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Abstract A dynamic iteration scheme is proposed for a coupled system of electric
circuit and distributed semiconductor (pn-diode) model equations. The device is
modelled by the drift-diffusion (DD) equations and the circuit by MNA-equations.
The dynamic iteration scheme is investigated on the basis of discrete models and
coupling via sources and compact models. The analytic divergence and analytic
convergence results are verified numerically.

1 Introduction

Distributed semiconductor models result typically in partial differential equations
(PDEs). The trend of miniaturization in electronics industry leads to devices of
growing complexity, where – due to smaller signals – parasitic effects become more
and more important. Description of semiconductor devices by compact models en-
forces time-consuming parameter fitting and might result in sub-circuits of several
hundred parameters for the description of a single device. Thus the coupling of PDE-
models and circuit simulation becomes desirable. Efficient techniques to couple the
different subsystems are needed. We propose a simple Gauss-Seidel iteration, where
the displacement current is explicitly modeled by an extracted capacitance.

In this section the basic models are introduced: for the semiconductor device
the drift-diffusion (DD) equations and the surrounding circuit the modified nodal
analysis (MNA) equations. In the second section different coupling approaches are
discussed. In the third section a dynamic iteration scheme is developed that guaran-
tees unconditional convergence. This is illustrated by a simple numerical example.
In the last section we draw some conclusions.

1Dipartimento di Matematica, Universitá della Calabria and INFN-Gruppo c. Cosenza, I-87036
Arcavacata di Rende (CS), Italy g.ali@mat.unical.it, · 2Institut für Numerische Anal-
ysis, FB C, Bergische Universität Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
{bartel,brunk,schoeps}@math.uni-wuppertal.de

1



2 Giuseppe Alı̀, Andreas Bartel, Markus Brunk, and Sebastian Schöps

1.1 Device Model

Our np-diode shall be modelled on the domain Ω ⊂ IRd for d = 1,2,3 with ∂Ω =
Γ =ΓD∪ΓN . The DD-model equations consist of conservation laws for the electron
and hole densities n, p coupled to the Poisson equation for the electric potential V ,

∂tn−q−1divJn =−R, Jn = µn(UT ∇n−n∇V ), (1a)

∂t p+q−1divJp =−R, Jp =−µp(UT ∇p+ p∇V ), (1b)

εs∆V = q(n− p−C(x)), Jtot =
∫

Γk

{εs∂t∇V − (Jn + Jp)} ds. (1c)

There R = R(n, p) denotes the generation-recombination term, µn,µp are the mobil-
ity parameters and q the elementary charge. The permittivity is given by εs, C(x) is
the doping concentration and UT the thermal voltage. The total current leaving the
device at terminal k given by Γk ⊂ ΓD is then given by Jtot with the displacement
current εs∂t∇V . Of course, k = 1,2, and due to charge conservation in the diode, the
current is the same for both k.

The model equations are supplemented with initial conditions for n, p and bound-
ary conditions for V,n, p on the Dirichlet boundary ΓD and for Jn,Jp,∇V on the
Neumann boundary ΓN . For the simulations presented below (see §3) we discretized
the DD-equations by use of exponentially fitted mixed finite elements as described
in [1,2], since this allows for positivity preservation. Thus the discretized equations
can be written in the form

Andtn+Bnn = fn(p,V), LV = n−p−C+ fV (vD), (2a)
Apdtp+Bpp = fp(n,V), iD = jD(n,p,V), (2b)

with regular matrices An,Ap,Bn,Bp,L. Here the bold symbols represent the vec-
tors containing the discrete approximations of the corresponding values. iD is the
discrete approximation of Jtot and vD denotes the applied voltage drop, which is
determined by the surrounding circuit. The boundary conditions are incorporated in
the functions fn, fp and fV . We note that standard finite element or finite difference
discretization allow for the same representation.

Alternatively the displacement current can be expressed equivalently in terms of
the time derivative of the applied voltage drop, [3]; this yields

iD =CD
d
dt

vD− iSD with iSD := jSD(n,p,V). (2c)

For a cubic diode with length l and cross-section A, where a 1d model is sufficient,
it holds: CD = εs·A

l .
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Fig. 1: Coupling with displacement current in device (a) and in circuit (b).

1.2 Circuit model

The extended circuit reads in the flux/charge oriented form of the MNA [4]:

AC
d
dt

q +ARgR(A>Ru, t)+ALiL +AViV +AIi(t)+ADiD = 0, (3a)

d
dt

Φ−A>Lu = 0, A>Vu−v(t) = 0, (3b)

q−qC(A>Cu, t) = 0, Φ−ΦL(iL, t) = 0, (3c)

with given functions qC(v, t), gR(v, t), Φ(i, t), vS(t) and iS(t) denoting the con-
stitutive relations for charges, resistances, fluxes, voltage and current sources, re-
spectively. Matrices A? denote network incidences and iD is the current through the
diode. The unknown of the network are charges q(t), fluxes Φ(t), node potentials
u(t) except ground and currents iL(t), iV(t) through inductors and voltage sources.

1.3 Coupling

The structure of the equations allows two representations of the circuit-device cou-
pling: (a) coupling by plain sources (source coupling), in which the distributed de-
vice model takes the displacement current into account, i.e., is is defined by (2b),
or, (b) coupling, where the displacement current is described in terms of circuit
variables, i.e., (2c) is treated as an additional circuit equation (coupling with capac-
itance), see Fig. 1. In both settings the voltage drop vD in the circuit is supplied as a
boundary condition to the device model. In the case of a monolithic coupling, where
all equations are solved in one system, those two representations are equivalent, but
in the case of a weak coupling by a dynamic iteration scheme, they exhibit different
behavior. – Setting (b) reflects standard compact model design.

Source coupling. Spatial discretization of the DD-equations (2) yields an index-
1 DAE (for given v(t)) [2]. Assuming the standard loop and cutset conditions, [5],
the circuit equations (3) are index-1 as well (for given iD(t)). Assuming the overall
system to be of index-1 [6], it can be written in semi-explicit form:

ẏd = fd(yd ,zd), ẏc = fc(yc,zc,zd),

0 = gd(yd ,zd ,zc), 0 = gc(yc,zc,zd),
(4)
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with ∂gd/∂zd and ∂gc/∂zc regular. The differential variables of the diode and cir-
cuit are yd := (n,p) and yc := (q,Φ), while the algebraic unknowns are zd = (V, iD)
and zc := (u, iL, iV). The vector V describes the space discrete electric potential and
iD the device current, defined in (1c). Due to spatial discretization the values of
n,p in some discretization nodes may turn into algebraic variables. This does not
pose any problem as long as the index-1 assumptions hold. Thus this case is not
considered in the following.

In this setting all node potentials u are algebraic variables of the circuit and so
is vD = A>Du. Hence only zc enters the algebraic equations of the device gd . The
diode current is also algebraic, but appears, depending on the circuit’s topology, in
the differential fc and in the algebraic equation gc of system (4).

Coupling with Capacitance. Now substituting iD by equation (2c) in the current
balance equation (3a), we end up with a slightly different system of equations

ẏd = fd(yd ,zd), ẏc = fc(yc,zc,zd),

0 = gd(yd ,zd ,yc), 0 = gc(yc,zc),
(5)

with differential unknowns yd := (n,p) and yc := (q,Φ,PDu) and algebraic un-
knowns zd = (V, iSD) and zc := (QDu, iL, iV), where QD is a projector onto the ker-
nel of A>D and PD its complement, as typically defined in circuit index analysis, [5].
In this notation the node potentials are split because the capacitance CD is not writ-
ten in charge oriented form. The advantages of the charge/flux oriented MNA, i.e.,
charge conservation, are still respected because of the linearity of CD.

Due to the capacitive path between the coupling nodes the voltage drop vD be-
longs to the differential variables yc and only this enters the device subsystem gd
and, in turn, the device current iSD enters only the circuit’s differential equation fc.

2 Dynamic Iteration Schemes

To simulate the coupled system of circuit and discretized device equations efficiently
and reliably we propose a dynamic DAE-DAE iteration scheme that ensures stability
and speeds up convergence. The key is the coupling via capacitive branches, [7],
which is ensured here by fitting the capacitance CD using the device equations.

In a dynamic iteration scheme, the time interval of interest is split into time win-
dows that are treated sequentially. On these windows, each subsystem is solved in-
dependently by a problem-specific time-integrator. The mutual input from the sub-
systems are considered as a known functions, only dependent on time. The exchange
of data between the subsystems is organized in a Gauss-Seidel-like iteration scheme.

The stability and convergence of the iteration depends on the order in which the
problems are computed, [8]. For both coupling approaches we may start by comput-
ing the diode model or the circuit model first. We will see, that for the coupling with
parallel capacitance the iteration will converge, independent of the particular order.
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Source coupling. Let us start with the source coupling for the case, that the
device is simulated first. The circuit solution y(0)

c (t),z(0)
c (t) is considered as known

and from that the new device solution y(1)
d (t),z(1)

d (t) is obtained. Afterwards the
circuit solution y(1)

c (t),z(1)
c (t) is updated using the new solution of the device.

ẏ(1)
d = fd(y(1)

d ,z(1)
d ), ẏ(1)

c = fc(y(1)
c ,z(1)

c ,z(1)
d ),

0 = gd(y(1)
d ,z(1)

d ,z(0)
c ), 0 = gc(y(1)

c ,z(1)
c ,z(1)

d ),
(6)

In this scheme the dependence of the algebraic equation gd on the old iterate z(0)
c

will cause divergence, if the contractivity factor α , [8], is too large, that is, if

α =

∣∣∣∣∣
∣∣∣∣∣
(

∂g
∂z(1)

)−1(
∂g

∂z(0)

)∣∣∣∣∣
∣∣∣∣∣> 1, where g(·) := (gd(·),gc(·)) , z := (zd ,zc) . (7)

A similar contractivity condition occurs for the coupling in reversed order of the
subsystems. Clearly the condition vanishes in both orders if the dependence of gd
on zc turns into a differential dependency or gc does not depend on the algebraic
variable zd (for the circuit first), [7]. This is the case for capacitive paths between
the device pins and this will be exploited next.

Coupling with Capacitance. In the case of the coupling with parallel capac-
itances, the contraction factor vanishes regardless of the order of the subsystems.
When starting with the device, i.e,

ẏ(1)
d = fd(y(1)

d ,z(1)
d ), ẏc = fc(y(1)

c ,z(1)
c ,z(1)

d ),

0 = gd(y(1)
d ,z(1)

d ,y(0)
c ), 0 = gc(y(1)

c ,z(1)
c ),

(8)

the only dependence on an old iterate in an algebraic constraint is the differential
variable y(0)

c in gd , hence the contraction factor vanishes. On the other hand, when
starting with the circuit subproblem

ẏ(1)
c = fc(y(1)

c ,z(1)
c ,z(0)

d ), ẏ(1)
d = fd(y(1)

d ,z(1)
d ),

0 = gc(y(1)
c ,z(1)

c ), 0 = gd(y(1)
d ,z(1)

d ,y(1)
c ),

(9)

then there is no dependence on old iterates in algebraic constraints at all; thus again
the convergence is unconditional, according to [8].

3 Numerical Results

Next, we visualize the above results by the simulation of a simple series connection
of a voltage source, a resistor and an amplified silicon pn-diode (1d). The resistance
is given as R = 1Ω , the voltage source is given by v(t) = sin(ωt)V with a frequency
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(a) Example circuit

Parameter Physical meaning Numerical value
q elementary charge 1.6 ·10−19 As
εs permittivity constant 10−10 As/Vm
UT thermal voltage at TL = 300K 0.026 V
µn/µp low-field carrier mobilities 0.15/0.045 m2/Vs
C0 maximum doping concentration 1023 m−3

l length 10−7 m
A cross-section 10−14 m2

(b) Physical parameters for a silicon pn-junction diode.

Fig. 2: Circuit and device parameters.

ω = 2π1011 Hz. The diode consists of a 50 nm n-region doped with C0 and a 50 nm
p-region doped with −C0. The output current of the diode is amplified by the factor
1500, since this causes α (7) to be greater than one. This makes our example on
hand rather academic, but on the other hand it illustrates that even in simple setups
divergence occurs. Further parameters of the diode are given in Table 2b.

For the following simulations we applied a constant time step size of ∆ t = 0.1ps
and simulate our circuit und until T = 10 ps. On each time window, we accomplish
10 iterations and compare the network variables computed with our dynamic itera-
tion scheme below, to a monolithic reference solution. – The reference solution is
made to verify the convergence of the dynamic iteration scheme to the solution of
the expensive monolithic systems. Therefore it is computed with same step size.

In the case of circuit first and a parallel capacitance, the algorithm reads:

0) Initialization. Set first time window to Tn with n := 0.
1) Guess. Get a circuit solution (y(0)

c ,z(0)
c ) on Tn.

2) Solve the DAE initial value problems.
a) Time-integration of the network on Tn

ẏ(1)
c = fc(y(1)

c ,z
(1)
c ,z

(0)
d ), with y(1)

c (tn) = yc,n

0 = gc(y(1)
c ,z(1)

c )

b)Time-integration of the circuit on Tn

ẏ(1)
d = fd(y(1)

d ,z(1)
d ), with y(1)

d (tn) = yd,n

0 = gd(y(1)
d ,z(1)

d ,y(1)
c ),

3) Sweep Control. If e.g. ||y(1)−y(0)|| > tol, then repeat step, i.e., set (y(0)
c ,y(0)

d )
:=(y(1)

c ,y(1)
d ) and go to Step 2), otherwise Step 4)

4) Next window. If tn+1 < T , then set new initial values y?,n+1 := y(1)
? (tn+1) and

proceed to the next time window n := n+1, go to Step 1).

In the other cases, the algorithms read analog. – For the numerical comparisons pre-
sented below, we replaced the sweep control in the above algorithm by a fix number
of ten iteration per time step. In case of reversed order (diode first) or the source
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(a) Source coupling.
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(b) Coupling with Capacitance.

Fig. 3: Relative error of network components between 2.2–2.3 ps.

coupling approach, the algorithm has been adjusted accordingly.

Source Coupling. First we use the source coupling approach and simulate the
simple circuit accordingly. The dynamic iteration scheme does not converge. In Fig-
ure 3a we depict the relative error of the network components, i.e. the deviation from
the reference solution, against the number of iterations in the time interval 2.2–2.3
ps. We choose this interval, since there simulation breaks down. We clearly see, that
for both orders - device or circuit first - the iteration scheme clearly diverges. The
different starting values for the two orders is due to bad convergence in the previous
time windows and is the result of error propagation. We note, that the amplification
of the diode current by the factor 1500 causes the crucial parameter α in (7) to be
greater than one, what results in divergence.

Coupling with Capacitance. In the second approach we extract the capacitive
behaviour of the diode and model this by a parallel capacitance CD = 1.5 ·10−14 F.
In turn, we compute the diode current iSD without consideration of the displacement
current. In contrast to the source coupling approach, we observe a convergent algo-
rithm. In Figure 3b we depict the relative error (i.e. the relative deviation from the
monolithic reference solution) of the network components against the number of it-
erations in the interval 2.2–2.3 ps, where the source coupling algorithm broke down.
We clearly see, that we get convergence with the capacitance in parallel. Moreover,
we observed significantly better convergence on the previous time windows, what
we easily can deduct from the coinciding starting values for both orders.

Circuit first performs slightly better, which can be physically motivated, since the
circuit drives the diode. – Thus the suggested algorithm is coupling with capacitance
and circuit first.
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4 Conclusion

For PDAE-system occurring for coupled systems of circuits and semiconductor de-
vices dynamic iteration schemes are often based on the source coupling approach.
We have shown that even for simple examples this might lead to non-convergent it-
eration schemes. To overcome this we suggested a dynamic iteration scheme based
on the modeling of capacitive effects in semiconductor devices. Capacitive effects
are extracted from the device model and modeled by an additional capacitive path
in the circuit. We have shown that this approach leads - in accordance with the the-
ory in [8] - to a convergent dynamic iteration scheme independent of the order of
computation of the different subsystems. We note that we do not simply add an
additional capacitance to the circuit in order to aid convergence, but extract the ca-
pacitance from the device model. Thus, it is ensured that the modification does not
change our coupled system.

The extracted capacitance can also be regarded as a predictor for the capacitive
behavior of the semiconductor device and thus it also can be regarded as a compact
model for these effect. Thus, our approach also fits into the framework of [9].

With the suggested coupling via the extracted capacitance we get convergence
for both orders – circuit first or device first. However, we observe slightly better
convergence for the circuit first approach. We shortly note that this is due to the de-
pendence of gd on yc. A deeper analysis of this effect is subject to ongoing research.
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