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Model order reduction of parameterized
nonlinear systems by interpolating input-output
behavior

Michael Striebel1 and Joost Rommes2

Abstract In this paper we propose a new approach for model order reduction of pa-
rameterized nonlinear systems. Instead of projecting onto the dominant state space,
an analog macromodel is constructed for the dominant input-output behavior. This
macromodel is suitable for (re)use in analog circuit simulators. The performance of
the approach is illustrated for a benchmark nonlinear system.

1 Introduction

Simulation of VLSI chips is becoming CPU and memory intensive, or even infeasi-
ble, due to the increasing amount of layout parasitics and devices in analog designs.
A popular method for speeding up and/or enabling simulation of large-scale dy-
namical systems is model order reduction [1]. For linear systems (large parasitic
networks), several methods [2–4] have been developed that are now used in indus-
trial circuit simulators.

Well-known methods for nonlinear systems in circuit simulation are Proper
Orthogonal Decomposition (POD) based methods [5] and piecewise-linearization
(PWL) methods [6]. Both approaches try to obtain reduction by projection on the
dominant dynamics. However, both approaches may suffer from difficulties that
may limit their practical use [7]. Robust and efficient resimulation of POD mod-
els is still a challenge, while PWL based approaches require application-dependent
selections strategies for linearization points and weights.

We present a new method for the reduction of large nonlinear systems. The most
significant difference with respect to existing methods is that instead of focusing
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on the dominant state dynamics, the proposed method tries to capture the dominant
input-output behavior. Another novelty is that the resulting analog model behaves
like a circuit element and can easily be used by circuit simulators.

2 Circuit modeling

Complex electrical systems are designed in a modular way, i.e., functional units are
designed separately and put together to form the overall system. To enable com-
munication with other circuit blocks, some nodes of each unit act as terminals,
or pins. At these, say nP pins, information in terms of pin voltages and pin cur-
rents, vpin, ipin ∈RnP , respectively, is exchanged. Applying Modified Nodal Analysis
(MNA), a block is described by

0 =AC
d
dt

qC(AT
Ce)+ARr(AT

Re)+ALjL +AV jV +AI i(t)−Apinipin, (1a)

0 =
d
dt

ΦL(jV )−AT
L e, (1b)

0 =v(t)−AT
V e, (1c)

0 =vpin−AT
pine, (1d)

where e(t) ∈ Rne , jL(t) ∈ RnL , jV (t) ∈ RnV denote the unknown node voltages and
currents through inductors and voltage sources, respectively. The incidence matrices
AΩ ∈ {0,±1}ne×nΩ , describe the placement of the basic network elements resistor
(Ω = R), capacitor (C), inductor (L), voltage (V) and current (I) source, respectively.
The, in general nonlinear, characteristics of the network elements are represented by
qC(·), Φ(·), r(·), i(·), v(t). The incidence matrix Apin ∈ {0,±1}ne×nP addresses the
circuit nodes acting as pins. Injecting, i.e., prescribing the pin voltages vpin, the pin
currents jpin become additional unknowns, meant to be passed back to system the
block is embedded in, or vice versa. By this, a circuit unit turns into an input-output
system, represented in the compact form

0 =
d
dt

q(x)+ j(x)+ s(t)+Bu; y = BT x, (2)

where u(t),y(t) ∈ RnP represent the input and output of the system and x(t) ∈ Rn

(n = ne + nV + nL + nP) denotes the internal states. Note, that in the following we
will omit the excitation s(t).

Frequently, design parameters, e.g., width and length of transistor channels, are
kept variable, in order to optimize them in the design process. We take this into
account by including a parameter vector ρ ∈ Rnpar in the element functions, i.e., by
extending q(x;ρ) and j(x;ρ) ∈ Rn in (2).

For a more detailed description of MNA and the properties of the arising network
equations we refer to [8].
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2.1 Model order reduction

A compound of subsystems, described by (2), arises e.g., in full system verifica-
tion and post-layout simulation. The arising overall system is usually of very high
dimensionality.

Focusing on the interaction in a compound of systems one is often not interested
in the individual internal states x(t) but merely in the way a subsystem translates
u(t) to y(t). Classically, Model Order Reduction (MOR) aims at replacing (2) by
a dynamical system of reduced dimension r� n. The idea is, that, given the same
input u(t), the substitute dynamical system with internal states z(t) ∈ Rr produces
(almost) the same output y(t) as the full system (2). Hence, replacing individual
blocks by models of reduced order, the dimension of the compound system is kept
small, enabling the overall system to be simulated at reasonable computational costs.

MOR for linear systems, arising from parasitic extraction, used in post-layout
simulation, reached a high level of maturity. Several methods are now used in indus-
trial circuit simulators. For an overview we refer to [1,9]. MOR for linear problems
bases upon the transfer function, i.e., the representation of the dynamical system un-
der consideration in the frequency domain and is usually combined with projecting
(2) onto a lower dimensional subspace.

For nonlinear problems the situation is somewhat different. Here, in general no
transfer function can be specified and also projection to a lower dimensional sub-
space may reduce the dimension of the system but not the computational costs eval-
uating the system.

We propose an approach to reproduce the input-output mapping, starting from
time-domain considerations.

2.2 Numerical Time Integration

Systems of type (2) usually can not be solved analytically for x(t),y(t). Numerical
integration is carried out instead. Both onestep and multistep methods discretize the
system. For the backward Euler as a showcase this amounts to

0 =
1
h

[q(xn)−q(xn−1)]+ j(xn)+Bun; yn = BT xn. (3)

Given un and xn−1, (3) defines xn and yn, i.e., approximations to x(tn) and y(tn)
at tn = tn−1 + h. Applying a Newton-Raphson technique to solve this problem, a
series of linear equations have to be solved. The main ingredients for setting up the
corresponding linear system are

αC(x̄)+G(x̄); αq(x̄)+ j(x̄); q(xn−1), (4)
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with C(·) = d
dx q(·), G(·) = d

dx j(·), evaluated at some intermediate points x̄. For
the backward Euler we have α = h−1. The term q(xn−1) reflects the history of the
dynamic elements.

Note, that for didactic reasons only we stick to the Euler discretisation during the
rest of this paper. For an overview of schemes applicable to DAEs we refer to [10].

3 Input-output behavior macromodeling

Being interested in the translation of the input to the output reads, in terms of the
discretised problem (3): we are interested in yn and xn is an auxiliary quantity only.
Hence, ideally we are able to replace the system (3) by an input-output mapping

τ : RnP → RnP , un 7→ yn = τ(un). (5a)

At first glance it seems that this is not realizable. From (4), not only a combined
evaluation of {q, j} and {C,G} is needed but also the dynamics’ history q(xn−1).

However, for homogeneous structures, i.e., blocks comprising only resistive (R),
capacitive (C) or inductive (L) elements, the mapping τΩ (Ω = R,C,L), can be
derived. Still, in general, no analytic expression can be specified. The idea is to
replace function evaluation with interpolation from tabulated data (see Table 1).

Table 1 Macromodel - tabulated data

u u(1) · · · u(k)

τΩ τ
(1)
Ω

· · · τ
(k)
Ω

TΩ T(1)
Ω

· · · T(k)
Ω

This table includes also the derivative of τ w.r.t. the input, i.e.,

T : RnP → RnP×nP : un 7→ T(un) =
∂τ(u)

∂u

∣∣∣∣
u=un

. (5b)

Later, we will see why this is necessary.
The basic concept is to replace homogeneous structures by a macromodel or

macroelement with the same characteristics the combination of elements has. Re-
sistors turn voltages to currents, capacitors answer with charges when a voltage is
applied and inductors show a current-flux relation. These facts are to be preserved
by the macromodel.

In the following we give some details for purely resistive and purely capacitive
structures, i.e., for static and dynamic blocks.
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3.1 Models for resistive structures

A circuit block consisting of resistors only is described by

0 = ARr(AT
Re)−Apinjpin,

0 = vpin−AT
pine.

(6a)

We choose the pin voltages vpin as input parameters. Assuming sufficient reg-
ularity of the conductance matrix Gr(w) := ∂

∂w r(w), (6a) implicitly defines the
node voltages and pin currents as functions of the pin voltages, i.e., e = e(vpin)
and j = j(vpin), respectively. We differentiate (6a) with respect to vpin to get:

0 = ARGr(AT
Re)AT

R
∂e

∂vpin
−Apin

∂ jpin

∂vpin
,

0 = InP −AT
pin

∂e
∂vpin

(6b)

where InP is the nP×nP identity matrix.
For purely resistive structures we construct Table 1, describing the mapping ”pin

voltages” to ”pin currents” in the following way:

1. Choose a discrete set of k ∈ N terminal voltages vp,1, . . . ,vp,k with vp,i ∈ RnP

2. For each i ∈ {1, . . . ,k}

a. compute ei = e(vp,i) and jp,i = jpin(vp,i) by solving (6a) for vpin = vp,i

b. solve the linear system (6b) for ∂e
∂vpin
|vp,i and ∂ jpin

∂vpin
|vp,i =: Jp,i. Here, Gr(·) is

evaluated at AT
Rei. This amounts to computing the Schur complement

Jp,i =
∂ jpin

∂vpin
=
(

AT
pin
(
ARGr(AT

Rei)AT
R
)−1 Apin

)−1
. (6c)

3. The parameters for the resistive macromodel from Table 1 are

u(i) = vp,i , τ
(i)
R = jp,i , T(i)

R = Jp,i

for i = 1, . . . ,k where vp,i ∈ RnP , jp,i ∈ RnP , Jp,i ∈ RnP×nP

3.2 Models for capacitive structures

The distribution of charges and voltages in a network of capacitors is described by

0 = ACq(AT
Ce)−Apinqpin,

0 = vpin−AT
pine,

(7a)
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where qpin are point charges at the structure’s pins. In other words: we map a large
number of charges q(·) to nP point charges qpin. Here the voltage vpin ∈ RnP is
prescribed at the pins.

Analog to the procedure for resistive structures (Sect. 3.1) we construct Table 1
for purely capacitive structures. For different voltages vpin ∈ {vp,1, . . . ,vp,k} we
solve the nonlinear system (7a) for qpin(vp,i) =: qp,i and e(vp,i).

The column in Table 1 reflecting the charge replies is made up of {qp,1, . . . ,qp,k}.
Items for the column in Table 1 describing the Jacobians TC are found by solving

0 = ACCq(AT
Ce)AT

C
∂e

∂vpin
−Apin

∂qpin

∂vpin
,

0 = InP −AT
pin

∂e
∂vpin

(7b)

for ∂e
∂vpin
|vp,i and ∂qpin

∂vpin
|vp,i =: Qp,i =: T(i)

C , i.e., from the Schur complement

Qp,i = T(i)
C =

(
AT

pin
(
ACCq(AT

Cei)AT
C
)−1 Apin

)−1
. (7c)

Subblocks containing only inductive elements can be treated in a very similar way.
For the sake of space-saving we skip the description here.

3.3 Parameterized structures

A purely resistive structure that contains parameterized elements is modeled by

0 = ARr(AT
Re;ρ)−Apinjpin,

0 = vpin−AT
pine,

(8)

with the vector ρ ∈ Rnpar of parameters. The task is now to not only cover a range
of terminal voltages vpin but also a parameters ρ in a reasonable range.

Therefore, the procedure from Sect. 3.1 has to be adapted: besides sweeping
over a range of pin voltages vpin ∈ {vp,1, . . . ,vp,k} we scan in parallel the input-
output behavior for different parameters ρ ∈ {ρ1, . . . ,ρ l}. This leads to an extended
macromodel

τ : RnP ×Rnpar → RnP , (un,ρ) 7→ yn = τ(un,ρ), (9)

realized by table with datapoints
[
(ρ(µ),u(ν)),(τ(µ,ν),T(µ,ν))

]
for µ = 1, . . . , l and

ν = 1, . . . ,k.
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3.4 Using the macromodels

A system containing subblocks, of purely resistive and capacitive nature can basi-
cally be modeled by

0 =
d
dt

q(x)+ j(x)+ s(t)+BRτR(BT
Rx)+BC

d
dt

τC(BT
Cx), (10)

with incidence matrices BR,BC describing the interfaces. In this way, we accommo-
date the characteristics of a subblock being reactive or nonreactive. Macromodels
of inductive nature are added to (10) very similar to the inclusion of capacitor-like
macroelements.

Applying any numerical time integration technique to (10), we see, that the basic
ingredients for the systems to be solved in this process are (cf. (4))

α

[
C+ T̃C

]
(x̄n)+

[
G+ T̃R

]
(x̄n) and α [q+ τ̃C] (x̄n)+ [j+ τ̃R] (x̄n);

q(xn−1) and τ̃C(xn−1),
(11)

where τ̃Ω (·) = BΩ τΩ (BT
Ω
·) and T̃ Ω (·) = BΩ T Ω (BT

Ω
·) for Ω ∈ {R,C}. We clearly

see that the Jacobians (5b) are necessary as well.
Recall, that evaluation of the macromodel-functions and the corresponding Jaco-

bians are realized by interpolation from the corresponding Table 1.

4 Numerical Experiments

An extended, parameterized version of the transmission line [6] serves as a test
example. This circuit, displayed in Fig. 1, consists of a series of N blocks, the M
diodes in each block are modeled by id(u) = exp(ρ ·u)−1. For the resistive block

Fig. 1 Transmission line
N+1

block Nblock 1

1 2 N

(with M = 100) a compact model is derived by sweeping vpin = {0.0,±0.01,±0.02}
and ρ = {35,55}, i.e., by solving (6a,6b) 5 · 2 = 10 times for each combination of
(vpin,ρ). For testing, the block was instantiated N = 10 times and a current source
i(t) = 0.5(cos(2π · 0.1 · t) + 1) was chosen. To test the accuracy of the reduced
model, each of the N = 10 blocks was replaced by a tablemodel. From Fig. 4 a
speedup of about 10 for each choice of the parameter ρ and an almost perfect match
with full system simulation can be observed.
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original
table

full system reduced system
extraction time: 5.0

p = 40 116.1 9.4
p = 45 100.0 10.6
p = 50 102.1 12.0

Fig. 2 Parameterized transmission line: p = {40,45,50}

5 Conclusion

We have presented a method that directly approximates the input-output behavior of
large parameterized nonlinear circuits by interpolating precomputed contributions to
the network equations. Numerical results confirm that significant speedups can be
obtained while maintaining accuracy. Extensions to mixed static/dynamic circuits
and advanced interpolation methods are subject to future research.
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