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Modelling and Simulation of Forced Oscillators
with Random Periods

Roland Pulch

Abstract In nanoelectronics, the miniaturisation of circuits causes uncertainties
in the components. An uncertainty quantification is achieved by the introduction
of random parameters in corresponding mathematical models. We consider forced
oscillators described by time-dependent differential algebraic equations, where a
random period appears. A corresponding uncertainty quantification results from a
modelling based on a transformation to a unit time interval. We apply the tech-
nique of the generalised polynomial chaos to resolve the stochastic model. Thereby,
a Galerkin approach yields a larger coupled system of differential algebraic equa-
tions satisfied by an approximation of the random process. We present numerical
simulations of an illustrative example.

1 Introduction

Uncertainty quantification becomes important in nanoelectronics, since the down-
scaling of circuits produces undesired but inevitable variations in the components.
In the mathematical models, corresponding physical parameters are substituted by
random variables to describe the uncertainties. We consider the traditional mod-
elling of electric circuits by differential algebraic equations (DAEs), where the time-
dependent solution becomes a random process now.

On the one hand, forced oscillators with random parameters, where the period of
the input signals is constant and deterministic, have been investigated in [5–8]. On
the other hand, autonomous oscillators with random parameters have been consid-
ered in [10]. Thereby, the period depends on the random parameters, since no input
signals appear. Now we analyse the case of forced oscillators, where the period of
the input signals is assumed to be a random variable modelling an own uncertainty.
This setting represents a mixture of the two previous cases.
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Since the period is given by a random variable, the domain of dependence dif-
fers for a single oscillation. We achieve a model for uncertainty quantification by a
transformation to a unit time interval as for autonomous oscillators. The stochastic
model can be resolved by a quasi Monte-Carlo simulation, for example. We use the
technique of the generalised polynomial chaos (gPC), see [1,2,12], in the numerical
simulation to investigate a more sophisticated approach. A Galerkin method results
in a larger coupled system of DAEs, which yields an approximation of the periodic
random process. To illustrate the modelling and the simulation, we apply a transistor
amplifier supplied by an input with random period as test example.

2 Modelling of Uncertainties in Period

The mathematical modelling of electric circuits is based on network approaches,
which yield systems of DAEs, see [3]. We consider general systems of the form

A(p)x′(t,p) = f(t,x(t,p),p), (1)

where x : [t0, t1]→Rn represents unknown node voltages, branch currents and possi-
bly other quantities. The singular matrix A ∈Rn×n and the right-hand side f include
physical parameters p = (p1, . . . , pq)> from some relevant set Q ⊆ Rq. Hence the
solution x of (1) depends on time as well as the parameters. If the matrix A is regular,
then the system (1) consists of implicit ordinary differential equations (ODEs).

We assume that the chosen parameters exhibit some uncertainties. Consequently,
we replace the parameters by independent random variables p : Ω →Q according to
some probability space (Ω ,A ,µ). We use a classical random distribution for each
parameter like Gaussian, uniform, beta, etc. Given a function f ∈ L1(Ω) depending
on the random parameters, we denote the expected value by

〈 f (p)〉 :=
∫

Ω
f (p(ω)) dµ(ω) =

∫

Q
f (p)ρ(p) dp (2)

with the probability density function ρ : Q →R. The expected value (2) yields an
inner product 〈 f (p)g(p)〉 for two functions f ,g ∈ L2(Ω) depending on the random
parameters. We also apply the expected value (2) to vector-valued or matrix-valued
functions by components.

We investigate forced oscillators, i.e., the right-hand side of (1) includes periodic
input signals with time rate T . Now let the period T also be a random variable. Two
cases imply the same model:

i) Although the period corresponds to the input signals, it is chosen in dependence
on the selected parameters, i.e., T = T (p). In contrast to the case of autonomous
oscillators, see [10], we assume that the period can be evaluated directly for a
given tuple of parameters. Hence the period inherits some uncertainties from the
random parameters.
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ii) The period is considered as an additional independent random parameter due
to an own uncertainty. Thus we introduce the period to the set of parameters.
Without loss of generality, we can write T = T (p) as in the scenario (i), where
the special case T (p) = p1 is given, for example.

Consequently, let f(t +T (p), ·,p) = f(t, ·,p) for all t ∈R and each p ∈Q in (1). We
assume that the solution of the dynamical system (1) inherits the periodicity, i.e,

x(t +T (p),p) = x(t,p) for all t and each p ∈ Q. (3)

We restrict our attention to a single cycle of each periodic solution. Since a single
cycle is given in a time interval [0,T (p)], the domain of dependence differs in case
of random parameters. We want to compare the periodic solutions, which repre-
sent realisations for different random parameters. In particular, an expected value
and a corresponding variance describe a kind of comparison of the realisations with
respect to the underlying random distribution. However, a direct definition of an ex-
pected value or a variance corresponding to the single cycles of the random process
is not feasible, because the domains of dependence differ.

As for autonomous oscillators, see [10], we transform the time intervals [0,T (p)]
into the unit interval [0,1]. The transformed solution reads

x̃(τ,p) := x(τT (p),p) for each p ∈ Q (4)

with the independent variable τ . It follows the periodicity

x̃(τ +1,p) = x̃(τ,p) for all τ and each p ∈ Q. (5)

The same relations are given for the input signals in the right-hand side of (1).
The transformation (4) changes the DAEs (1) into the equivalent system

A(p)x̃′(τ,p) = T (p) f(τT (p), x̃(τ,p),p). (6)

Due to (5), the corresponding periodic boundary conditions read

x̃(0,p) = x̃(1,p) for each p ∈ Q. (7)

We apply the stochastic model (6),(7) in case of random periods, where the solution
is the periodic random process x̃. The original random process x satisfying (1) is ob-
tained via the transformation (4). The expected value of x̃ can be seen as a reference
shape of the oscillations in the standardised time interval [0,1], where the locations
are relative to the input signals. The variance of x̃ characterises the discrepancies
with respect to the reference shape.
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3 Numerical Simulation

The stochastic model (6),(7) can be resolved by a quasi Monte-Carlo simulation, for
example. Common numerical techniques yield the solutions of the resulting periodic
boundary value problems like multiple shooting methods, finite difference methods
or harmonic balance. Typically, a large number of samples is required to achieve
sufficiently accurate approximations.

Alternatively, we derive a technique based on the gPC, see [1,2,12]. The gPC has
already been applied to forced oscillators with constant periods in [5–8]. Assuming
finite second moments, the random process satisfying (6) can be represented via

x̃(τ,p(ω)) =
∞

∑
i=0

vi(τ)Φi(p(ω)). (8)

A complete set of basis polynomials Φi : Q→R is involved, where we consider an
orthonormal system, i.e., 〈ΦiΦ j〉= δi j with the Kronecker delta. Each random dis-
tribution implies a corresponding polynomial basis. The multivariate polynomials
are just products of the orthogonal univariate polynomials. Hence the basis poly-
nomials are known explicitly. The time-dependent coefficient functions satisfy the
equation

vi(τ) = 〈x̃(τ,p)Φi(p)〉. (9)

The series (8) converges point-wise for each τ in L2(Ω). The coefficient func-
tions (9) inherit the smoothness of the random process under certain assumptions.

The unknown coefficient functions can be determined by either a stochastic col-
location or the stochastic Galerkin approach, see [11,12]. In a stochastic collocation
method, approximations of the probabilistic integrals (9) are computed. We apply
the stochastic Galerkin method in the following. A truncation of the series (8) at
the mth term yields an approximation of the random process. Inserting this finite
approximation in the DAEs (6) causes the residual

r(τ,p) := A(p)

(
m

∑
i=0

v′i(τ)Φi(p)

)
−T (p) f

(
τT (p),

m

∑
j=0

v j(τ)Φ j(p),p

)
.

The Galerkin approach demands that the residual is orthogonal with respect to the
space spanned by the applied basis functions, i.e.,

〈r(τ,p)Φl(p)〉= 0 for each τ and l = 0,1, . . . ,m.

It follows the larger coupled system of DAEs

m

∑
i=0
〈Φl(p)Φi(p)A(p)〉v′i(τ) =

〈
Φl(p) T (p) f

(
τT (p),

m

∑
j=0

v j(τ)Φ j(p),p

)〉
(10)
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for l = 0,1, . . . ,m. A constant matrix appears in the left-hand side of the complete
system. The coefficient functions inherit the periodicity of the random process due
to (9). Hence we arrange the boundary conditions

vi(0) = vi(1) for i = 0,1, . . . ,m. (11)

The periodic boundary value problem (10),(11) can be solved by common numeri-
cal techniques again. Often the probabilistic integral in the right-hand side of (10)
cannot be calculated explicitly. Gaussian quadrature yields an approximation of the
right-hand side evaluations.

A special case appears in case of a constant matrix, i.e., A(p) = A0. Due to the
orthogonality of the basis polynomials, the coupled system (10) simplifies to

A0v′l(τ) =

〈
Φl(p) T (p) f

(
τT (p),

m

∑
j=0

v j(τ)Φ j(p),p

)〉
(12)

for l = 0,1, . . . ,m. Hence the constant matrix corresponding to the left-hand side of
the complete system becomes block-diagonal.

In contrast to a Monte-Carlo simulation, the gPC problem (10),(11) has to be
solved just once. A simulation based on the larger coupled system from the stochas-
tic Galerkin method is often more efficient than a quasi Monte-Carlo simulation in
case of linear systems of differential equations (ODEs, DAEs or PDEs). The above
approach is also feasible for linear systems (1) with time-dependent inputs. How-
ever, autonomous oscillators are described by nonlinear systems of ODEs or DAEs
in most instances. In the nonlinear case, the efficiency of the stochastic Galerkin
approach requires further investigations.

The solution of boundary value problems of dynamical systems with random pa-
rameters via the gPC using either a stochastic collocation or the stochastic Galerkin
approach is analysed more detailed in [9].

4 Illustrative Example

We apply a transistor amplifier shown in Figure 1 (left). A mathematical modelling
yields a nonlinear system of DAEs for the unknown five node voltages, see [4]. The
differential index of the DAEs is one. We arrange the input signal

Uin(t) = 0.4sin
( 2π

T t
)

with period T . A corresponding periodic solution for T = 0.01 is depicted in Fig-
ure 1 (right). The voltages U1,U2,U3 exhibit the form of sine waves. In contrast, the
voltage U4 and the output voltage U5 behave nonlinearly due to the transistor.

Now we consider a random period

T (p) = 0.01(1+0.1p),
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Fig. 1 Circuit of transistor amplifier (left) and deterministic periodic solution for T = 0.01 (right).
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Fig. 2 Expected values (left) and standard deviations (right) for node voltages with random period.

where p represents a standardised random variable with a beta distribution according
to the probability density function

ρ(p) = C(α,β )(1− p)α(1+ p)β for −1≤ p≤ 1

with a constant C(α ,β ). Hence the random period itself is distributed of beta type.
We choose α = β = 2. It follows the expected value 〈T (p)〉= 0.01, the standard de-
viation σ(T (p)) .= 3.8 ·10−4 and the range of the random period includes variations
up to 10%. The other physical parameters are chosen deterministic.

The gPC expansion (8) includes the Jacobi polynomials. We apply polynomi-
als up to degree m = 3. The larger coupled system exhibits the structure (12). The
periodic boundary value problem (12),(11) is solved by a finite difference method
using asymmetric formulas of second order (BDF2). Figure 2 illustrates the result-
ing approximations of the expected values (degree 0) and the standard deviations
corresponding to the five node voltages. The expected values are similar to the de-
terministic solution shown in Figure 1 (right). The standard deviation of the voltages
U1,U2,U3 is relatively low. In contrast, the voltages U4 and U5 feature a subdomain
in time (near τ = 0.7), where a relatively high standard deviation appears. The stan-
dard deviation of U4 and U5 is nearly the same, since the shape of the oscillations
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agrees. Furthermore, Figure 3 illustrates the coefficient functions (9) of the output
voltage U5. The magnitude of the coefficient functions decreases rapidly for increas-
ing degree, which reflects the convergence of the gPC representation (8).
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Fig. 3 Coefficient functions of output voltage in gPC.

For comparison, we compute a reference solution via a quasi Monte-Carlo sim-
ulation using K = 1000 samples. The periodic boundary value problems (6),(7) are
resolved by a finite difference method of second order again. Alternatively, we solve
the periodic boundary value problems (12),(11) for different orders m now. The
maximum absolute differences between the approximations of the expected values
and the variances corresponding to the output voltage are shown in Table 1. The
differences corresponding to the other node voltages have the same or a smaller
magnitude. As hoped for, the accuracy of the gPC approximations improves for in-
creasing order m. In particular, a linear approximation (m = 1) is not sufficiently
accurate, whereas nonlinear polynomials of a low order yield an adequate numeri-
cal solution. The differences do not decrease for m≥ 4 any more. To achieve a better
agreement for large orders m, the number K of samples has to be increased in the
Monte-Carlo simulation and a higher accuracy has to be demanded in all involved
finite difference methods.

Table 1 Maximum differences between approximations from gPC for different order m and ap-
proximations from quasi Monte-Carlo simulation using K = 1000 samples corresponding to output
voltage U5.

m = 1 m = 2 m = 3 m = 4 m = 5

expected value 2.6 ·10−3 8.4 ·10−5 5.1 ·10−6 4.3 ·10−6 4.5 ·10−6

variance 4.5 ·10−3 2.2 ·10−4 5.3 ·10−5 3.6 ·10−5 3.7 ·10−5
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5 Conclusions

A modelling of forced oscillators with random periods has been introduced, which
defines a corresponding random process. We have constructed a numerical tech-
nique based on the generalised polynomial chaos for solving the stochastic model.
A Galerkin approach changes the underlying system of differential algebraic equa-
tions into a larger coupled system of differential algebraic equations. We presented
numerical simulations of a test example, which confirm that the stochastic Galerkin
approach is feasible in this application. Further investigations are required for state-
ments on the efficiency of the technique in comparison to stochastic collocation
methods or quasi Monte-Carlo simulations. In particular, more test examples have
to be considered for a discussion of the efficiency.
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