obtained in our
paper was investigated.
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Fig. 4 Mean and standard deviation for initial and optimized topology of the ECPSM: Cogging
torque (left), Flux density (right).

7 Conclusion

This paper demonstrated the incorporation of the SCM into the MLSM for the ro-
bust topology optimization of a PM synchronous machine. For this purpose, the
shape of rotor poles was investigated. This methodology resulted in the minimiza-
tion of the level of noise and vibrations by the significant reduction both the recti-
fied) mean of the CT (70%) and standard deviation, while taking the manufacturing
tolerances/variations into account. This work also highlights the effectiveness of the
proposed methodology.
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