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Abstract

Nowadays electronic circuits comprise about a hundred million components
on slightly more than one square centimeter. The model order reduction
(MOR) techniques are among the most powerful tools to conquer this com-
plexity and scale, although the nonlinear MOR is still an open field of re-
search. On the one hand, the MOR techniques are well developed for linear
ordinary differential equations (ODEs). On the other hand, we deal with
differential algebraic equations (DAEs), which result from models based on
network approaches. There are the direct and the indirect strategy to con-
vert a DAE into an ODE. We apply the direct approach, where an artificial
parameter is introduced in the linear system of DAEs. It follows a singu-
larly perturbed problem. On compact domains, uniform convergence of the
transfer function of the regularized system towards the transfer function of
the system of DAEs is proved in the general linear case. A substitute model
of a transmission line yields a test example for this approach.
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1. Introduction

The tendency to analyze and design systems of ever increasing complexity
is becoming more and more a dominating factor in progress of chip design.
Along with this tendency, the complexity of the mathematical models in-
creases both in structure and dimension. Complex models are more difficult
to analyze, and it is also harder to develop control algorithms. Therefore
model order reduction (MOR) is of utmost importance. For the linear case,
quite a number of approaches are well-established and resolve large systems
of ordinary differential equations (ODEs) efficiently, see [1]. Nonlinear prob-
lems can be approximated by a linearization, see [11].

We want to generalize according techniques to the case of linear systems of
differential algebraic equations (DAEs). On the one hand, a high-index DAE
problem can be converted into a low-index system by analytic differentiations,
see [3]. A transformation to index zero yields an equivalent system of ODEs.
On the other hand, a regularization is directly feasible in case of semi-explicit
systems of DAEs. Thereby, we obtain a singularly perturbed problem of
ODEs with an artificial parameter ε, which approximates the original DAEs.
Thus according MOR techniques can be applied to the ODE system. An
MOR approach for DAEs is achieved by considering the limit ε → 0.

In [10] we considered the regularization for semi-explicit systems of DAEs
via an ε-embedding, i.e., the direct approach. The MOR techniques apply a
transfer function defined in frequency domain. We proved the convergence
of the transfer function of the regularized system to the transfer function of
the original system of DAEs.

In this work we extend the strategy to general linear systems of DAEs.
We show that a regularization via an ε-embedding is feasible using the Kro-
necker canonical form. However, this approach exhibits disadvantages in
corresponding numerical methods. Hence we apply the singular value de-
composition to achieve an alternative regularization. In each approach we
prove the pointwise convergence of the transfer functions. Moreover, it fol-
lows the uniform convergence on compact domains. The theoretical proper-
ties allow for using MOR techniques within two scenarios. Firstly, we can
reduce the regularized system of ODEs for small parameter ε, which yields
an approximation to the original system of DAEs. Secondly, a parametric
model reduction is considered and the limit ε → 0 results in an approach for
DAEs, where the quality of the approximation still has to be investigated.

The paper is organized as follows. In Sect. 2, we briefly review the analysis
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of the input-output behavior of linear dynamical systems in frequency domain
to apply MOR. The semi-explicit systems of DAEs and the regularization
technique are introduced in Sect. 3. We extend this approach to general linear
systems of DAEs in Sect. 4. Finally, the results of numerical simulations of
an illustrative example are presented.

2. Linear Dynamical Systems

A continuous time-invariant (lumped) multi-input multi-output linear dy-
namical system can be derived from an RLC circuit by applying modified
nodal analysis (MNA), see [7]. The system is of the form{

C dx(t)
dt

= −Gx(t) + Bu(t)
w(t) = Lx(t) + Du(t)

(1)

with initial condition x(0) = x0. Here t is the time variable, x(t) ∈ Rn is
referred as inner state (and the corresponding n-dimensional space is called
state space), u(t) ∈ Rm is an input, w(t) ∈ Rp is an output. The dimen-
sionality n of the state vector is called the order of the system. The number
of inputs and outputs is m and p, respectively, and G ∈ Rn×n, B ∈ Rn×m,
L ∈ Rp×n, C ∈ Rn×n, D ∈ Rp×m are the state space matrices. Without loss
out generality we assume D = 0. The matrices C and G in (1) are allowed
to be singular, and we only assume that the pencil G+sC is regular, i.e., the
matrix G + sC is singular only for a finite number of values s ∈ C. For more
details on existence and uniqueness of a solution, see [8]. Basically, MOR
techniques aim to derive a system{

C̃ dx̃(t)
dt

= −G̃x̃(t) + B̃u(t), x̃(t) ∈ Rq

w̃(t) = L̃x̃(t) + D̃u(t), x̃(0) = x̃0, w̃(t) ∈ Rp,
(2)

of order q with q ¿ n that can replace the original high-order system (1) in
the sense that the input-output behavior of both systems nearly agrees. A
common way is to identify a subspace of dimension q ¿ n, that captures the
dominant information of the dynamics and to project (1) onto this subspace,
spanned by some basis vectors {v1, . . . , vq}. The linear system of the form (1)
is often referred to as the representation of the system in time domain, or in
the state space. Equivalently, one can also represent the system in frequency
domain via the Laplace transform. Recall that for a vector-valued function
f(t), the Laplace transform is defined component-wise by
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(L(f))(s) :=

∫ ∞

0

f(t)e−st dt, s ∈ C. (3)

The physically meaningful values of the complex variable s are s = iω,
where the real parameter ω ≥ 0 is referred to as the frequency. Taking the
Laplace transformation of the system (1), we obtain the frequency domain
formulation {

sCX(s) = −GX(s) + BU(s)
W (s) = LX(s),

(4)

where X(s), Y (s) and U(s) represents the Laplace transform of x(t), y(t) and
u(t), respectively. For simplicity, we assume that we have initial conditions
x(0) = x0 = 0 and u(0) = 0. Eliminating the variable X(s) in (4), we see
that the input U(s) and the output Y (s) in the frequency domain are related
by the following p×m matrix-valued rational function

H(s) = L · (G + s · C)−1 ·B. (5)

H(s) is known as the transfer function or Laplace-domain impulse re-
sponse of the linear system (1).

3. Semi-Explicit Systems of DAEs

Systems of DAEs result in the mathematical modeling of a wide variety
of problems like mechanical engineering, electric circuit design and others.
We consider a semi-explicit system

y′(t) = f(y(t), z(t)), y : R → Rk

0 = g(y(t), z(t)), z : R → Rl
(6)

with differential and perturbation index 1 or 2. For the construction of
numerical methods to solve initial value problems of (6), the direct as well
as the indirect approach can be used. The direct approach applies an ε-
embedding of the DAEs (6), i.e., the system changes into

y′(t) = f(y(t), z(t))

εz′(t) = g(y(t), z(t))
⇔

y′(t) = f(y(t), z(t))

z′(t) = 1
ε
g(y(t), z(t))

(7)

with a real parameter ε 6= 0. Techniques for ODEs can be employed for the
singularly perturbed system (7). The limit ε → 0 yields an approach for
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solving the DAEs (6). The applicability and quality of the resulting method
still has to be investigated.

Alternatively, the indirect approach is based on the state space form of
the DAEs (6) with index 1, i.e.,

y′(t) = f(y(t), Φ(y(t))) (8)

with z(t) = Φ(y(t)). To evaluate the function Φ, the nonlinear system

g(y(t), Φ(y(t))) = 0 (9)

is solved for given value y(t). Consequently, the system (8) represents ODEs
for the differential variables y and methods for ODEs can be applied. In
each evaluation of the right-hand side in (8), a nonlinear system (9) has to
be solved. More details on techniques based on the ε-embedding and the
state space form can be found in [8].

Although some MOR methods for DAEs already exist, several techniques
are restricted to ODEs or exhibit better properties in the ODE case in com-
parison to the DAE case. The direct or the indirect approach enables the
usage of MOR schemes for the ODEs (7) or (8), where an approximation
with respect to the original DAEs (6) follows. The aim is to obtain sugges-
tions for MOR schemes via these strategies, where the quality of the resulting
approximations still has to be analyzed in each method. For the moment we
restrict to semi-explicit DAE systems of the type (1). According to (6), the
solution x and the matrix C exhibit the partitioning:

x =

(
y
z

)
, C =

(
Ik×k 0

0 0l×l

)
. (10)

The order of the system is n = k + l, where k and l are the dimensions of
the differential part and the algebraic part (constraints), respectively, deter-
mined by the semi-explicit system (6). Following the direct approach, the
ε-embedding changes the system (1) into{

C(ε)dx(t)
dt

= −Gx(t) + Bu(t), x(0) = x0,

w(t) = Lx(t),
(11)

where

C(ε) =

(
Ik×k 0

0 εIl×l

)
for ε ∈ R
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with the same inner state and input/output as before. Concerning the re-
lation between the original system (1) and the regularized system (11) with
respect to the transfer function, we achieve the following statement. Without
loss of generality, the induced matrix norm of the Euclidean vector norm is
applied. For a proof and more details on Theorem 1, see [10].

Theorem 1. For fixed s ∈ C with det(G + sC) 6= 0 and ε ∈ R satisfying

|s| · |ε| ≤ c

‖(G + sC)−1‖2

(12)

for some c ∈ (0, 1), the transfer functions H(s) and Hε(s) of the systems (1)
and (11) exist and it holds

‖H(s)−Hε(s)‖2 ≤ ‖L‖2 · ‖B‖2 ·K(s) · |s| · |ε|

with the constant

K(s) =
1

1− c

∥∥(G + sC)−1
∥∥2

2
.

This theorem demonstrates the pointwise convergence of the transfer
function for each s. Moreover, it can be shown that uniform convergence
is given in each compact subset of C.

For MOR of the DAE system (1), we have two ways to handle the artificial
parameter ε, which results in two different scenarios. In the first scenario,
we fix a small value of the parameter ε. Thus we use one of the standard
techniques for the reduction of the corresponding system of ODEs. Finally,
MOR techniques yield a reduced ODE (with small ε inside). The system
of ODEs with small ε represents a regularized DAE. Any reduction scheme
for ODEs is feasible. Figure 1 indicates the steps. Recent research shows
that the poor man’s truncated balance realization (PMTBR), see [12], can
be applied efficiently if the matrix C in (1) is regular, which is indeed our case
in (11). The approximation from the reduced ODE yields the approximation
of the original DAE. In the second scenario, the parameter ε is considered
as an independent variable (value not predetermined). We can use methods
of the parametric MOR for reducing the corresponding ODE system. The
applied parametric MOR is based on [4, 9] in this case. The limit ε → 0 yields
an approximation corresponding to the original DAEs (1). The existence of
the approximation in this limit still has to be analyzed. Figure 2 illustrates
the strategy. Theorem 1 provides the theoretical background for the both
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Figure 1: The approach of the ε-embedding for MOR in the first scenario.

scenarios. We apply an MOR scheme based on an approximation of the
transfer function to the system of ODEs. Let H̃ε(s) be a corresponding
approximation of Hε(s). It follows

‖H(s)− H̃ε(s)‖2 ≤ ‖H(s)−Hε(s)‖2 + ‖Hε(s)− H̃ε(s)‖2 (13)

for each s ∈ C with det(G + sC) 6= 0. Due to Theorem 1, the first term on
the right-hand side of (13) becomes small for sufficiently small parameter ε.
However, ε should be chosen larger than the machine precision on a com-
puter. The second term on the right-hand side of (13) becomes small if an
MOR method for ODEs works successfully. In the following , we present a
generalization of Theorem 1.

4. General Linear Systems

The simplest and best understood DAEs are linear equations of the
form (1). We will focus on this kind of problems to generalize the direct
approach (ε-embedding) from Section 3. Thus we consider an arbitrary sin-
gular matrix C now.
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Figure 2: The approach of the ε-embedding for MOR in the second scenario.

4.1. Transformation to Kronecker Form

Here investigations are closely related to the theory of matrix pencils,
see [14] . This field provides the proposition that the linear DAE (1) is
uniquely solvable if and only if the matrix pencil {C, G} is regular, i.e. the
polynomial det(λC + G) does not vanish identically. We consider constant
coefficient matrices C, G ∈ Rn×n and the Cr-mapping u : [t0, t1] → Rm

represents a time-dependent source term. Due to the regular matrix pencil,
the matrices G and C can be transformed simultaneously to the Kronecker
canonical form, see [8],

PCQ =

(
In−m 0

0 N

)
, PGQ =

(
M 0
0 Im

)
(14)

with the regular matrices P, Q ∈ Rn×n. It holds M ∈ R(n−m)×(n−m) and
N ∈ Rm×m is a nilpotent matrix with the nilpotency index ν, i.e., Nν = 0
but N ν−1 6= 0. If C is regular, then we have ν = 0. Since we suppose that
the matrix C in (1) is singular, the matrix N in (14) exhibits the following
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structure

N =


0 ∗ . . . ∗
...

. . . . . .
...

...
. . . ∗

0 . . . . . . 0

 . (15)

(More precisely, just one diagonal may be occupied.) The special structure
of N in (15) allows us to add the variable ε on the diagonal of the matrix N ,
which corresponds to a regularization of the product PCQ. Without this
transformation the matrix C does not have any special pattern in general to
add this variable ε to avoid the singularity. The transformation of the pencil
{C, G} to its Kronecker canonical form corresponds to a decoupling of the
DAE (1) into

ẏ + My = η(t) (16a)

Nż + z = δ(t) (16b)

with

x = Q ·
(

y
z

)
, P ·B · u(t) =

(
η(s)
δ(t)

)
. (16c)

Now (16a) is already an explicit system of ODEs for y. We can obtain
an ODE for z from (16b), see [8]. It follows an equivalent ODE and the
differential index is ν.

We define v := Q−1x. Applying the Kronecker canonical form (14)
changes the linear DAEs (1) into the transformed linear system{

PCQdv(t)
dt

= −PGQv(t) + PBu(t)
w(t) = LQv(t).

(17)

According to (14), we define Ĉ := PCQ. Remark that both C and N are
singular matrices. The representation of the system in the frequency domain
via the Laplace transform (3) results to

H(s) = LQ · (PGQ + s PCQ︸ ︷︷ ︸
Ĉ

)−1 · PB. (18)
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Following the direct approach, the ε-embedding changes the system (17)
into {

Ĉε
dv(t)
dt

= −PGQv(t) + PBu(t)
w(t) = LQv(t)

(19)

with

Ĉε :=

(
In−m 0

0 εIm + N

)
for ε 6= 0 (20)

and the same inner state and input/output as before. For ε 6= 0, the matrix
Ĉε is regular in (20) and the transfer function of (19) reads

Hε(s) = LQ · (PGQ + sĈε)
−1 · PB. (21)

Concerning the relation between the original system (17) and the regularized
system (19) with respect to the transfer function, we achieve the following
statement. Without loss of generality, the induced matrix norm of the Eu-
clidean vector norm is applied again.

Lemma 2. Let A, Ã ∈ Rn×n, det(A) 6= 0 and ∆A := A− Ã where ∆A is
sufficiently small. Then it holds

‖A−1 − Ã−1‖2 ≤
‖A−1‖2

2 · ‖∆A‖2

1− ‖A−1‖2 · ‖∆A‖2

.

Proof. The definition of the matrix norm leads to

‖A−1 − Ã−1‖2 = max
‖x‖2=1

∥∥∥A−1x− Ã−1x
∥∥∥

2
.

Suppose y := A−1x, ỹ := Ã−1x, then the sensitivity analysis of linear systems
yields

‖∆y‖2

‖y‖2

≤ κ(A)

1− κ(A)
‖∆A‖2
‖A‖2

‖∆A‖2

‖A‖2

+
‖∆x‖2

‖x‖2︸ ︷︷ ︸
0

 (22)

where the quantity
κ(A) ≡

∥∥A−1
∥∥

2
‖A‖2 (23)

is the relative condition number. So by substituting the value of κ(A) we
have:

‖y − ỹ‖2 ≤
‖A−1‖2 · ‖∆A‖2 · ‖A−1‖2 ‖x‖2

1− ‖A−1‖2 · ‖∆A‖2
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then

‖A−1 − Ã−1‖2 ≤
‖A−1‖2

2 · ‖∆A‖2

1− ‖A−1‖2 · ‖∆A‖2

.

and we obtain the desired formula.

For example, we conclude from Lemma 2 that

lim
∆A→0

Ã−1 = A−1, (24)

which is an obvious relation.

Theorem 3. For fixed s ∈ C with det(PGQ + sĈ) 6= 0 and ε ∈ R satisfying

|s| · |ε| ≤ c

‖(PGQ + sĈ)−1‖2

(25)

for some c ∈ (0, 1), the transfer functions H(s) from (18) and Hε(s) from
(21) exist and it holds

‖H(s)−Hε(s)‖2 ≤ ‖L‖2 · ‖B‖2 · ‖P‖2 · ‖Q‖2 ·K(s) · |s| · |ε|

with the constant

K(s) =
1

1− c

∥∥∥(PGQ + sĈ)−1
∥∥∥2

2
.

Proof. The condition (25) guarantees that the matrices PGQ + sĈε are reg-
ular. The definition of the transfer functions implies

‖H(s)−Hε(s)‖2

≤ ‖L‖2 · ‖Q‖2 ·
∥∥∥(PGQ + sĈ)−1 − (PGQ + sĈε)

−1
∥∥∥

2
· ‖P‖2 · ‖B‖2 .

Applying Lemma 2, the term in the above right-hand side satisfies the esti-
mate ∥∥∥(PGQ + sĈ)−1 − (PGQ + sĈε)

−1
∥∥∥

2

≤ 1

1− c

∥∥∥(PGQ + sĈ)−1
∥∥∥2

2
·
∥∥∥(PGQ + sĈ)− (PGQ + sĈε)

∥∥∥
2
.

Using basic calculations, it follows∥∥∥(PGQ + sĈ)− (PGQ + sĈε)
∥∥∥

2
= |s| ·

∥∥∥Ĉ − Ĉε

∥∥∥
2

= |s| · |ε|.

Thus the proof is completed.
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We conclude from Theorem 3 that

lim
ε→0

Hε(s) = H(s) (26)

for each s ∈ C with G + sC regular. Uniform convergence is given in a com-
pact set s ∈ S ⊂ C again.

Although the above theorem guarantees the convergence of the transfer func-
tion of the regularized system to the transfer function of the original system
in the limit case, we encounter two drawbacks. The first one is related to the
numerical calculation of the Kronecker canonical form. The numerical com-
putation of the Kronecker canonical form might be unstable, see [5], due to
a possible ill-conditioning of the matrices P and Q. The second issue is that
the upper bound in Theorem 3 includes the norms of P and Q now, since
we have applied a transformation before the regularization. If these norms
are large, we obtain a pessimistic estimate. The numerical difficulties lead
us to seek an alternative just for the numerical calculation although from the
theoretical point of view the above approach is feasible.

4.2. Transformation via Singular Value Decomposition

In the following we will introduce an alternative to the Kronecker canon-
ical form which has no side effect for the numerical implementation. We
apply the singular value decomposition (SVD), see [13], to the matrix C in
the system (1). For an arbitrary matrix M ∈ Rm×n, it exists a factorization
of the form

UMV > = Σ, (27)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices. The matrix
Σ ∈ Rm×n is diagonal with nonnegative real entries, which are the singular
values. The factorization (27) is called a singular value decomposition of M .
Applying the SVD form (27) transforms the linear system of DAEs (1) into{

UCV >V dx(t)
dt

= −UGV >V x(t) + UBu(t)
w(t) = LV >V x(t).

(28)

We define z := V x. It follows
(

Σ̃ 0
0 0

)
dz(t)
dt

= −UGV >z(t) + UBu(t)

w(t) = LV >z(t),
(29)

12



where the diagonal matrix Σ̃ ∈ Rr×r (r < n) contains the positive singular
values. Thus Σ̃ is regular. The ε-embedding changes the system into

(
Σ̃ 0
0 εIn−r

)
︸ ︷︷ ︸

Cε

dz(t)
dt

= −UGV >z(t) + UBu(t)

w(t) = LV >z(t).

(30)

The introduced matrix Cε is regular. We obtain the same result as for the
transformation to Kronecker canonical form.

Theorem 4. For fixed s ∈ C with det(UGV >+Cε) 6= 0 and ε ∈ R satisfying

|s| · |ε| ≤ c

‖(UGV > + Cε)−1‖2

(31)

for some c ∈ (0, 1), the transfer functions H(s) and Hε(s) of the systems
(29) and (30) exist and it holds

‖H(s)−Hε(s)‖2 ≤ ‖L‖2 · ‖B‖2 ·K(s) · |s| · |ε|

with the constant

K(s) =
1

1− c

∥∥∥(
UGV > + sUCV >)−1

∥∥∥2

2
.

The steps of the proof for the previous theorem are like in the proof of
Theorem 1, see [10], since the matrices after applying the SVD exhibit a
semi-explicit structure. Remark that the transfer function of (29) coincides
with the function of (1).

The two drawbacks of the transformation to Kronecker canonical form
are omitted by the SVD. Firstly, stable numerical methods exist to compute
the SVD efficiently. Secondly, we obtain the same upper bound as for the
semi-explicit systems. The reason is that the orthogonal matrices feature the
optimal property

‖U‖2 =
∥∥U>∥∥

2
= ‖V ‖2 =

∥∥V >∥∥
2

= 1.

Hence the SVD can be used as a brilliant alternative for decoupling the
dynamical system. Afterwards, we can apply the ε-embedding.
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5. Test Example and Numerical Results

We consider the substitute model of a transmission line (TL), see [6],
which consists of N cells. Each cell includes a capacitor, an inductor and
two resistors, see Figure 3. This TL model represents a scalable benchmark
problem (both in differential part and algebraic part), because we can select
the number N of cells. The state variables x ∈ R2N+3 consist of the volt-

     

    
       hR

            h C/2          h G/2       
        h G/2

       
    h C/2

            hL i
       i+1/2    i+1

Figure 3: One cell of RLC transmission line.

ages at the nodes, the current traversing the inductor L and currents at the
boundaries of the circuit. The used physical parameters are

C = 10−14 F/m, L = 10−8 H, R = 0.1 Ω/m, G = 10 S/m.

We apply modified nodal analysis, see [7], to the circuit and then the state
x contains the unknowns:

(V0, V1, . . . , VN), (I 1
2
, I 3

2
, . . . , IN− 1

2
),

(V 1
2
, V 3

2
, . . . , VN− 1

2
), (I0, IN).

As two more unknowns than the equations appear, we have 3N + 3 un-
knowns and 3N + 1 equations. Thus two boundary conditions are necessary.
Equations for the main nodes and the intermediate nodes in each cells are

h
2
CV̇0 + h

2
GV0 + I 1

2
− I0 = 0,

hCV̇i + hGVi + Ii+ 1
2
− Ii− 1

2
= 0, i = 1, . . . , N − 1,

h
2
CV̇N + h

2
GVN + IN − IN− 1

2
= 0,
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−Ii+ 1
2

+
Vi+1/2−Vi+1

hR
= 0,

hLİi+1/2 + (Vi+1/2 − Vi) = 0, i = 0, 1, . . . , N − 1.

We apply the boundary conditions

I0 − u(t) = 0,

LİN + VN = 0

with the independent current source u.
For the first simulation the variable ε is fixed to 10−14 and 10−7, respec-

tively, and the PMTBR is used as a reduction scheme for the ODE system.
Figure 4 shows the transfer function both for the DAE and the ODE (in-
cluding ε) and the reduced ODE with fixed ε. The number in parentheses
shows the order of the systems. For all runs we fixed the number of cells
to N = 300, which results in the order n = 903 of the original system of
DAEs (1).

In Figure 5 the dashed line illustrates the absolute error between the
DAE system and the ODE (with ε). The result of Theorem 1 is satisfied
as the two systems demonstrate a perfect match for low frequencies and the
error increases just for higher frequencies and then is smoothly decreasing
for larger frequencies. The strait line in Figure 5 shows the absolute error
between the original DAE system and the reduced ODE with fixed ε. It is
clear that due to the small parameter ε = 10−14 we have a nearly perfect
agreement between the original DAE and regularized DAE (i.e. the ODE
with ε). The error is below -180 decibel, but as we increase the parameter
to ε = 10−7 the error also increases and we do not have an acceptable error,
see Figure 5. In both cases the reduced model is of order less than 10 and
is able to approximate the ODE system well. We always calculate the error
between the reduced model and the original DAE case. The relatively large
parameter ε = 10−7 causes also a higher error of the reduction scheme, since
the error of the regularization is included.

The second scenario with parametric MOR is studied now. We apply the
parametric MOR following [9]. The limit ε → 0 gives the result for the
reduced DAE, see Figure 6. The value in parentheses shows the order of the
systems. We simulate again the TL model with N = 300 cells. We plot the
transfer function for the parameters ε = 0, 10−10, 10−14, see Figure 6. The
error plot for the parametric reduction scheme is shown in Figure 7. The
error plot shows that we an overall perfect match for the case of ε = 0, 10−14
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Figure 4: Original transfer function for DAE and ODE and reduced transfer function for
ε = 10−7 (down) and ε = 10−14 (up).
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Figure 5: Absolute error plot for the ε-embedding and PMTBR methods in case of the
parameters ε = 10−7 (down) ε = 10−14 (up).
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Figure 6: Original transfer function reduced with parametric scheme (second scenario)
with different values for parameter ε.
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Figure 7: Absolute error plot for the ε-embedding, reduction carry out by parametric
algorithm by [9], ε = 0, 10−7, 10−10.

and as the value for the parameter ε increases, the accuracy of the method
and of the reduction algorithm decrease. It is also important to mention that
the order of the reduced system in this case is nearly half the previous one.

6. Conclusions

Firstly, the ε-embedding, i.e., the direct approach, is applied to a general
linear system of DAEs via a singular value decomposition. Thereby, we ob-
tain an approximating system of ODEs. Secondly, MOR techniques perform
the reduction of the system of ODEs for the two scenarios of a fixed ε or
a variable parameter (parametric scheme). The presented approach enables
the usage of MOR methods for ODEs. Most of the linear reduction schemes
are designed and adopted for ODEs such as poor man’s truncated balanced
realization or spectral zeros preservation of Antoulas [2]. The test example
of the linear transmission line model has been simulated successfully in both
scenarios. The next step is to test the method on examples from industrial
applications. Further investigations are necessary to apply the approach to
non-linear systems.

Acknowledgement

This work has been supported by the Marie Curie Research Training Net-
work COMSON (COupled Multiscale Simulation and Optimization in Nano-
electronics). The authors are indebted to Dr. Michael Striebel (University
of Wuppertal) for helpful discussions.

18



References

[1] A. C. Antoulas. Approximation of large-scale Dynamical Systems, ad-
vances in design and control. SIAM, 2005.

[2] A. C. Antoulas. A new result on passivity preserving model reduction.
System & Control Letters, vol 54:361–374, April 2005.

[3] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Dif-
ferential Equations and Differential-Algebraic Equations. SIAM, 1998.

[4] L. Daniel, O. C. Siong, L. S. Chay, K. H. Lee, and J. White. A multi-
parameter moment-matching model-reduction approach for generating
geometrically parameterized interconnect performance models. IEEE
Trans. CAD, 23(5):678–693, 2004.

[5] P. V. Dooren. The generalized eigenstructure problem in linear system
theory. IEEE Trans. Aut. Contr., AC-26:111–129, 1981.

[6] M. Günther. Ladungsorientierte Rosenbrock-Wanner-Methoden zur nu-
merischen Simulation digitaler Schaltungen. VDI, Düsseldorf, 1995.

[7] M. Günther and U. Feldmann. CAD based electric circuit modeling
in industry I: mathematical structure and index of network equations.
volume 8 of Surv. Math. Ind., pages 97–129, 1999.

[8] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II:
Stiff and Differential-Algebraic Problems. Springer, Berlin, 2nd edition,
1996.

[9] Y. Li, Z. Bai, Y. Su, and X. Zeng. Parameterized model order reduc-
tion via a two-directional Arnoldi process. In IEEE/ACM international
conference on computer-aided design, pages 868–873, 2007.

[10] K. Mohaghegh, R. Pulch, M. Striebel, and J. ter Maten. Model order
reduction for semi-explicit systems of differential algebraic equations. In
Proceedings MATHMOD 09 Vienna, 2009.

[11] K. Mohaghegh, M. Striebel, J. ter Maten, and R. Pulch. Nonlinear
model order reduction based on trajectory piecewise linear approach:
comparing different linear cores. In Scientific Computing in Electrical
Engineering SCEE 2008. Springer, 2009.

19



[12] J. Phillips and L. M. Silveira. Poor’s man TBR: a simple model reduction
scheme. In DATE, volume 2, pages 938–943, 2004.

[13] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer,
New York, 2nd edition, 1993.

[14] M. Striebel. Hierarchical mixed multirating for distributed itegration of
DAE network equations in chip design. PhD thesis, Bergischen Univer-
sität Wuppertal, 2006.

20


