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Abstract

We consider periodic problems of autonomous systems of ordinary differential equa-
tions or differential algebraic equations. To quantify uncertainties of physical param-
eters, we introduce random variables in the systems. Phase conditions are required
to compute the resulting periodic random process. It follows that the variance of
the process depends on the choice of the phase condition. We derive a necessary
condition for a random process with a minimal total variance by the calculus of
variations. An according numerical method is constructed based on the generalised
polynomial chaos. We present numerical simulations of two test examples.
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1 Introduction

Mathematical modelling often yields systems of ordinary differential equa-
tions (ODEs) or differential algebraic equations (DAEs). We consider periodic
boundary value problems of autonomous systems. Hence the corresponding
periods are unknown a priori. Since a continuum of periodic solutions exists,
we require phase conditions to isolate a solution.

We assume that some physical parameters of the systems exhibit uncertainties.
Thus we replace the parameters by random variables with traditional distribu-
tions (uniform, Gaussian, etc.). The periodic solution of the system of ODEs
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or DAEs becomes a random process. Since different parameters imply differ-
ent periods, the solutions of the systems are transformed to the unit interval.
Again we need phase conditions to determine a particular random process.
However, both the expected value and the variance depend on the choice of
the phase condition, although each random process includes the same infor-
mation. A representation of the random process in the phase space does not
yield an adequate alternative.

Some phase conditions may cause a relatively large variance. We determine a
random process with a minimal total variance, since this process represents
an appropriate quantification of the uncertainties in case of autonomous sys-
tems. An according expected value is also specified by this strategy. In the
deterministic case, Doedel [2] introduced a phase condition to minimise the
distance to a predetermined periodic function. A similar constraint results in
the stochastic case, where the a priori unknown expected value is involved.
We use the calculus of variations to prove that this phase condition is satisfied
by an optimal solution.

The system of ODEs or DAEs with random parameters has to be solved us-
ing this phase condition. We apply the generalised polynomial chaos (gPC),
see [1,14], to expand the random process as well as the random period. A
Galerkin method yields a larger coupled system for the unknown coefficients
in the expansion. Numerical techniques based on the gPC have already been
applied to forced or autonomous random oscillators in [6,7,9,10] for different
tasks. In the situation at hand, the gPC is advantageous, since the expected
value of the random process appears as a separate function within the expan-
sion. Furthermore, the approach of the gPC has resolved partial differential
equations with random parameters successfully in the previous works [11,12],
for example.

The article is organised as follows. We introduce the deterministic model as
well as the stochastic model in Sect. 2. The usage of the gPC expansions is
outlined. In Sect. 3, we derive the phase condition corresponding to a random
process with minimal total variance. We construct the numerical method ap-
plying the gPC. Numerical simulations with respect to a system of DAEs and
an implicit system of ODEs, which represent mathematical models of electric
circuits, are discussed in Sect. 4.
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2 Random Oscillators

We discuss autonomous oscillators in this work. In contrast, forced oscillators
involve predetermined periodic inputs, which cause a periodic solution.

2.1 Deterministic model

We consider autonomous systems of the form

A(p)x′(t,p) = f(x(t,p),p), (1)

where the given matrix A ∈ Rn×n as well as the right-hand side f include
parameters p ∈ Q for some relevant set Q ⊆ Rq. Consequently, the unknown
solution x : [t0, t1]×Q → Rn depends on these parameters. If the matrix A is
regular, then the system (1) represents implicit ODEs. In contrast, a system
of DAEs results in case of a singular matrix A. We assume that the matrix A
is either regular or singular for all parameters p ∈ Q. Moreover, let x depend
continuously on the parameters p.

Since the dynamical system (1) is autonomous, a particular solution x yields
further solutions via the translations

y(t,p) := x(t + c,p) with c ∈ R. (2)

We analyse oscillators, i.e., periodic boundary value problems of the sys-
tem (1). The periodicity condition reads

x(t + T (p),p) = x(t,p) (3)

for all t ∈ R and each p ∈ Q with the periods T (p) > 0. We note that also
the a priori unknown period depends on the parameters.

To achieve a uniform approach for all parameters, we transform the time
intervals [0, T (p)] to the unit interval [0, 1]. Let

x̃(s,p) := x(sT (p),p). (4)

The system (1) changes into

A(p)x̃′(s,p) = T (p)f(x̃(s,p),p). (5)

The periodicity x̃(s + 1,p) = x̃(s,p) for all s ∈ R implies the two-point
boundary value problem

x̃(0,p) = x̃(1,p) (6)

for each p ∈ Q.
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The boundary value problem (5),(6) is underdetermined, since the period
T (p) is unknown. Furthermore, we require an additional phase condition to
identify an isolated solution within the continuum (2). Numerical techniques
using phase conditions are well-known in the literature, see [13], for exam-
ple. Without loss of generality, we choose the first component of the solution
x̃ = (x̃1, . . . , x̃n)>. An example of a phase condition is

x̃1(0,p) = η(p) for each p ∈ Q (7)

using η(p) ∈ R from the range of this component. A constant choice η(p) ≡ η0

is often feasible for all parameters. The constraint (7) represents an additional
boundary condition. Another phase condition reads

x̃′1(0,p) = 0 for each p ∈ Q, (8)

where a local optimum or a saddle point appears at the boundary t0 = s0 = 0.
If the first component corresponds to an explicit ODE (x̃′1 = Tf1), then the
constraint (8) is equivalent to

f1(x̃(0,p),p) = 0 for each p ∈ Q

due to T (p) > 0. This condition can be added directly to the boundary con-
ditions.

2.2 Stochastic model

Now we assume that the selected parameters p ∈ Q include some uncertain-
ties. To achieve a quantification, we replace the parameters by independent
random variables

p : Ω → Q, p = (p1(ω), . . . , pq(ω))>

according to a probability space (Ω,A, µ). We select some traditional distri-
bution (Gaussian, uniform, beta, etc.) for each variable pj. Thus it exists a
joint probability density function ρ : Rq → R. Moreover, the density function
is piecewise continuous for the common distributions.

The expected value of a function f : Rq → R, which depends on the parame-
ters, is defined by (provided it exists)

〈f(p)〉 :=
∫

Ω
f(p(ω)) dµ(ω) =

∫

Rq
f(p)ρ(p) dp. (9)

The expected value yields an inner product on L2(Ω), i.e.,

〈f(p)g(p)〉 =
∫

Rq
f(p)g(p)ρ(p) dp (10)
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for functions f, g ∈ L2(Ω) depending on the tuple of parameters. The expected
value (9) and the inner product (10) also applies component-wise to vector-
valued and matrix-valued functions.

Substituting the parameters of the dynamical system (1) or (5) by random
variables changes a deterministic solution into a random process

x : [t0, t1]× Ω → Rn or x̃ : [s0, s1]× Ω → Rn,

respectively. In the periodic boundary value problem, the period becomes a
random variable T : Ω → R. For uncertainty quantification, we are interested
in key data of the random process and the random period like the expected
value and the variance. Nevertheless, more sophisticated quantities may be
resolved.

Since the period depends on the random parameters, we transform the do-
main of dependence [0, T (p)] to the unit interval [0, 1]. The choice of a phase
condition determines the random process in the unit interval and thus also its
expected value and variance. It is obvious to ask for a representation, which
is independent of the phase condition. A periodic solution x(t,p) or x̃(s,p),
respectively, represents a closed curve in the phase space, i.e.,

Γ(p) := {x(t,p) : t ∈ R} = {x̃(s,p) : s ∈ R} ⊂ Rn for each p.

The closed curve is independent of the phase condition used for the computa-
tion of the corresponding solution. The distance of two closed curves can be
quantified by the Hausdorff metric, see [8]. However, we obtain only a met-
ric space via this approach. In contrast, we like to apply a Banach space or
Hilbert space. Since algebraic operations are missing in the metric space, a
definition of an expected value and a variance becomes dubious in the phase
space. Hence we analyse the random process within the unit interval [0, 1] and
make the best out of this situation by using appropriate phase conditions.

2.3 Polynomial chaos expansions

The generalised polynomial chaos (gPC) provides an expansion of a ran-
dom process with finite second moments, see [1,3,14]. Since we consider the
standardised system (5) with random parameters, let the involved solution
x̃ = (x̃1, . . . , x̃n)> fulfill the demand

〈x̃l(s,p)2〉 < ∞ for all l = 1, . . . , n
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and each s ∈ R. Otherwise, the variance of the random process does not exist.
The gPC expansion of the random process reads

x̃(s,p) =
∞∑

i=0

vi(s)Φi(p), (11)

where orthonormal basis polynomials Φi : Rq → R are applied, i.e., it holds
〈ΦiΦj〉 = δij with the Kronecker-delta. For example, the Hermite polynomials
and the Legendre polynomials represent the orthogonal system for random pa-
rameters with Gaussian distributions and uniform distributions, respectively.
The coefficient functions in (11) satisfy the relation

vi(s) = 〈x̃(s,p)Φi(p)〉 for each i ∈ N. (12)

Since the solutions x̃ are unknown a priori, we have to determine these coef-
ficient functions approximatively. For fixed s ∈ [0, 1], the gPC expansion (11)
converges in L2(Ω) due to the assumption of finite second moments.

We also apply a gPC expansion for the random period

T (p) =
∞∑

j=0

wjΦj(p) (13)

with coefficients wj ∈ R and the same basis polynomials as in (11). The
condition 〈T (p)2〉 < ∞ guarantees the convergence of (13) in L2(Ω).

To achieve a numerical method, the infinite sums (11) and (13) are truncated
at the mth and m′th term, respectively, which implies the approximations

x̃m(s,p) =
m∑

i=0

vi(s)Φi(p), Tm′
(p) =

m′∑

j=0

wjΦj(p). (14)

The coefficient functions directly yield an approximation for the expected
value and the variance of the random process. Let Φ0 ≡ 1 be the polynomial
of degree zero. It follows

〈x̃m(s,p)〉 = v0(s) and Var(x̃m
l (s,p)) =

m∑

i=0

vi,l(s)
2,

since the basis polynomials are orthonormal. Corresponding approximations
result for the random period.

We obtain other periodic solutions of (5) due to (2) by the transformation

ỹ(s,p) := x̃(s + c(p),p). (15)

Let the function c : Q → R be continuous. Both families x̃ and ỹ include
the same information. Unfortunately, we cannot transform the corresponding
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gPC representations. Let

ỹ(s,p) =
∞∑

i=0

ui(s)Φi(p).

The definition (12) of the coefficients shows

ui(s) = 〈ỹ(s,p)Φi(p)〉 = 〈x̃(s + c(p),p)Φi(p)〉

=

〈( ∞∑

l=0

vl(s + c(p))Φl(p)

)
Φi(p)

〉
=

∞∑

l=0

〈vl(s + c(p))Φl(p)Φi(p)〉

provided that the summation and the integration can be interchanged. The
above terms cannot be calculated further, since the coefficients vi include the
parameters now. In the case c(p) ≡ c0, it follows ui(s) = vi(s+c0) as expected.

Assume that the solutions x̃ and ỹ are determined by two different phase
conditions, respectively. It follows that the two random processes are inter-
connected by a transformation (15). The function c(p) depends on the pa-
rameters in general, even if the corresponding phase conditions do not involve
the parameters explicitly (like (7) with η(p) ≡ η0).

2.4 Galerkin projection

We have to compute approximations of the unknown coefficients in the trun-
cated gPC expansions (14). For this purpose, an intrusive approach (Galerkin
projection) or a non-intrusive approach (stochastic collocation) can be used,
see [1,15]. We apply the intrusive strategy and the reasons will be explained
in Sect. 3.4.

Inserting the finite approximations (14) in the systems (5) yields the residual

r(s,p) := A(p)

(
m∑

i=0

vi(s)Φi(p)

)′
−




m′∑

j=0

wjΦj(p)


 f

(
m∑

i=0

vi(s)Φi(p),p

)
.

The Galerkin method demands 〈r(s,p)Φl(p)〉 = 0 for all l = 0, 1, . . . , m and
each s ∈ [0, 1]. The resulting calculations are given in [10]. It follows the
coupled system

m∑

i=0

〈Φl(p)Φi(p)A(p)〉v′i(s) =
m′∑

j=0

wj

〈
Φl(p)Φj(p) f

(
m∑

i=0

vi(s)Φi(p),p

)〉
(16)

for l = 0, 1, . . . , m. Due to (12), the periodicity condition (6) implies the two-
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point boundary value problem

vi(0) = vi(1) for i = 0, 1, . . . , m. (17)

Although a solution of the boundary value problem (16),(17) represents just
an approximation of the exact coefficients in the gPC expansions, we apply
the same symbols for convenience.

The problem (16),(17) is still underdetermined, since the coefficients wj of the
random period represent m′ + 1 scalar unknowns. Phase conditions yield ad-
ditional equations to determine a complete solution. We assume m = m′ now.
Firstly, the condition (7) yields the additional relations (vi = (vi,1, . . . , vi,n)>)

vi,1(0) = 〈η(p)Φi(p)〉 for i = 0, 1, . . . , m. (18)

In the special case η(p) ≡ η0, we obtain

v0,1(0) = η0, vi,1(0) = 0 for i = 1, . . . ,m. (19)

It follows that the variance of the approximation for the first component is
equal to zero at s = 0.

Secondly, the phase condition (8) leads to the additional equations

〈
Φi(p) f1




m∑

j=0

vj(0)Φj(p),p




〉
= 0 for i = 0, 1, . . . ,m (20)

in case of explicit ODEs (A(p) ≡ I). In both cases, we achieve m + 1 scalar
boundary conditions to solve a two-point boundary value problem (16),(17).

3 Minimisation of Variance

The solution of the stochastic model depends on the used phase condition.
We construct a method, which yields a random process with a minimal total
variance.

3.1 Problem definition

Let x̃(s,p) be a family of periodic functions satisfying the system (5). We
assume that these solutions are smooth with respect to s and continuous with
respect to p. Applying random parameters, the stochastic process exhibits an
expected value and a variance. The transformation (15) yields other periodic
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random processes, which own different expected values and variances in gen-
eral. Nevertheless, each random process solves the system (5), i.e., it includes
the same information as another solution.

Consequently, the variance depends on the chosen phase condition. Roughly
speaking, the variance follows from a comparison of solutions for different pa-
rameters within the unit interval. Inappropriate phase conditions may result
in a relatively large variance, which corresponds to a modelling error. Thus we
determine a random process with a minimal variance, since this choice enables
a fair comparison, i.e., the modelling error becomes minimal. More precisely,
we minimise a total variance of the components of the random process accord-
ing to the following definition.

Definition 1 The total variance of a random process x̃(s,p) for s ∈ [0, 1]
and p ∈ Q is defined as

V :=
∫ 1

0

n∑

l=1

Var(x̃l(s,p)) ds (21)

for x̃ = (x̃1, . . . , x̃n)>.

Let σ be the standard deviation of the random process. It holds

V = ‖Var(x̃(s,p))‖1 =
n∑

l=1

Var(x̃l(s,p)) =
n∑

l=1

σ(x̃l(s,p))2 = ‖σ(x̃(s,p))‖2
2.

Hence the minimisation refers to the Euclidean norm of the standard deviation.
Furthermore, we obtain

V =
∫ 1

0

n∑

l=1

〈x̃l(s,p)2〉 − 〈x̃l(s,p)〉2 =
〈∫ 1

0
‖x̃(s,p)− 〈x̃(s,p)〉‖2 ds

〉
. (22)

In the following, we assume the existence and uniqueness of a random process
with a minimal total variance (21) satisfying the system (5).

Elementary phase conditions have been introduced in Sect. 2.1. Now we as-
sume that a smooth periodic function x̄(s) is given for s ∈ [0, 1]. In the de-
terministic case, Doedel suggested a phase condition to minimise the distance
of a periodic solution to the predetermined function in several publications,
see [2], for example. This approach can be used efficiently in a continuation
method for solving nonlinear systems via Newton iterations, since changes in
the profile of the solutions are minimised. In our case, this criterion refers to
the distance

R(p) :=
∫ 1

0
‖x̃(s,p)− x̄(s)‖2

2 ds (23)

for an arbitrary p ∈ Q. The corresponding phase condition reads

∫ 1

0
x̃(s,p)>x̄′(s) ds = 0 for arbitrary p ∈ Q, (24)
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which represents a necessary constraint for a minimum. Comparing the formu-
las (22) and (23), our idea is to arrange the reference function x̄(s) := 〈x̃(s,p)〉,
i.e., the a priori unknown expected value. Accordingly, the phase condition (24)
should yield a minimum pointwise for each p ∈ Q. It follows a minimum of
the total variance (22).

The above derivation is somehow heuristic. We will provide a proof in the
following section.

3.2 Variational calculus

The necessary condition for a minimum of the total variance (21) is shown by
the classical calculus of variations now.

Theorem 1 Let x̃(s,p) be a periodic random process satisfying the given sys-
tems (5), which is smooth in s ∈ [0, 1] and continuous in p ∈ Q. If the
corresponding total variance (21) is minimal, then the random process fulfills
the condition

∫ 1

0
x̃(s,p)>x̄′(s) ds = 0 (25)

for almost all p ∈ Q with the expected value x̄(s) := 〈x̃(s,p)〉.
Proof:

We arrange a set of competitive solutions

x̃ε(s,p) := x̃(s + εc(p),p)

with a parameter ε ∈ [−1, 1] and an arbitrary continuous function c : Q → R.
We assume that the support supp(c) := {p ∈ Q : c(p) 6= 0} is a compact set.
The corresponding total variance (21) reads

V =
n∑

l=1

∫ 1

0

∫

Rq
x̃l(s + εc(p),p)2ρ(p) dp− x̄ε

l (s)
2 ds,

where

x̄ε
l (s) := 〈x̃l(s + εc(p),p)〉 =

∫

Rq
x̃l(s + εc(p),p)ρ(p) dp

for l = 1, . . . , n. We differentiate the total variance with respect to ε. For the
first part, it follows
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d

dε

∫ 1

0

∫

Rq
x̃l(s + εc(p),p)2ρ(p) dp ds

=
∫ 1

0

∫

Rq
2x̃l(s + εc(p),p)x̃′l(s + εc(p),p)c(p)ρ(p) dp ds

= 2
∫

Rq

[∫ 1

0
x̃l(s + εc(p),p)x̃′l(s + εc(p),p) ds

]
c(p)ρ(p) dp

for all l = 1, . . . , n, The differentiation and the integration can be interchanged,
since the function c implies a compact support of the integrand. Accordingly,
the succession of the two integrations is interchanged due to Fubini’s theorem,
because all involved functions are continuous. For the inner integral, it holds
for all l = 1, . . . , n

∫ 1

0
x̃l(s + εc(p),p)x̃′l(s + εc(p),p) ds = 0 for each p,

since the functions x̃l(· + εc(p),p) are periodic for each p and each ε. Hence
the first part vanishes. For the second part, we obtain

d

dε

∫ 1

0
(x̄ε

l (s))
2 ds =

∫ 1

0
2x̄ε

l (s)
(∫

Rq
x̃′l(s + εc(p),p)c(p)ρ(p) dp

)
ds

= 2
∫

Rq

[∫ 1

0
x̄ε

l (s)x̃
′
l(s + εc(p),p) ds

]
c(p)ρ(p) dp

for l = 1, . . . , n. The differentiation and the integrations can be interchanged
due to the same reasons as for the first part.

A necessary condition for a minimum of (21) at ε = 0 is that the derivative
of V vanishes. It follows

0 =
dV

dε

∣∣∣∣∣
ε=0

=
n∑

l=1

2
∫

Rq

[∫ 1

0
x̄l(s)x̃

′
l(s,p) ds

]
c(p)ρ(p) dp

= 2
∫

Rq

[∫ 1

0

n∑

l=1

x̄l(s)x̃
′
l(s,p) ds

]
c(p)ρ(p) dp

= 2
∫

Rq

[∫ 1

0
x̄(s)>x̃′(s,p) ds

]
c(p)ρ(p) dp.

Since this relation holds for an arbitrary continuous function c(p) with com-
pact support, the fundamental theorem of variational calculus implies

∫ 1

0
x̄(s)>x̃′(s,p) ds = 0 for all p ∈ supp(ρ)

with the support of the density function supp(ρ) := {p ∈ Q : ρ(p) > 0}. Inte-
gration by parts yields the condition (25) due to the periodicity of the involved
functions. 2
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The condition (25) holds necessarily for all parameters in the support of the
density function. For simplicity, we can demand that this constraint is satisfied
for all parameters p ∈ Q. The phase condition (25) is not a boundary condition
like (18) or (20), since the solution x̃(s,p) is involved for all s ∈ [0, 1].

3.3 Scaling

The components of the solutions of the dynamical systems (1) and (5), re-
spectively, may exhibit different physical magnitudes. To achieve a balanced
contribution of the components to the total variance, a scaling is often neces-
sary. We apply a diagonal matrix D ∈ Rn×n with entries d1, . . . , dn ≥ 0. Thus
the matrix D is positive semi-definite.

Definition 2 Let a diagonal matrix D with non-negative entries d1, . . . , dn be
given. The corresponding scaled total variance of a random process reads

VD :=
∫ 1

0
‖DVar(x̃(s,p))‖1 ds =

n∑

l=1

dl

∫ 1

0
Var(x̃l(s,p)) ds (26)

with x̃ = (x̃1, . . . , x̃n)>.

It is straightforward to generalise the result of Theorem 1 to the case of a
scaled total variance (26).

Theorem 2 Let the assumptions of Theorem 1 be fulfilled. If the periodic
random process x̃(s,p) features a minimal scaled total variance (26), then the
necessary condition ∫ 1

0
x̃(s,p)>Dx̄′(s) ds = 0 (27)

holds for almost all p ∈ Q with the expected value x̄(s) := 〈x̃(s,p)〉.
The proof represents a repetition of the steps done in the proof of Theorem 1.
Just sums including the weights d1, . . . , dn have to be introduced.

Another advantage of this possibility for scaling is that we can arrange some
weights equal to zero. Consequently, the minimisation is focused on the total
variance of a subset of components. In particular, the choice dl = 0 for all
l 6= j allows for optimising the variance of the component x̃j only.

3.4 Numerical method using polynomial chaos

The gPC approach is suitable for solving the above problem, since the ex-
pected value appears as the first coefficient function. The other coefficient
functions yield the variance of the solution. We apply the intrusive approach
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(Galerkin projection) according to Sect. 2.4, since the coupled system (16) is
available for the determination of the coefficient functions. In contrast, the
non-intrusive approach (stochastic collocation) requires to solve the original
systems (5) repeatedly for different parameters, where a phase condition is nec-
essary. However, the minimum condition (25) includes the a priori unknown
expected value.

Inserting the gPC expansion (11) into the necessary condition (25) results in

∫ 1

0

( ∞∑

i=0

vi(s)Φi(p)

)>
v′0(s) ds =

∫ 1

0

∞∑

i=0

[
vi(s)

>v′0(s)
]
Φi(p) ds

=
∞∑

i=0

[∫ 1

0
vi(s)

>v′0(s) ds
]
Φi(p).

We demand that this sum is identical to zero due to (25). Since the basis
polynomials are linearly independent, it follows

∫ 1

0
vi(s)

>v′0(s) ds = 0 for all i ∈ N0. (28)

In a numerical scheme, we apply the conditions for i = 0, 1, . . . , m. The equiv-
alent constraints

∫ 1

0
v′i(s)

>v0(s) ds = 0 for all i ∈ N0

should be avoided in a numerical method, since all derivatives of the coefficient
functions for i = 0, 1, . . . ,m appear. In contrast, the relation (28) involves just
the derivative of v0. In case of explicit ODEs (A(p) ≡ I), the condition (28)
is equivalent to (recall Φ0 ≡ 1)

m∑

j=0

wj

∫ 1

0
vi(s)

>
〈

Φj(p) f

(
m∑

k=0

vk(s)Φk(p),p

)〉
ds = 0 for all i ∈ N0,

where derivatives are omitted completely.

However, the condition (28) is always satisfied for i = 0, since the function v0

is periodic. Thus we need an additional scalar condition to replace this trivial
relation. According to (7), we apply the elementary condition

v0,1(0) = η0 (29)

with some constant η0 ∈ R in the (without loss of generality) first component
of the expected value. The total variance (21) is invariant with respect to
translations (2) due to the periodicity of the random process. Thus an addi-
tional phase condition like (29) isolates a solution from a continuum of optimal
solutions.
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Fig. 1. Circuit of voltage controlled oscillator.

Now we can solve the periodic boundary value problem (16), (17), (28), (29)
by a numerical method. This task is not a two-point boundary value prob-
lem, since the conditions (28) involve the solution for all s ∈ [0, 1]. Never-
theless, numerical schemes for periodic two-point boundary value problems
of autonomous systems, see [5], can be generalised straightforward for our
purpose.

4 Numerical Simulations

We apply the minimisation of the variance to two test examples, which rep-
resent mathematical models of electric circuits.

4.1 Voltage controlled oscillator

We consider a voltage controlled oscillator (VCO) with a capacitance, an in-
ductance and a nonlinear resistor, see Fig. 1. A network approach yields a
system of four DAEs

Cu′ = ıC , Lı′L = u, 0 = ıR − g(u), 0 = ıC + ıL + ıR (30)

including the unknown node voltage u and the three unknown branch currents
ıC , ıL, ıR. The corresponding differential index is one. The current-voltage re-
lation of the nonlinear resistor reads

g(u) = (G0 −G∞)U0 tanh(u/U0) + G∞u. (31)

In our simulations, the technical parameters are chosen as

C = 10−9 F, L = 10−6 H, U0 = 1 V, G0 = −0.1 A/V, G∞ = 0.25 A/V.

A modified version of this VCO with a random inductance L has been resolved
successfully in another context, see [11]. Now we arrange a random parameter

14
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Fig. 2. Expected values of the node voltage (left) and the three branch currents
(right, ıL: —, ıC : - - - , ıR: -·-·-) in VCO.

within the model (31) of the nonlinear resistor

G∞(p) = G∞(1 + 0.5p)

using a uniformly distributed random variable p ∈ [−1, 1]. Thus relatively
large variations are set for demonstration. We apply the gPC expansions with
the Legendre polynomials up to degree m = 3. If follows a coupled system (16)
with 16 equations. We solve the periodic boundary value problem including
the condition (28) for a minimum total variance and the additional phase
condition (29) with η0 = 0. A finite difference method yields an approximation,
where asymmetric formulas (BDF) of second order are used. The resulting key
data of the random period results to

〈T (p)〉 = 2.64 · 10−7 s, σ(T (p)) =
√

Var(T (p)) = 1.06 · 10−8 s.

Fig. 2 illustrates the expected values of the random process, i.e., the coefficient
functions for degree zero. We recognise the phase condition (29) in the node
voltage. Fig. 3 shows the corresponding variances, which are reconstructed by
the other coefficient functions. Moreover, the coefficient functions of the node
voltage are displayed in Fig. 4.

We indicate that the computed random process is optimal by a comparison to
other solutions. We solve the periodic problem of the coupled system (16) with
the simple phase conditions (19) using different constants η0. Table 1 shows the
corresponding values of the total variance (21) obtained by a discretisation.
Furthermore, the total variances for the solutions satisfying (28) using the
same values η0 in (29) are included. As expected, these solutions exhibit a
minimal total variance, whose value is independent of the constant η0. The
solution for the simple phase condition (19) with η0 = 0 is close to the optimal
solution. Thereby, η0 = 0 can be seen as a mean value of the node voltage in
[0, 1]. However, other choices (like η0 = −0.5) result in a larger variance. The
gPC coefficients of the random period coincide in all simulations except for
numerical errors as expected.
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Fig. 3. Variances of the involved node voltage (left) and the three branch currents
(right, ıL: —, ıC : - - - , ıR: -·-·-) in VCO.

degree 1 degree 2 degree 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

standardised time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

−0.05

0

0.05

0.1

0.15

standardised time
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

standardised time

Fig. 4. Coefficient function in gPC expansion for node voltage in VCO.

Table 1
Total variance for simulations of VCO.

η0 = −0.5 η0 = 0 η0 = 0.5

optimal solution 0.1003 0.1003 0.1003

simple phase cond. 0.1236 0.1006 0.1027
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Fig. 5. Circuit of Colpitts oscillator.

4.2 Colpitts oscillator

Now we apply a Colpitts oscillator, see Fig. 5. A mathematical model intro-
duced in [4] yields an implicit system of ODEs for the four unknown node
voltages




1 0 0 0

0 C1 + C3 −C3 −C1

0 −C3 C2 + C3 + C4 −C2

0 −C1 −C2 C1 + C2







u′1

u′2

u′3

u′4




=




R2

L
(u2 − u1)

1
R2

(uop − u1) + (ıS + ıS
bC

)g(u4 − u2)− ıSg(u4 − u3)

− 1
R4

u3 + (ıS + ıS
bE

)g(u4 − u3)− ıSg(u4 − u2)

− 1
R3

u4 + 1
R1

(uop − u4)− ıS
bE

g(u4 − u3)− ıS
bC

g(u4 − u2)




,

(32)

where the nonlinear function g(u) = exp(u/Uth) − 1 is involved. Although a
system of ODEs appears, the behaviour of the circuit is more complex than
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Fig. 6. Expected values (left) and variances (right) of node voltages in Colpitts
oscillator (u1: —, u2: - - - , u3: -·-·-, u4: · · · ).

in the previous example of the VCO. The applied technical parameters are

C1 = 5 · 10−11 F, C2 = 10−9 F, C3 = 5 · 10−8 F, C4 = 10−7 F,

R1 = 12000 Ω, R2 = 3 Ω, R3 = 8200 Ω, R4 = 1500 Ω,

L = 0.01 H, uop = 10 V, ıS = 10−3 A, bE = 100, bC = 50,

Uth = 2.585 · 10−2 V.

To obtain a random parameter, we replace the capacitance

C3(p) = C3(1 + 0.1p)

using a standardised Gaussian random variable p. In the gPC expansion, we
use the Hermite polynomials up to degree m = 3. If follows a coupled sys-
tem (16) with 16 equations. We solve the periodic boundary value problem
including the condition (28) for a minimal total variance and the additional
phase condition (29) with η0 = 10. The same finite difference method as in the
previous example is applied. The expected value and the standard deviation
of the random period becomes

〈T (p)〉 = 1.251 · 10−4 s, σ(T (p)) =
√

Var(T (p)) = 2.437 · 10−6 s.

The key data of the random process is illustrated in Fig. 6. All coefficient
functions of the first node voltage are depicted in Fig. 7. However, the variance
of the first voltage is relatively small in comparison to the other voltages.

Further simulations are done in the same form as for the previous test example.
Table 2 shows the results. We recognise the same behaviour as in the first test
example. Moreover, numerical simulations of the Colpitts oscillator (32) with
a uniformly distributed random capacitance C3 are presented in [10], where
the elementary phase condition (19) has been applied.
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Fig. 7. Coefficient functions in gPC expansion of node voltage u1 in Colpitts oscil-
lator.
Table 2
Total variance for simulations of Colpitts oscillator.

η0 = 9.95 η0 = 10 η0 = 10.05

optimal solution 0.1969 0.1969 0.1969

simple phase cond. 0.2168 0.1974 0.2542

5 Conclusions

A random process corresponding to an autonomous oscillator with random
parameters depends on the choice of a phase condition. An appropriate quan-
tification of uncertainties is achieved by a random process with a minimal
total variance. We have shown a necessary condition for an optimal solution
using the calculus of variations. An according numerical method has been
constructed based on expansions of the random process as well as the random
period in the generalised polynomial chaos. A Galerkin projection yields a
larger coupled system to determine an approximation of the random process
and the random period. We have resolved the stochastic model successfully
for two test examples, where a minimal total variance is achieved. Elementary
phase conditions may result in suboptimal random processes. However, some
phase conditions yield a larger variance as shown in the numerical simulations.
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