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For the simulation of the propagation of optical waves in open wave guiding structures of integrated optics the parabolic 

approximation of the scalar wave equation is commonly used. This approach is commonly termed the beam propagation method 

(BPM). It is of paramount importance to have well-performing transparent boundary conditions applied on the boundaries of the 

finite computational window, to enable the superfluous portion of the propagating wave to radiate away from the wave guiding 

structure. Three different formulations (continuous, semi-discrete and fully-discrete) of the non-local transparent boundary condi-

tions are described and compared here. 
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1. INTRODUCTION 

For the computer modelling of the propagation 

of optical waves in open wave guiding structures of 

integrated optics often the scalar parabolic wave 

equation is used. For an accurate solution it is of 

paramount importance to have appropriate trans-

parent boundary conditions (TBC) formulated on the 

boundaries of the computational window, which 

enable the superfluous portion of the propagating 

wave to radiate away from the computational 

window and the wave guiding structure, cf. review 

paper [1]. 

For the two-dimensional parabolic equation 

(planar wave guiding structures) usually the 

continuous transparent boundary condition as 

formulated by e.g. Baskakov & Popov [2] with its 

subsequent discretisation has been used for simula-

tions of photonic structures [3]. However, by the ad 

hoc discretisation of the continuous formulae an 

extra error is introduced. The semi-discrete 

formulations either in transversal or in the 

longitudinal variable [4], [9], [10] may improve the 

situation. 

Recently published fully-discrete formulation of 

the transparent boundary conditions [5] is naturally 

compatible with the fully discrete finite-differences 

Crank-Nicolson method of solving the parabolic 

wave equation. This solution method is nowadays 

commonly termed the beam propagation method 

(BPM), although originally the BPM had a special 

meaning for splitting the parabolic equation into two 

equations, first representing the free-space 

diffraction and the second representing the 

focusation of the wave by a phase screen. 

In the case of longitudinally invariant planar 

structures the propagation of the electromagnetic 

waves in scalar and parabolic approximation is 

governed by the Maxwell equations 
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where the electromagnetic field vectors and material 

constants have their usual meaning. By a usual 

procedure from (1) the wave equation 
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for any Cartesian component ( , )f tr  of the field 

vectors ( , )tE r , ( , )tH r  can be obtained. For a 

monochromatic, i.e. in time sinusoidally oscillating, 

wave in the complex representation given by 

 ( , ) ( )exp(j )f t t= ϕ ωr r  (3) 

one obtains for the complex wave amplitude ( )ϕ r  

the equation 

 2 2( ) ( ) 0∇ ϕ +β ϕ =r r , (4) 

where β = ω µε  is the propagation coefficient. 

If the wave has a dominant direction of 

propagation, say y  in Cartesian coordinates, then 

one can strip-off rapid oscillations in this direction 

from the complex wave amplitude by the slowly-

varying-envelope substitution 

 ( , , ) ( , , )exp( j )x y z x y z kyϕ = ψ − , (5) 

where usually k ≈ β . Then instead of (4) one 

obtains for ( )ψ r  the equation 
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For the wave propagation in homogeneous 

space, where , constµ ε = , k  can be set equal to β  

and (6) simplifies into 
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In what follows we shall consider only two-

dimensional problems (planar structures), i.e. the 

spatial coordinate variable z  is omitted. If the 

spatial variations of the amplitude envelope ψ  are 

slow compared to the fast oscillations of the carrier 

frequency, i.e. y k∂ψ ∂ << , then the second 

derivative with respect to y  in (7) can be neglected 

and one arrives to the wave equation in parabolic 

approximation (sometimes called the Fresnel 

equation) 
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Here the variable x  means the “transversal” 

coordinate and the wave dominantly propagates 

along the “longitudinal” coordinate y . 

The simplest solution to (4) is the homogeneous 

plane wave propagating in e.g. y -direction 

 ( ) exp( j )A yϕ = − βr , (9) 

where A  is a constant and 2λ = π β  is the 

wavelength of the plane wave. 

Any wave amplitude can be expanded into the 

spectrum of obliquely propagating plane waves. In 

two dimensions for the obliquely propagating 

homogeneous plane wave one obtains instead of (9) 

the formula 

 ( ) exp( j )exp( j )x yA q x q yϕ = − −r , (10) 

where xq  and yq  are transversal and longitudinal 

wavenumbers (spatial frequencies). The wave 

equation (4) yields the “dispersion relation” 

 
2 2

y xq q= β −  (11) 

imposing thus an upper limit on transversal spatial 

frequencies xq ≤ β . Beyond this limit only 

evanescent plane waves exist. 

For the slowly-varying-envelope formulation (5) 

one can instead of (10) write 

( ) exp( j )exp( j )exp(j )x yA q x q y kyψ = − − =r  

exp( j )exp( j )xA q x y= − − κ .   (12) 

For the pertaining exact equation (6) the same 

dispersion relation (11) holds. However, the 

parabolic approximation (8) yields for (12) the 

dispersion relation 

 2 2 2 2( ) 2 2y x xq k k q k q kκ = − = β − − ≈ −  (13) 

without any upper limit on xq . The wave amplitude 

envelope ( )ψ r  possesses indeed only slow 

longitudinal variations characterised by the spatial 

frequency - the wave-number xqκ≪ . 

In the case of the wave guiding structures the 

propagation coefficient β  may be a function of the 

transversal variable ( )xβ = β  on some finite domain. 

Particularly for homogeneous waveguides it is a 

kind of piecewise-constant function.  

2. CONTINUOUS TRANSPARENT 
BOUNDARY CONDITIONS 

If the equation (8) should be solved numerically 

the transversal variable x  must be bounded to some 

interval, say max(0, )x x∈  called computational 

window. In course of wave propagation the wave 

front changes due to the self-diffraction, the wave, in 

general, diverges (apart of some special cases) and 

thus also the wave-front originally bounded within 

the computational window reaches the boundaries 

and will be out-radiated throughout the 

computational window. 



The problem of transparent boundaries consists 

in formulating such boundary conditions for ( , )x yψ  

that on the "left" boundary 0x =  only the wave 

propagating to the left, and on the "right" boundary 

maxx x=  only the wave propagating to the right 

exists, i.e. no reflections on the boundaries occur. 

The parabolic wave equation (8) can be formally 

written as 

2 2j 2 jk k
x y
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 ∂ ∂  × + β − − ψ =  ∂ ∂  
  (14) 

and further factorised into two “one-way” equations, 

i.e. 

 2 2j 2 j 0k k
x y

 ∂ ∂  − β − − ψ =  ∂ ∂  
, (15) 

and 

 2 2j 2 j 0k k
x y

 ∂ ∂  + β − − ψ =  ∂ ∂  
, (16) 

yielding thus the formal solution 

( , )x yψ =  

2 2
0exp j( ) 2 jx x k k

y

 ∂  = ± − β − − ×   ∂  
 

0( , )x y×ψ ,   (17) 

where the plus or minus sign in (17) denotes the 

wave propagating either “to the left” or “to the 

right” with respect to the x  axis, 

The transparent boundary conditions have to 

guarantee that the wave amplitude fulfils on the left 

boundary 0x =  relation (17) with the upper sign 

and on the right boundary maxx x=  with the lower 

sign. 

Taking the Laplace transform of ( , )x yψ  in 

y -variable, i.e. 
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∞

= ψ −∫Y , (18) 

and substituting it into the parabolic wave equation 

(8) yields 
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2 2 ( , ) 0k x p + β − = Y .   (19) 

Solution of (19) for 0x ≤ , or maxx x≥ , reads 

1,2 ( , )x p =Y  

{ }2 2
0 0( , )exp j( ) 2jx p x x k kp= ± − β − −Y ,  (20) 

where always the branch of the square root with 

positive real part is taken. Thus (20) represents two 

transversally propagating waves, either along the 

negative (upper sign) or along the positive (lower 

sign) direction of the x-axis. These two solutions 

represent in the Laplace transform domain the 

solution (17) of the two corresponding "one-way" 

wave equations (16). 

Differentiating (20) yields the relation between 

( , )x pY  and its derivative ( , )x p x∂ ∂Y  
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where 

 2 2( ) 2 j ( )A p kp k= − β − , (22) 

or in the so called impedance form 
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The inverse Laplace transform ( )f y  of the 

weighting function ( )F p  in (23), 
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( ) 1 ( ) 1 2j ( )F p A p kp k= = − β − , (24) 

can be, by using the Laplace transform pair 

 1 1p y⇔ π , (25) 

together with the properties of the Laplace transform 
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easily obtained in the form  
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or for the case k = β  in the simpler form 
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The inverse Laplace transform of (23) is then 

expressed as the convolution integral 
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i.e. it yields the convolution integral 
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For k = β  one obtains the simplified result 
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which is identical with the original Baskakov & 

Popov's formula [2]. 

In (30) and (31) the values in the boundary 

points 0( , ) (0, )x y y= , or max 0( , ) ( , )x y x y=  are ex-

pressed through the derivative of the boundary 

values in all "previous" boundary points, e.g. in the 

boundary point 0x =  all values 
0

( , )
x

x y x
=

∂ψ ∂  for 

0(0, )y y∈  play the role in (30) and (31). Similar 

holds in the boundary point maxx x=  too. 

Thus both formulas (30) and (31) are non-local 

with respect to the propagation coordinate y , i.e. 

with growing upper bound of the convolution 

integral (31) the integration path increases too, 

requiring more computational resources, which in 

fact rather complicates their application. 

To prevent the growth of the length of the 

integration interval with growing 0y , at least within 

certain accuracy, “the cut-off strategy” can be 

applied. After an initial integration phase with 

integration interval 0(0, )y , 0y ≤Q , for 0y >Q  the 

“sliding integration interval”approach is taken i.e. 

the length of the integration interval in (30) and (31) 

remains constant and equals 0 0( , )y y−Q  instead of 

0(0, )y y∈ . 

Thus, using (30), or (31) the reflections of 

waves in the boundary points 0x =  and maxx x=  

can be prohibited. 

3. SEMI-DISCRETE APPROACH I: THE 
DISCRETISED TRANSVERSAL 
DIRECTION 

For the numerical simulations using digital 

computers the wave-amplitude profile ( , )x yψ  has 

to be calculated on the discrete mesh, i.e. the values 

( , )x yψ  are to be taken on the set of discrete points 

( , )m nx y  

 ( , ) ( , )m n x yx y m nψ = ψ D D  (32) 

for 0,1, 2,...,m M= , where xD  and yD  are 

equidistant discretisation intervals. The computa-

tional window is selected to be 

max(0, ) (0, )xx M= D . The index 0,1, 2,...n = , 

denotes subsequent layers of wave-amplitude values 

in the propagation direction. 

Let us first consider the discretisation along the 

transversal coordinate x  only., Such transversally 

semi-discrete TBCs are derived by Lubich & 

Schaedle [6] and Alonso-Malo & Reguera [9]. After 

taking the values ( )m yψ  in equidistant grid points 

m xx m= D , i.e. 

 ( , ) ( , ) ( )m x mx y m y yψ = ψ =ψD , (33) 

the second derivative in (8) is replaced by the second 

central difference quotient 
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and instead of (8) one obtains the approximation in 

form of the finite difference equation 
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2 2 ( ) 0mk y + β − ψ =  .   (35) 

Now the same strategy as in (19) can be used 

and after applying the Laplace transform with 

respect to y  it yields 
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2 2 2j ( ) 0mk kp p + β − − = Y .    (36) 

The solution of the ordinary finite difference 

equation of the second order (36) reads 
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or in the impedance form 
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where we have introduced the abbreviation 

 { }
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Both weighting functions in (37) and (38) 
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can be exactly inverted using the Laplace transform 

properties (26) and the Laplace transform pairs 

{ } 1
2 1

11 2 exp( ) ( )p p p y y I y
−

−+ + + ⇔ − ,   (42) 

{ } [ ]
1

2 1
0 12

2 exp( ) ( ) ( )p p p y I y I y
−

+ + ⇔ − + , (43) 

where 0( )I y  and 1( )I y  are modified Bessel 

functions, yielding thus the results in the convolution 

form 

 1

0

( ) ( ) ( )

y

m my h y d+ψ = ψ ζ − ζ ζ∫ , (44) 

[ ]1

0

( ) ( ) ( ) ( )

y

m m my g y d+ψ = ψ ζ −ψ ζ − ζ ζ∫ .  (45) 

Use of asymptotic expressions for large y  in 

the Bessel functions yields for (43) the formula 

[ ]1
0 12

exp( ) ( ) ( ) 1 2 , 1y I y I y y y− + ≈ π ≫ .   (46) 

Thus ( ) ( ) xg y f y≈ D  for 2
xy kD≫ , where ( )f y  

is given by (27). On the other hand for 2
xy kD≪  the 

behaviour of the kernel function ( )g y  is completely 

different from ( )f y  as seen from (43) for the 

limiting case of small y , i.e. 

[ ] 21 1 1 1
0 12 2 4 8

e ( ) ( ) , 1
y
I y I y y y y

− + ≈ − + ≪ .  (47) 

Apparently, the main difference between 

convolution-kernel-functions ( )f y  in (29) for 

continuous TBC and ( )g y  in (45) for semi-discrete 

TBC formulation occurs for small arguments, i.e. in 

the vicinity of the point y , when yζ∼ , where the 

TBC is going to be determined. 

The weighting function ( )G p  in (41) can be 

written also as the product 

{ }1
( ) 1 ( ) 2 ( ) 2

2 ( )
G p B p B p

B p
= + − .   (48)  

Here the Laplace transform pair of the first factor 

 1 2 ( ) ( ) xB p f y⇔ D  (49) 

corresponds in fact to the kernel function ( )f y  

pertaining to the continuous TBC accordingly to 

(27), or (28), and the second factor in (48) 

 ( ) 1 ( ) 2 ( ) 2D p B p B p= + −  (50) 

yields using the Laplace transform pair 
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the kernel function 
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This result can be interpreted in terms of the 

double convolution  
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y f y d+ψ ζ − ψ ζ
φ = − ζ ζ∫ D
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y

m my d y dψ = φ ζ − ζ ζ∫ . (54) 

The first convolution (53) yields an intermediate 

result ( )m yφ  and it is in fact the same formula as 

(29) for the continuous TBC when one substitutes 

the first difference quotient 1( )m m x+ψ −ψ D  in the 

place of the first derivative x∂ψ ∂  in (29). The 

second convolution formula (54) illustrates the 

effect of the semi-discrete formulation of the TBC in 

comparison with the continuous TBC in terms of the 

second convolution with the kernel function ( )d y . 

For 0x →D  the kernel function ( )d y  

converges to the delta function, ( ) ( )d y y→δ  as can 

be easily seen in the Laplace-transform domain since 

( ) 1D p →  for 0x →D . Then ( ) ( )m my yψ = φ  and 

(53) is identical with (29). Herewith the link to the 

continuous TBC is completely established. 

For the small values of y , 2
xy kD≪  one 

obtains asymptotically 
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2 jx
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≈
πD

, (55) 

while for large y , 2
xy kD≫ , 
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π
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holds, and both together confirm the delta-function-

like behaviour of ( )d y  in the limit 0x →D . 

4. SEMI-DISCRETE APPROACH II: THE 
DISCRETISED PROPAGATION 
DIRECTION 

Instead of discretising ( , )x yψ  along the 

transversal direction x  as in (35), alternatively the 

discretisation along the longitudinal direction y  can 

be taken, Such longitudinally semi-discrete TBCs 



are derived by Antoine & Besse [11], Schmidt & 

Deuflhard [14] and Yevick, Friese & Schmidt [4]. 

To proceed one takes the values ( )n xψ  in 

equidistant points n yy n= D , 0,1, 2,...n =  where 

 ( , ) ( , ) ( )n y nx y x n xψ =ψ = ψD . (57) 

Using the explicit-implicit Crank-Nicolson 

strategy (trapezoidal rule) the semi-discretised 

formulation of (8) takes the form 

2 2
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[ ]2 2
1( ) ( ) 0n nk x x+

 + β − ψ + ψ =  ,    (58) 

where the first derivative with respect to y  was 

replaced by the central first difference quotient with 

the step size 2yD  and the function value itself by 

the average of values in the forward and backward 

half-step 
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Instead of the Laplace transform as in (18) for 

continuous ( , )x yψ  it is now quite natural to take 

the Z-transform (see Appendix 1) 
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for the discrete sequence { }
0,1,2,..

( )n n
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Using the "shift" property (149) in Appendix 1 

of the Z-transform (58) yields 
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with the solution analogous to (20) 

1,2 0( , ) ( , )x z x z= ×Y Y  
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In analogy to (21) one obtains another kind of 

the semi-discrete transparent boundary condition 
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where 
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In the impedance form it reads 
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∂
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Note that ( )A z  equals ( )A p  in (22) for 
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−
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+D
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In the “homogeneous space” case, i.e. if k = β , (64) 

is simplified into 
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−
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Then (63), or (65) can be easily inverted using (144) 

in Appendix 1. The resulting discrete convolution 

formulae then are 
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with the sequences (144) 

0,1,2,..

1 1 1 3
1, 1, , , ,

2 2 2 4

n

n n

a

b
=

⋅  = ± ±  
⋅ 

 

1 3 1 3 5 1 3 5
, , , ....

2 4 2 4 6 2 4 6

⋅ ⋅ ⋅ ⋅ ⋅ ± ± 
⋅ ⋅ ⋅ ⋅ ⋅ 

,    (70) 

where for { }na  the upper signs and for { }nb  the 

lower ones apply. 

It should be noticed, that using the Z-transform 

instead of the Laplace transform, a significant 

advantage of having, in the case k ≠ β , in 

convolution formulas of the type (30) the simple 

multiplicative factors 

 
2 2

exp j ( )
2

k
y

k

 β −
− − ζ 
  

, (71) 

is lost. 

The link between the continuous solution 

formulated in (21) and (22) in form of the Laplace 

transform and the semi-discrete solution formulated 

in (63) and (64) can be easily established. As it is 



well known if one represents a discrete sequence 

{ }
0,1,2,..n n

f
=

by the stair-case function 

( )f y =  

{ }
0

( ) ( )n y y y

n

f U y n U y n

∞

=

= − − − −∑ D D D ,(72) 

where ( )U y  is the unit-step function, then the 

Laplace transform of ( )f y  equals 

 

0

1 exp( )
( ) exp( )

y
n y

n

p
F p f np

p

∞

=

−
= −∑

D
D , (73) 

where the summation term is equal to the Z-

transform (137) with the argument exp( )yz p= D . 

Then from (64) one obtains 

 2 2
exp( ) 14 j

( ) ( )
exp( ) 1

y

y y

pk
A p k

p

−
= − β −

+

D

D D
, (74) 

which in form of (21) represents the solution of the 

difference equation (58) in terms of the Laplace 

transform of a stair-case function (72). In the 

limiting case of negligible yD , 0y →D , one obtains 

the result 

 ( )2 2 2 2( ) 2 j 2 ... ( )yA p k p p k≈ + + − β −D , (75) 

being in the first approximation identical with (22). 

5. NUMERICAL IMPLEMENTATION OF 
THE COUNTINUOUS TRANSPARENT 
BOUNDARY CONDITIONS. 

The numerical approximation to (31) is 

obtained by the same discretisation of the 

propagation path variable y  into the equidistant 

intervals as in (57). The discretised form of the 

continuous convolution formula (31) then reads, 

either by using the trapezoidal rule 

1

1

( ) ( )1 1
( )

22j

N

n n
N

n

x x
x

x xk

−

=

∂ψ ∂ψ ψ = + × ∂ ∂π  ∑  

1

1
n

n

y

N
y

d
y

−

× ζ
− ζ∫ ,    (76) 

or by using the linear interpolation 

1
1

1 1
( )

2 j

n

n

yN

N

Nn y

x
k y

−
=

ψ = ×
π − ζ∑ ∫  

1 1( ) ( )n n n n

y y

x y x y
d

x x

− −
 ∂ψ − ζ ∂ψ ζ −

× + ζ 
∂ ∂  D D

.   (77) 

After having integrated (76), or (77) 

respectively, one obtains again a formula of the type 

(69). The integration in (76) and in (77) can be 

easily performed and yields 

 { } { }
2

2

2

, 0

1 1

1 ,

n

n

a n n

N N n N

π

π

π

 =

  = + − −  

  − − = 

 (78) 

for (76) and 

{ } { }
4 2
3

3 2 3 2 3 24 2
3

3 2 3 24 2
3

, 0

( 1) ( 1) 2

( 1) 6 ,

n

n

a n n n

N N N n N

π

π

π

 =

  = + + − −  

  − − + = 

(79) 

for (77). 

When (78) or (79) is used to calculate { }na  

then the problem of “subtractive cancellation” 

occurs, i.e. there are rounding-error-problems with 

subtraction of two slightly differing large numbers 

due to their representation in the digital computer by 

a finite number of digits. Therefore one can better 

use the transformed formulas, i.e. 

 { } ( ){ }
( )

2

2

2

, 0

2 1 1

1 1 ,

n

n

a n n

N N n N

π

π

π

 =
  = + + −  
  + − =  

 (80) 

for (78), and 

{ }na =  

4 2
3

2 2
4 2
3 3 2 3 2 3 2 3 2

2
4 2
3 3 2 3 2

, 0

3 3 1 3 3 1

( 1) ( 1)

3 3 1
6 ,

( 1)

n

n n n n

n n n n

N N
N n N

N N

π

π

π




=

  + + − + = −  

+ + − +     


 − + − =  − +  

(81) 

for (79). The “subtractive cancellation” problem 

persists in (81) too, but is of lower order than in 

(79). 

Numerical values for { }na  accordingly the 

three different formulations(70), (78) and (79) are 

shown in Table 1 and Table 2. It can be seen that 



the coefficients { }na  are substantially different 

between individual columns only for small n . The 

coefficients in the first column are paired with the 

same value while in the last two columns they are 

symmetrically distributed with respect to the values 

in the first column. This confirms numerically the 

asymptotic equivalence of continuous and semi-

discrete approach. Nevertheless, whatever small the 

discretisation interval yD  is, the different sequences 

{ }na  pertaining to the particular method of the three 

discretisations remain. 

 

Table 1. Values of { }na  accordingly the 

respective formula 
n Formula (70) Formula (78) Formula (79) 
0 1.000000 0.797885 1.063846 

1 1.000000 1.128379 0.881319 

2 0.500000 0.584092 0.573730 

3 0.500000 0.467390 0.463967 

4 0.375000 0.402148 0.400530 

5 0.375000 0.358641 0.357727 

6 0.312500 0.326880 0.326305 

7 0.312500 0.302348 0.301959 

8 0.273438 0.282650 0.282372 

9 0.273438 0.266374 0.266167 

 

Table 2. Values of { }na  accordingly the 

respective formula 
n Formula (70) Formula (78) Formula (79) 
20 0.176197 0.178468 0.178440 

21 0.176197 0.174162 0.174137 

30 0.144464 0.145693 0.145683 

31 0.144464 0.143323 0.143314 

40 0.125371 0.126166 0.126162 

41 0.125371 0.124618 0.124613 

50 0.112275 0.112844 0.112841 

51 0.112275 0.111732 0.111729 

 

6. FULLY-DISCRETE METHOD: 
DISCRETISED TRANSVERSAL AND 
PROPAGATION DIRECTIONS 

Taking the two-dimensional array of discrete 

values 

 ( , ) ( , ) n
m n x y mx y m nψ =ψ = ψD D  (82) 

and using the central second difference quotients in 

the Crank-Nicolson discretisation scheme one 

arrives to the discrete formula analogous to (58) 

1

4j
n n
m m

y

k
+ψ −ψ

− +
D

 

1 1 1
1 1 1 1

2 2

2 2
n n n n n n
m m m m m m

x x

+ + +
+ − + − ψ − ψ + ψ ψ − ψ +ψ

+ + + 
  D D

 

2 2 1 0n n
m mk +   + β − ψ +ψ =    .    (83) 

This Crank-Nicolson formula is known to conserve 

the power of the wave within the infinite 

computational window and therefore it is especially 

suitable for wave propagation computations. 

The fully discrete transparent boundary 

conditions for the Crank-Nicolson discretization 

were derived and analysed by Arnold [15] and 

Ehrhardt [5]. Again after having (83) Z-transformed 

in the propagation-direction variable y  one obtains 

the fully discrete pendant to (61) 

1 1

2

( ) 2 ( ) ( )m m m

x

z z z+ −− +
+

Y Y Y

D
 

2 2 4j 1
( ) 0

1
m

y

k z
k z

z

 −  + β − − =   +  
Y

D
.   (84) 

The solution to (84) can be in analogy to (37) and 

(38) written as 

 1( ) ( ) ( )m mz H z z+ =Y Y , (85) 

where 

 
2

( ) 1 ( ) 2 ( ) ( )H z B z B z B z= + + + , (86) 

or in the impedance form 

 [ ]1( ) ( ) ( ) ( )m m mz G z z z+= −Y Y Y , (87) 

where 

 
1

2( ) ( ) 2 ( ) ( )G z B z B z B z
−

 = + +  
. (88) 

The term 

 
2

( ) ( )
2

xB z A z=
D

, (89) 

where ( )A z  is given in (64), is identical with ( )B p  

in (39) with the relation (66) between p  and z . 

For the simple case of the homogeneous space, 

k = β , one obtains 

 
2

2j 1 1
( ) 2

1 1

x

y

k z z
B z

z z

− −
= =

+ +
D

W
D

, (90) 

where 2j x yk=W D D . 

The inversion of (85) yields the convolution 

 { } { }1

0

N
N N n N n
m n m n m

n

h h
− −

+

=

ψ = ⊗ ψ = ψ∑ , (91) 



where { }
0,1,2,..n n

h
=

 is the inverse Z-transform 

sequence pertaining to the weighting function ( )H z  

in (86), i.e. 

 
2

0

1 ( ) 2 ( ) ( )
n

n

n

h z B z B z B z

∞
−

=

= + + +∑ . (92) 

Similarly the inversion of (87) yields 

 ( )1

0

N
N N n N n
m n m m

n

g
− −
+

=

ψ = ψ −ψ∑ , (93) 

where 

 
1

2

0

( ) 2 ( ) ( )
n

n

n

g z B z B z B z

∞ −
−

=

 = + +  ∑ . (94) 

The analytical inversion of (92) has been ob-

tained in [5] and is in a simplified form presented in 

Appendix 2. In [5] also a thorough analysis of 

various rather subtle mathematical aspects of the 

technique is presented. In a similar way the 

analytical inversion of (94) can be obtained too, and 

is also presented in Appendix 2. 

In the spirit of the presented development the 

weighting function ( )G z  in (87) can be recast 

similarly as in (48) into the form 

 { }1
( ) 1 ( ) 2 ( ) 2

2 ( )
G z B z B z

B z
= + − , (95) 

and the similar development as in formulas (48)-(54) 

of Section 3 can be performed for the discrete 

convolution. For the intermediate result analogous to 

(53) of the first convolution pertaining to the 

weighting function 1 2 ( )B z  one obtains 

 1

0
4j

N N n N n
yN m m

m n
xn

a
k

− −
+

=

ψ −ψ
φ = ∑

D

D
, (96) 

where { }
0,1,2,..n n

a
=

is given in (70), i.e. (96) is the 

discrete pendant to (69). 

The second discrete convolution analogous to 

(54) one obtains in the form 

 

0

N
N N n
m n m

n

d
−

=

ψ = φ∑ , (97) 

where 

 

0

1 ( ) 2 ( ) 2
n

n

n

d z B z B z

∞
−

=

= + −∑ . (98) 

Note that the sequence { }
0,1,2,..n n

d
=

 can be 

written as the subtraction of two sequences 

{ } { } { }
0,1,2,.. 0,1,2,.. 0,1,2,..n n nn n n

d s r
= = =

= − .   (99) 

The sequence { }
0,1,2,..n n

s
=

 

 

0

1
1

1

n
n

n

z
s z

z

∞
−

=

−
= +

+∑ W , (100) 

can be obtained numerically as outlined in Appendix 

3 and its first few terms are 

 { } { 21
20,1,2,..

1 1, , ,n n
s

=
 = + − γ − γ + γ W   

 3 2 4 3 25 3 31
2 8 2 2

, , ,   − γ + γ − γ − γ + γ − γ + γ      

 5 4 3 27 5
8 2

, 3 2 , − γ + γ − γ + γ − γ   

}6 5 4 3 235 25 521
16 8 4 2

, 5 , − γ + γ − γ + γ − γ + γ  … ,  (101) 

where (1 )γ = +W W . The second sequence 

{ }
0,1,2,..n n

r
=

 can be written in the form  

 { } { }
0,1,2,.. 0,1,2,..n nn n

r b
= =

= W  (102) 

where { }
0,1,2,..n n

b
=

 is given by (70). 

For the limiting case 0→W , i.e. for the 

transversal-discretisation-interval-length xD  

converging to zero, 0x →D , the sequence 

{ }
0,1,2,..n n

d
=

 approaches the limit in the form of a 

delta-sequence (138) 

 { } { }
0,1,2,..

1,0,0,0,0,..n n
d

=
≈ , 0x →D . (103) 

In this case , as it stems from (97), N N
m mψ = φ  and 

N
mψ  is equal to the discrete form (96) of the 

convolution formula (69) for the semi-discrete 

approach in the propagation direction. 

On the other hand, for small steps in the 

propagation direction i.e 2
y xkD D≪ , when W  is 

large, 1W≫ , the nominator in (95) can be 

approximated as 

 1 ( ) 2 ( ) 2 1 2 ( )B z B z B z+ − ≈ , (104) 

Then the sequence { }
0,1,2,..n n

d
=

 in (97) is 

asymptotically identical with 

{ }2

0,1,2,..
jy x n n
k a

=
D D  

This asymptotic form of { }
0,1,2,..n n

g
=

for the 

case 2
y xkD D≪  can be obtained directly from the 

asymptotic behaviour of ( )G z  



 
2

1
( ) 1 2 ( )

12 j

y

x

z
G z B z

zk

+
≈ =

−

D

D
. (105) 

Using (142) it yields 

 { } { }
0,1,2,.. 2

1,2,2,2,2,....
2 j

y
n n

x

g
k

=
≈

D

D
 (106) 

for 2
y xkD D≪ . 

7. NUMERICAL IMPLEMENTATION OF 
THE TBC IN THE CRANK-NICOLSON 
METHOD 

For numerical simulations solely the full Crank-

Nicolson formula (83) is  used. It can be written in 

the form (where , , , , ,A B C D E F  are appropiate 

constants) 

1 1
2 1
n nD E+ +ψ − ψ =  

1
2 1 0 0
n n n nA B C F += ψ − ψ + ψ − ψ ,  (107) 

1 1 1
1 1

n n n
m m mD E F+ + +
+ −ψ − ψ + ψ =  

1 1
n n n
m m mA B C+ −= ψ − ψ + ψ , 2, 3,..., 2m M= − , (108) 

1 1
1 2

n n
M ME F+ +
− −− ψ + ψ =  

1
1 2

n n n n
M M M MA B C D +

− −= ψ − ψ + ψ − ψ ,  (109) 

i.e. the unknowns 1n
i
+ψ , 1, 2,..., 1i M= − on the left 

sides of (107)-(109) are expressed by the known 

values in the previous layer n
iψ , 0,1, 2,...,i M= and 

by the "must-be-known" boundary values 1
0
n+ψ , 

1n
M
+ψ . This is an implicit type of discretisation 

scheme, i.e. it requires the solution of a tridiagonal 

system of equations for each step in the propagation 

direction z . 

All convolution-type formulas (for the 

continuous formulation after the suitable 

interpolation of discrete data and subsequent 

integration as outlined in Section 5) can be easily 

embodied within the Crank-Nicolson scheme. The 

values of continuous x -derivatives in (30) and in 

(69) must be in boundary points first approximated 

by their discrete counterparts 

 1 00
( , ) ( )n n

n xx
x y x

=
∂ψ ∂ ≈ ψ −ψ D , (110) 

 
max

1( , ) ( )n n
n M M xx x

x y x −=
∂ψ ∂ ≈ ψ −ψ D .(111) 

From (110) and e.g. (69) one obtains for the "left" 

boundary 

1
0 0(1 ) na ++ ξ ψ =   

 ( )
1

1 1 1
0 1 1 0

1

n
n n i n i

i

i

a a

+
+ + − + −

=

= ξψ + ξ ψ −ψ∑ , (112) 

where 
2

4jy xkξ = D D . After having substituted 

into (107) one obtains instead of (107) the equation 

1 10
2 1

0(1 )

n nFa
D E

a

+ + ξ
ψ + − ψ = 

+ ξ 
 

2 1 0
n n nA B C= ψ − ψ + ψ −  

( )
1

1 1
1 0

0 1
(1 )

n
n i n i

i

i

F a
a

+
+ − + −

=

ξ
− ψ −ψ

+ ξ ∑ ,   (113) 

with only the known values on its right-hand-side. 

A similar expression holds for the "right" 

boundary too, i.e. from (111) and (69) 

1
0(1 ) n

Ma +− ξ ψ =  

 ( )
1

1 1 1
0 1 1

1

n
n n i n i
M M M i

i

a a

+
+ + − + −
− −

=

= − ξψ + ξ ψ −ψ∑ .(114) 

The substitution into (109) yields the equation 

1 10
1 2 2 1

0(1 )

n n n n
M M

Da
E F A B

a

+ +
− −

 ξ
− − ψ + ψ = ψ − ψ + 

− ξ 
 

( )
1

1 1
0 1

0 1
(1 )

n
n n i n i

M M i

i

C D a
a

+
+ − + −

−

=

ξ
+ ψ − ψ −ψ

− ξ ∑ .   (115) 

In both equations, (113) and (115), one has to use 

the correct branch of the j  for the outgoing wave. 

As already mentioned the main drawback of all 

four above formulations is the non-locality of the 

boundary conditions, i.e. for the successful 

application of the TBC one has to keep track of all 

previous values 1 0
n nψ −ψ , 1

n n
M M −ψ −ψ , for 

0,1, 2, ... 1n N= −  up to the actually calculated layer 

n N= . 

8. POWER CONSERVATION AND THE 
NUMERICAL DISPERSION 

Let us consider the obliquely propagating plane 

wave as in (12) 

 ( , ) exp( j )exp( j )xx y q x yψ = − − κ , (116) 

and the “dispersion relation” (13) 

 2 2 2( ) 2xk q kκ = β − − . (117) 

If one takes the so called “amplification factor” ξ  in 

the form exp( j )yξ = − κD  then the discretised plane 

wave reads 



 ( , ) exp( j )n
m n x xx y q mψ = ξ − D , (118) 

where in an ideal case exp( j )yξ = − κD , i.e. the 

wave-power density is conserved since magnitude of 

the propagating-wave envelope is unity, 1ξ = . The 

exact phase shift after one step in propagation 

direction is 

 
2 2 2

phase( )
2

x
y y

k q

k

β − −
ξ = −κ = −D D . (119) 

However, after the substitution of (118) into the 

Crank-Nicolson implementation of the discrete 

parabolic wave equation (83) one obtains  

 
1 j

1 j

−
ξ =

+
Q

Q
, (120) 

where 

 
22 2

2

2sin ( 2)

2 2

y x x

x

qk

k

 β − = − 
  

D D
Q

D
. (121) 

It is easily seen that 1ξ =  holds further, i.e. the 

wave power remains conserved, but the phase shift 

in one longitudinal step is given by 

phase( )ξ =  

22 2

2

2sin ( 2)
2arctan

2 2

y x x

x

qk

k

  β − 
= −  

    

D D

D
   (122) 

and differs from the “should be” exact value (119). 

This different dependence of the phase of ξ on the 

spatial frequency xq  is generally termed “numerical 

dispersion”. Generally the difference between 

“physical” dispersion relation (119) and “numerical” 

dispersion relation (122) leads to deterioration of the 

shape of the wave-amplitude envelope and thus it is 

a highly unwanted effect. 

Only if 1x xq D ≪  holds, the term 

2sin ( 2)x xq D  can be approximated as 

2 2 2sin ( 2) 4x x x xq q≈D D  yielding for (122) 

 
2 2 2

phase( ) 2arctan
4

x
y

k q

k

β − −
ξ ≈ − D  (123) 

Moreover, if the argument of arctan function is 

small then its value approximately equals to its 

argument and (123) converges to (119). If k ≈ β  

then it turns out that the condition 2
x yq kD ≪  must 

be fulfilled 

In accordance with the sampling theorem the 

maximum value sin( 2) 1x xq =D  is reached for 

maxx xq = π D , where 
maxxq  denotes the maximum 

spatial frequency in the transversal direction of the 

wave profile ( , )x yψ  that can be represented by its 

sampled values with sampling interval xD . This 

frequency component is always present due to e.g. 

noise of the rounding errors of digital computations. 

However, in order to achieve small numerical 

dispersion one has to take care that the significant 

spatial-frequency components of the transversal 

profile of the wave-amplitude-envelope fulfil the 

condition 1x xq D ≪ . The second condition 

2
x yq kD ≪  can be rewritten in the form 

 
2

y xkD D≪ . (124) 

Both these conditions together guarantee small 

numerical dispersion. 

9. CONCLUSIONS 

Let us summarize the results. The continuous 

TBC is formulated as the convolution  

 

0

( , )
( , ) ( )

y

x
x y f y d

x

∂ψ ζ
ψ = − ζ ζ

∂∫  (125) 

where in the simple case k = β  

 
1

( )
2 j

f y
k y

=
π

. (126) 

The TBC discretised in transversal direction x  

is formulated as the double convolution 

1

0

( ) ( )
( ) ( )

y

m m
m

x

y f y d+ψ ζ − ψ ζ
φ = − ζ ζ∫ D

,    (127) 

 

0

( ) ( ) ( )

y

m my d y dψ = φ ζ − ζ ζ∫ , (128) 

where 

 
( )2

1 exp 2 j
( ) j

2 2

x

x

y k
d y k

y y

− −
=

π

D
D . (129) 

The TBC discretised in the longitudinal 

direction y  is formulated in terms of the discrete 

convolution 

 

0

( )
( )

4 j

N
y N n

N n

n

x
x a

k x

−

=

∂ψ
ψ =

∂∑
D

, (130) 

where  

{ }na =  

1 1 1 3 1 3 1 3 5 1 3 5
1,1, , , , , , ,..

2 2 2 4 2 4 2 4 6 2 4 6

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =  
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

.  (131) 



The TBC discretised in both transversal and 

longitudinal direction is given by 

 1

0
4j

N N n N n
yN m m

m n
xn

a
k

− −
+

=

ψ −ψ
φ = ∑

D

D
, (132) 

 

0

N
N N n
m n m

n

d
−

=

ψ = φ∑ , (133) 

with { }nd given by (99) - (102). 

As it has been shown, the limiting case 0x →D  

for transversally discretised formulation in (127) 

and (128) leads to ( )d y in (129) converging to the 

δ -function. Thus one arrives to asymptotically the 

same result as for the continuous TBC, cf. (125).  

Similarly it has been shown that the semi-

discrete formulation (130) discretised in longitudinal 

direction leads in the limiting case 0y →D  to the 

continuous formulation of the TBC (125), (126) too. 

Thus all three formulations are asymptotically 

identical. 

Any numerical simulation can be realised only 

in the fully discretised form accordingly (83). The 

formulation of the TBC discretised in both, the 

transversal as well in the longitudinal direction (132) 

and (133), is in the limit 0x →D  identical with the 

semi-discrete formulation (130) too, since the 

sequence { }
0,1,2,..n n

d
=

 in (133) converges in such a 

case to the δ -sequence. However, for the finite 

values xD  the behaviour of the TBC depends on the 

ratio 
2

y xkD D . 

As discussed in Section 8 to reach small 

numerical dispersion the condition (124), 
2

y xkD D≪ , has to be met. It has been shown that in 

such a case the second convolution (97) cannot be 

neglected and fulfilling (124) means that in fact the 

sequence { }
0,1,2,..n n

g
=

 cannot be simply taken as 

dicretised formula (69) but the full formula 

 ( )1

0

N
N N n N n
m n m m

n

g
− −
+

=

ψ = ψ −ψ∑  (134) 

must be used, where 

 
2

0
4 j

n
y

n k n k

x k

g a d
k

−

=

= ∑
D

D
. (135) 

As pointed out, the convolution (135) asymptotically 

leads to the sequence (106) 

 { } { }
0,1,2,.. 2

1,2,2,2,2,....
2 j

y
n n

x

g
k

=
≈

D

D
. (136) 

The use of any other formula, following from 

the continuous or semi-discrete formulations, which 

is not pertaining to the relation (124), is neither 

consistent with the “doubly-discretised” Crank-

Nicolson method (83), nor with the requirement of 

small numerical-dispersion. This represents the main 

new result of the theoretical analysis performed. 

In the follow-up paper the results of 

comprehensive numerical simulations will be 

presented. 

In the near future we will try to apply the very 

recent approach of Antoine, Besse & Klein [13] that 

can deal with quite general transversally dependent 

propagation coefficient in the exterior domain, i.e. 

outside computational window. 

APPENDIX 1: SOME RULES AND 
PROPERTIES OF THE Z-TRANSFORM. 

The Z-transform of the sequence{ }
0,1,2,..n n

f
=

 is 

defined as 

 

0

( )
n

n

n

F z f z

∞
−

=

=∑  (137) 

Note that the values nf  in the Z-transform (137) are 

in fact the coefficients of the Taylor series expansion 

of the function ( )F z  in the variable 1 z . 

Using some simple Taylor series expansions and 

power series sums It is easy to show validity of the 

following transform pairs 

 { } { }0 0,1,2,..
1,0,0,0,0,.. 1

n=
δ = ⇔ , (138) 

 { } { }1 0,1,2,..

1
0,1,0,0,0,..

n z=
δ = ⇔ , (139) 

 { } { }
0,1,2,..

1 1,1,1,1,1,..
1n

z

z=
= ⇔

−
, (140) 

where { }0 0,1,2,..n=
δ  is the delta sequence { }1 0,1,2,..n=

δ  

the shifted delta sequence and { }
0,1,2,..

1
n=

 is the unit-

step sequence. Further  

 { }
0,1,2,..

n

n

z
a

z a=
⇔

−
, (141) 

 { } 2 1
1,2,2,2,2,.. 1

1 1

z z

z z

+
⇔ − =

− −
 (142) 

 { } 2 1
1, 2,2, 2,2,.. 1

1 1

z z

z z

−
− − ⇔ − =

+ +
 (143) 



1 1 1 3 1 3 1 3 5 1 3 5
1, 1, , , , , , ,..

2 2 2 4 2 4 2 4 6 2 4 6

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ± ± ± ± ⇔ 
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 

 

1

1

z

z

±
⇔

∓
.    (144) 

To the product 

 ( ) ( ) ( )G z F z H z=  (145) 

in the Z-domain corresponds the discrete 

convolution of original sequences, i.e. 

 { } { } { }
0,1,2,.. 0,1,2,.. 0,1,2,..n n nn n n

g f h
= = =

= ⊗ ,(146) 

expressed explicitly as  

 

0 0

n n

n n k k k n k

k k

g f h f h− −

= =

= =∑ ∑ . (147) 

If for the sequences { }
0,1,2,..n n

f
=

 and { }
0,1,2,..n n

g
=

 

 1n nf g += , 0,1,2,...n =  (148) 

holds, then it is easy to show that for their Z-

transforms the so called “shift theorem” 

 ( ) ( )F z zG z= . (149) 

holds. 

APPENDIX 2: INVERSE TRANSFORM 
OF THE FORMULAE (86) AND (88). 

The function ( )H z  in (86) can be in case (90) 

expressed as 

 
1 1 1

( ) 1 2
1 1 1

z z z
H z

z z z

− − − = + λ ± λ λ + + + + 
,(150) 

where 
2

2 =2j x ykλ = W D D . This can easily be put in 

the form 

2
( ) 1 1

1

z
H z

z

 = + λ − ± + 
 

2( 2) 2 2
1

z z
z

λ
± λ + − λ + λ −

+
.   (151) 

Further 

2
( 2) 2 2z zλ + − λ + λ − =  

2

2

( 2) 2 2

2 ( ) 2 1

z z z

z z a z

λ + − λ + λ − µ
=

λ + µ − µ +
,(152) 

where ( 2) ( 2)µ = λ + λ −  and 
2

2 ( 4)a = λ λ − . 

Finally one obtains the formula 

2
( ) (1 )

1

z
H z

z
= − λ + λ ±

+
 

2

1 4
2

1 ( ) 2 1

a z

z z z a z

  µ
± λ − µ + + µ +  µ − µ +

, (153) 

Using the Z-transform pair 

 { }
0,1,2,.. 2

( )
2 1

n n

z
P a

z az
=

⇔
− +

, (154) 

where ( )nP a  are Legendre polynomials and results 

in Appendix 1, (153) can be back-transformed in the 

convolution form 

{ } { } { }0(1 ) 2 ( 1)nnh = − λ δ + λ − ±  

{ } { } { } { }( )0 1 0

1
2 4 ( 1)

n
a

 
± λ − µ δ + δ + − − δ ⊗ µ 

 

{ }( )n
nP a−⊗ µ .      (155) 

Similarly ( )G z in (88) can be written as 

1 1 1 1 1
( ) 2

2 1 1 1 2

z z z
G z

z z z

+ − − = λ λ + − λ − + + 
 (156) 

and recast into the form 

( )G z =  

32
1

2

1

1 2( ) 2 1

KK z
K

z z z a z

µ = − + − −  µ − µ +
,   (157) 

where 

1 2 3 2

2 1
, ,

4 4 8 2
K K K

λ + λ
= = =

λ λ + λ + λ
.  (158) 

The sequence { }ng  can be then easily obtained in an 

analogous way as the sequence { }nh  in (155). 

APPENDIX 3. INVERSE TRANSFORM 
OF THE FORMULA (100). 

 

The sequence { }
0,1,2,..n n

s
=

 defined in (100) as 

 

0

1
1

1

n
n

n

z
s z

z

∞
−

=

−
= +

+∑ W , (159) 

that represents the inverse Z-transform of 

1 ( 1) ( 1)z z+ − +W , can be obtained as  

 

0

1 ( )

!

n

n n

d f
s

n d η=

η
=

η
W , (160) 

where 1 2( )f η = α , 1 1 2−α = − + βW , 1β = + η .  

The first and the second derivative of ( )f η  are 

 1 2 2
11( )f D − −′ η = α β , (161) 



 3 2 4 1 2 3
21 22( )f D D

− − − −′′ η = α β + α β  (162) 

where  

 

11

21 11

22 11

1

1

2 2

D

D D

D D

= −

= = −

= − =

. (163) 

Further 

( )f ′′′ η =  

5 2 6 3 2 5 1 2 4
31 32 33D D D− − − − − −= α β + α β + α β   (164) 

where  

 

31 21

32 21 22

33 22

3 3

4 6

3 6

D D

D D D

D D

= = −

= − + =

= − = −

 (165) 

From the above one can deduce the general 

recursive algorithm. If 

( 1) (2 2 1) 2 (2 )
1,

1

( )

n
n n k n k

n k

k

f D
− − − − − −

−

=

η = α β∑  (166) 

then 

( ) (2 2 1) 2 (2 1)
,

1

( )

n
n n k n k

n k

k

f D
− − + − − +

=

η = α β∑      (167) 

where 

,1 1,1

, 1,

1, 1

, 1, 1

(2 3)

(2 2 1)

(2 ) , 2,3,.., 1

n n

n k n k

n k

n n n n

D n D

D n k D

n k D k n

D nD

−

−

− −

− −

= −

= − − −

− − = −

= −

 (168) 

The first few coefficients ,n kD  are summarized in 

Table 3 bellow. 

 

Table 3. Values of ,n kD  

n\k 1 2 3 4 5 6 

1 -1      

2 -1 2     

3 -3 6 -6    

4 -15 36 -36 24   

5 -105 300 -360 240 -120  

6 -945 3150 -4500 3600 -1800 720 

 

Substituting 0η =  into respective derivatives 

( ) ( )nf η , 1,2,3,..n =  one obtains from (160) the 

sequence (101). Observe that the sums ,

1

!

n

n k

k

D n

=
∑  

are equal to the terms nb  in (70). 
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