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Multirate Time Integration of Field/Circuit
Coupled Problems by Schur Complements

Sebastian Schöps1,2, Andreas Bartel1, and Herbert De Gersem2

Abstract When using distributed magnetoquasistatic field models as additional
elements in electric circuit simulation, the field equations contribute with large
symmetric linear systems that have to be solved. The naive coupling and solving
(using direct solvers) is not always efficient, since the electric circuit is coupled
only via coils, which are often represented only by a small subset of the unknowns.
We revisit the Schur complement approach, give a physical interpretation and show
that a heuristics for bypassing Newton iterations allow for efficient multirate time-
integration for the field/circuit coupled model.

1 Introduction

Circuit simulators assemble the underlying equations element-wise, usually by
modified nodal analysis (MNA). Each element contributes with an element stamp
that describes the current/voltage relation and possibly internal equations. This re-
sults in a system of Differential Algebraic Equations (DAEs). In our case of the
field/circuit problem, parts of this system stem from Maxwell’s equations.

In the next section, we summarize the mathematical model for coupled electric
circuits with maqnetoquasistatic (MQS) field devices. Our point of view stresses the
usual assembly via stamping during time discretization. In the following section, we
introduce a Schur complement approach for the MQS stamp, cf. [?, ?]. The fourth
section deals with the corresponding computational cost. Then, in section five, a by-
passing technique of the Jacobian, similar to simplified Newton, and the bypassing
of the right-hand-side are interpreted and employed as a multirate time-integration
scheme. Also bypassing is a common technique in classical circuit simulation, but
here the energy balances of field and circuit are taken into account. The paper is
completed by numerical results and conclusions.

Bergische Universität Wuppertal {schoeps,bartel}@math.uni-wuppertal.de ·
Katholieke Universiteit Leuven Herbert.DeGersem@kuleuven-kortrijk.be

1
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2 Mathematical Model Description and Time Discretization

Common circuit simulators use MNA to assemble the circuit equations element-
wise. Each element contributes with differential and algebraic relations to the un-
derlying DAE, [?]. To the list of basic elements, the magnetoquasistatic (MQS)
device is added (with subscript M), which allows the coupling to field effects while
still using MNA. For each element we have a model fe consisting of current bal-
ances for the network nodes (except ground) and additional constitutive relations
for non-current defining elements, which gives

f(ẏ,y, t) := ∑
e

Qefe

(
d
dt

ye, ye, t
)
+QMfM

(
d
dt

yM, yM

)
= 0 (1)

using for element e: local variables ye and generalized topology matrices Qe that
map local to global variables, such that holds ye = Q>e y. The global unknowns y
consist of the node potentials, whose differences define the respective voltage drop
ve at each element, and of several currents in particular the currents through MQS
devices iM , [?]. All currents contribute to the balances required by Kirchhoff’s Cur-
rent Law (KCL), which is included in (??).

The field distribution of the MQS device is described in terms of the degrees of
freedom of the discretized magnetic vector potential (MVP) _a = _a(t), e.g. by the
finite integration technique (FIT) or the finite element method (FEM):

M
d
dt

_a+K(_a)_a = XiM, (2a)

X>
d
dt

_a = vM−RiM. (2b)

Equation (??) stems from the continuous curl-curl equation, where M and K(_a)
denote the singular conductivity matrix and the curl-curl matrix with the nonlinear
reluctivity ν(_a) employed. K(_a) includes gauging, boundary and initial conditions,
[?], such that a regular matrix pencil is obtained. The columns of the coupling matrix
X = [X1, . . . ,Xp] distribute the branch currents iM on the spatial grid, [?].

The second equation is the coupling equation: it relates the branch voltage vM
to the MVP and to the branch current using linear DC resistance R. All common
conductor types (solid, stranded and foil conductors) can be realized in (??) by the
structure of the conductivity matrix, [?]. Summing up, the field model fM in (??)
reads:

fM

(
d
dt

yM, yM

)
:=

 iM
X> d

dt
_a−vM +RiM

M d
dt

_a+K(_a)_a−XiM

 , where yM =

 iM
vM
_a

 , (3)

where the first row contains the contribution to the KCL and the last row represent
the curl-curl equation (??).

Typically, circuit simulators use BDF schemes for time discretization. This gives
for constant step size h a nonlinear system at each discrete time tn for yn ≈ y(tn), [?]:
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f
(

1
h

ρyn,yn, tn

)
= 0 with

1
h

ρyn :=
1
h

k

∑
i=0

αiyn−i ≈ ẏn

using coefficients αi (k-th order BDF). As usually Newton-Raphson is applied:

J(i)n y(i+1)
n =−f(i)n +J(i)n y(i)n with J(i)n :=

∂ f
∂yn

(
1
h

ρy(i)
n ,y(i)

n , tn

)
(4)

f(i)n :=
(

1
h

ρy(i)
n ,y(i)

n , tn

)
.

Due to the structure of (??), the assembly of the Newton system (??) is performed
by a cycle over all circuit elements (which can be organized in parallel), such that

J(i)n := ∑
e,M

QeJ(i)e Q>e with J(i)e :=
α0

h
∂ f(i)e

∂ ẏe
+

∂ f(i)e

∂ye
, f(i)e := fe

(
1
h

ρy(i)e ,y(i)e , tn

)
(5)

suppressing the time index n. This resembles the element-wise assembly in FEM.
Each contribution (‘stamp’), J(i)e , f(i)e , consists of inner and external variables, i.e.,
variables used only inside the particular element and variables related to other ele-
ments by the simulator, [?].

In the following we want to speed up solving the Newton system by elimina-
tion of the MVP _a. Therefore we work out the MQS stamp and revisit the Schur
complement next.

3 MQS Stamp and Schur Complement

For the MQS model (??) in terms of y>M = (i>M,v>M,_a>), we obtain the following
Jacobian stamp (for BDF time discretization):

J(i)M :=

 I 0 0
R −I α0

h X>

−X 0 K(i)
h

 with K(i)
h :=

dK(_a)
d_a

∣∣∣∣_a=
_a(i)︸ ︷︷ ︸

=:ka(
_a(i)

)

+
α0

h
M (6)

and differential reluctivity matrix ka(
_a(i)). The function-evaluation stamp reads:

f(i)M :=

 I 0 0
R −I 0
−X 0 K(_a(i))

y(i)M +

 0
X>
M

 1
h

ρ
_a(i).

and the right-hand side contribution is given by:

r(i)M :=−f(i)M +J(i)M y(i)M =
1
h

 0
X>
M

(α0
_a(i)−ρ

_a(i)
)
+

 0
0

ka(
_a(i))−K(_a(i))

_a(i). (7)

For the MQS devices, only the current/voltage relation of the series connection of a
(nonlinear) inductor and a resistor needs to be unveiled to the host circuit simulator.
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But the inner variables _a is not used outside the MQS stamp, it can be eliminated
from the Newton system by the well-known Schur complement, that is, to indeed
reduce the element stamp. – This is especially beneficial for all kinds elements with
rather large stamps, e.g. semiconductors, [?], or MQS device, [?], since more com-
pact stamps are obtained, which fit better into the overall framework. – Removing _a
yields a reduced stamp in terms of ỹ>M = (i>M, v>M). The reduced Jacobian reads

J̃(i)M :=
[

I 0
R+ α0

h L(i)
h −I

]
=

[
I 0 0

0 I −α0
h X>

(
K(i)

h

)−1

]
J(i)M

I 0
0 I
0 0

 (8)

with generalized inductance matrix

L(i)
h := X>

(
K(i)

h

)−1
X (9)

using K(i)
h from (??) and corresponding reduced right-hand side contribution:

r̃(i)M =

[
0

r̃(i)M,v

]
where r̃(i)M,v =

1
h

X>
(

I− α0

h

(
K(i)

h

)−1
M
)
(α0

_a(i)−ρ
_a(i))

− α0

h
X>
(

K(i)
h

)−1(
ka(

_a(i))−K(_a(i))
)

_a(i).

We notice that the MVP needs still to be computed to evaluate the reduced right-
hand side (and the nonlinear material curve). Equation (??) corresponds the com-
mon inductance extraction approach, [?], but in addition the Schur complement
takes eddy current effects into account (due to the conductance matrix). – More-
over, the dimension of the reduced stamp is independent of the space discretization
of the field problem. Thus the spatial mesh can be refined and coarsened during the
time-integration without restarting the host-simulator. Nevertheless, the reduction
comes with additional cost.

4 Computational Cost for Schur Complement (Direct Solver)

For the Schur complement in the Newton iteration i+ 1, we need to compute L(i)
h .

Applying a direct solver, the matrix K(i)
h has to be factorized (one LU decomposi-

tion) and forward/backward substitutions for the vector potentials in each branch:

K(i)
h

_a(i)
M, j = X j (for j = 1, . . . , p), s.t. L(i)

h = X>_a(i)
M (10)

by sparse inner products. Also, the MVP for the right-hand-side voltage must be
computed. To this end, we project onto the MVP defining equation inside the New-
ton iteration (derived from Jacobian (??) and right-hand side (??)):
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K(i)
h

_a(i+1)=r(i)M,a +Xi(i+1)
M , r(i)M,a :=

1
h

M
(
α0

_a(i)−ρ
_a(i))+(ka(

_a(i))−K(_a(i))
)
_a(i).

Thus we compute the remaining term _a(i)
V by forward/backward substitutions from:

K(i)
h

_a(i)
V = r(i)M,a, (11)

and obtain for the MVP
_a(i+1) = _a(i)

V +_a(i)
M i(i+1)

M .

Moreover, we obtain for the reduced right-hand side the simplification:

r̃(i)M,v =
1
h

X>
(

α0
_a(i)−ρ

_a(i)−_a(i)
V

)
.

Thus one LU-decomposition and p+ 1 forward/backward substitutions are neces-
sary for the Schur complement. The choice of solver for the Schur complement is
independent of the solver used in circuit host simulator. So, for example an iterative
method such as block-PCG could be used. Such a procedure should support multi-
ple right-hand-sides, as [?], for efficiency. A further advantage of iterative methods
applied to 3D problems is the weak gauging introduced by the iterative solver, [?],
such that further gauging, as employed here, becomes unnecessary.

5 Bypassing as Multirate Time Integration

The generalized inductance matrix depends on the saturation (BH-curve), but this
effect is rather slow compared to other time rates of the electric circuit, e.g. the
switching frequency of transistors, [?]. Saturation depends on the supplied energy

E(tn) =
∫ tn

0
iM(s)vM(s)ds (12)

and thus the relevant time scale of the nonlinearity is given by the integral above,
even if the applied voltage is a much faster signal. We approximate (??) by

En ≈ h

(
n−1

∑
j=0

iM(t j)vM(t j)+ i(i)M v(i)M

)

and compare this to the energy saved in the magnetic field. Consequently, updates
of this matrix are often superfluous and whenever the material behaves (nearly)
linearly, then only one forward/backward substitution for the right-hand-side per it-
eration is necessary. This allows an interpretation as a simplified Newton algorithm,
where the Jacobian (??) is frozen across several iterations and possibly several time
steps if the (relative) change of energy does not exceed a threshold and if the reluc-
tivity is (nearly) constant.



6 Sebastian Schöps, Andreas Bartel, and Herbert De Gersem

distributed field model
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Fig. 1: Transformer: setup and reference solution.

Furthermore, if the material is rather linear the right-hand-side evaluation can
be bypassed as well: then the vector potential needs no update and the distributed
field problem is decoupled from the circuit, where it is represented by an inductance
matrix, similarly to the co-simulation approach, [?].

0) compute _a(i)

1) approximate the energy E(i)
n

2) if ||E(i)
n −E0||> tol

then evaluate material curve ν(i) := ν(_a(i))

2a) if ||ν(i)−ν(i−1)||> tol
then compute L(i)

h and v(i)M

else bypass matrix update L(i)
h := L(i−1)

h and v(i)M := v(i−1)
M

else bypass material update ν(i) := ν(i−1) and L(i)
h := L(i−1)

h , v(i)M := v(i−1)
M

3) return to host simulator.

This algorithm unburdens the host simulator from solving unnecessarily large
system of equations, while still having a suitable Jacobian information at hand. The
drawback are additional Newton iterations due to the inferior convergence of sim-
plified Newton, but solving a sequence of reduced system. If eddy currents included
into the model, the inductance matrix Lh = L(_a,h) depends on the time step step
size h and therefore the matrix must be recomputed or interpolated for any change
of h.

6 Computational Results

All presented methods, the standard Newton without Schur complement, and the
ones using the Schur approach, i.e., simplified and bypassed Newton, have been
implemented in the Framework of the CoMSON DP. In Fig. ?? a simple example
circuit is shown, where a pulse width modulated (PWM) voltage source is connected
to the primary side of a transformer. The PWM is switching at 20kHz, Fig, ??. The
secondary side is connected by a resistor. This transformer has a highly nonlinear
behavior that is simulated until its saturation phase is reached, Fig. ??.
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decompositions forward/backward substitutions stamp evaluations time
full Newton 23371 27936 27936 20h
simplified Newton 2531 36460 31398 1h
bypassed Newton 450 3171 20449 25min

Table 1: Transformer: computational costs.
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Fig. 2: Transformer: reference solution, errors and decompositions.

In the beginning of the start-up phase, t ≤ 0.03s, both, the simplified and by-
passed Newton methods detect the linearity in the material and skip the superfluous
evaluations and the LU decompositions, Fig. ??, although the applied voltages and
currents are fast switching due to the PWM. The standard Newton method employed
here follows the rather naive procedure to evaluate the material in every iteration,
see Table ??. In the highly nonlinear saturation phase, 0.03s < t ≤ 0.06, all methods
require more Newton iterations per step and update the Jacobian almost at every
time step. Bypassing element evaluations implies a linearity assumption and as a
consequence the Newton iteration will require less Jacobian updates, Fig. ??, but
with the drawback of a larger error. After the saturation level is reached, t > 0.06,
the field problem behaves again rather linearly and the updates of the simplified and
bypassing Newton are clearly reduced.

The performance of this approach depends on the choice of the error norms, toler-
ances and device characteristics. We found the heuristic to be insensitive to changes
in the parameters, especially for rather linear or fully saturated models, because the
change in the saturation cause the high computational costs. For example in an in-
duction machine, where the saturation rotates, we are forced to recompute the Schur
complement more often, but the rotation is still determined by the energy and not by
the frequency of a pulsed input. Especially in those applications one can further op-
timize the method and interpolate from previous Schur complements in dependence
of the rotor angle and reuse them in the stationary phase.

When using an adaptive step-size control it should reflect that the recomputa-
tion of the inductance matrix Lh should be avoided if the step size h changes only
insignificantly. On the other hand the application of an adaptive step size control
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to problems with pulsed inputs as described here is not recommended due to high
amounts of rejected steps. Thus a fixed step size is here typically no additional con-
straint.

7 Conclusion

Applying the Schur complement approach to MQS devices yields small element
stamps that are equivalent to the constitutive relation of the series connection of in-
ductors and resistors. The additional costs of the complement computation can be
neglected if solvers with multiple right-hand side techniques are available. The pre-
sented heuristics to bypass Newton iterations reduce the computational costs clearly
and they automatically detect when full Newton iterations are necessary. Due to by-
passing, both problems are quasi decoupled and the time-integration of the circuit is
cheapened because only basic elements are evaluated. This decoupling exploits the
multirate time behavior of the coupled system if present.
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