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Abstract: Periodic media problems widely exist in many modern application areas like
semiconductor nanostructures (e.g. quantum dots and nanocrystals), semi-conductor su-
perlattices, photonic crystals (PC) structures, meta materials or Bragg gratings of surface
plasmon polariton (SPP) waveguides, etc. Often these application problems are modeled
by partial differential equations with periodic coefficients and/or periodic geometries.
In order to numerically solve these periodic structure problems efficiently one usually con-
fines the spatial domain to a bounded computational domain (i.e. in a neighborhood of the
region of physical interest). Hereby, the usual strategy is to introduce so-called artificial
boundaries and impose suitable boundary conditions. For wave-like equations, the ideal
boundary conditions should not only lead to well-posed problems, but also mimic the per-
fect absorption of waves traveling out of the computational domain through the artificial
boundaries.
In the first part of this chapter we present a novel analytical impedance expression for
general second order ODE problems with periodic coefficients. This new expression for
the kernel of the Dirichlet-to-Neumann mapping of the artificial boundary conditions is then
used for computing the bound states of the Schrödinger operator with periodic potentials
at infinity. Other potential applications are associated with the exact artificial boundary
conditions for some time-dependent problems with periodic structures. As an example, a
two-dimensional hyperbolic equation modeling the TM polarization of the electromagnetic
field with a periodic dielectric permittivity is considered.
In the second part of this chapter we present a new numerical technique for solving periodic
structure problems. This novel approach possesses several advantages. First, it allows for
a fast evaluation of the Sommerfeld-to-Sommerfeld operator for periodic array problems.
Secondly, this computational method can also be used for bi-periodic structure problems
with local defects. In the sequel we consider several problems, such as the exterior el-
liptic problems with strong coercivity, the time-dependent Schrödinger equation and the
Helmholtz equation with damping.
Finally, in the third part we consider periodic arrays that are structures consisting of geo-
metrically identical subdomains, usually called periodic cells. We use the Helmholtz equa-
tion as a model equation and consider the definition and evaluation of the exact boundary
mappings for general semi-infinite arrays that are periodic in one direction for any real
wavenumber. The well-posedness of the Helmholtz equation is established via the limiting
absorption principle (LABP).
An algorithm based on the doubling procedure of the second part of this chapter and an ex-
trapolation method is proposed to construct the exact Sommerfeld-to-Sommerfeld bound-
ary mapping. This new algorithm benefits from its robustness and the simplicity of imple-
mentation. But it also suffers from the high computational cost and the resonance wave
numbers. To overcome these shortcomings, we propose another algorithm based on a con-
jecture about the asymptotic behaviour of limiting absorption principle solutions. The price
we have to pay is the resolution of some generalized eigenvalue problem, but still the overall
computational cost is significantly reduced. Numerical evidences show that this algorithm
presents theoretically the same results as the first algorithm. Moreover, some quantitative
comparisons between these two algorithms are given.



1. INTRODUCTION

Nowadays periodic media problems exist in many
modern application areas like semiconductor nanos-
tructures (e.g. quantum dots and nanocrystals),
semi-conductor superlattices [11], [68], photonic
crystals (PC) structures [10], [43], [53], meta mate-
rials [60] or Bragg gratings of surface plasmon po-
lariton (SPP) waveguides [31], [61]. In many cases
these problems are modeled by partial differential
equations (PDEs) on unbounded domains with peri-
odic coefficients and / or periodic geometries.
The most interesting property of these periodic me-
dia, especially in optical applications, is the capabil-
ity to select the ranges of frequencies of the waves
that are allowed to pass or blocked in the waveg-
uide (’frequency filter’). Waves in (infinite) peri-
odic media only exist if their frequency lies inside
these allowed continuous bands separated by for-
bidden gaps. This fact corresponds mathematically
to the gap structure of the differential operator hav-
ing so-called pass bands and stop bands. Numeri-
cal simulations are necessary for the design, analysis
and finally optimization of the waveguiding periodic
structures. E.g. in a typical application the wanted
frequencies of defect modes are the eigenvalues of
a PDE eigenvalue problem posed on an unbounded
domain [28].
In order to numerically solve these equations effi-
ciently it is a standard practice to confine the spatial
domain to a bounded computational region (usually
in the neighborhood of the domain of physical in-
terest). Hence it is necessary to introduce so-called
artificial boundaries and impose adequate boundary
conditions. Note that even in the case of a bounded
but large domain, it is a common practice to re-
duce the original domain to a smaller one by intro-
ducing artificial boundaries, for example, see [44].
This technique is especially beneficial if these gen-
erated exterior domains consist of a huge number
of periodicity cells. For wave-like equations, the
ideal boundary conditions should not only lead to
well-posed problems, but also mimic the perfect ab-
sorption of waves leaving the computational domain
through the artificial boundaries. Moreover, these
boundary conditions should allow for an easy im-
plementation and a fast, efficient and accurate eval-
uation of the Dirichlet-to-Sommerfeld (DtS) map-
ping is essential. In the literature these boundary
conditions are usually called artificial (or transpar-
ent, non-reflecting in the same spirit). The interested
reader is referred to the review papers [6], [26], [29],
[30], [65] on this fundamental research topic.

Artificial boundary conditions (ABCs) for the
Schrödinger equation and related problems has been
a hot research topic for many years, cf. [6] and the
references therein. Since the first exact ABC for the
Schrödinger equation was derived by Papadakis [48]
25 years ago in the context of underwater acous-
tics, many developments have been made on the de-
signing and implementing of various ABCs, also for
multi-dimensional and nonlinear problems. How-
ever, the question of exact ABCs for periodic struc-
tures still remained open, and it is a very up-to-date
research topic, cf. the current papers [23], [25], [40],
[56], [63], [64], [72], [73].
Let us note that recently Zheng [78] derived exact
ABCs for the Schrödinger equation of the form

iut +uxx = V (x)u, x ∈ R, (1a)
u(x,0) = u0(x), x ∈ R, (1b)
u(x, t)→ 0, x→±∞. (1c)

Here, the initial function u0 ∈ L2(R) is assumed to
be compactly supported in an interval [xL,xR], with
xL < xR, and the real potential function V ∈ L∞(R)
is assumed to be sinusoidal on the interval (−∞,xL]
and [xR,+∞). It is well-known that the system (1)
has a unique solution u∈C(R+,L2(R)) for bounded
potentials (cf. [50], e.g.):

Theorem 1. Let u0 ∈ L2(R) and V ∈ L∞(R).
Then the system (1) has a unique solution u ∈
C(R+,L2(R)). Moreover, it is a unitary evolution
i.e. the “energy” is preserved:

‖u(., t)‖L2(R) = ‖u0‖L2(R) , ∀t ≥ 0.

We remark that a recent paper [22] derives approxi-
mate ABCs for (1) with a more general class of pos-
sibly unbounded potentials.
In [78] Zheng considered the periodic potentials

V (x) = VL +2qL cos
2π(xL− x)

SL
, ∀x ∈ (−∞,xL],

V (x) = VR +2qR cos
2π(x− xR)

SR
, ∀x ∈ [xR,+∞),

where SL and SR are the periods, VL and VR are the
average potentials, and the nonnegative numbers qL
and qR relate to the amplitudes of sinusoidal part of
the potential function V on (−∞,xL] and [xR,+∞),
respectively.
Though absorbing boundary conditions (ABCs) for
wave-like equations have been a hot research is-
sue for many years and many developments have
been made on their designing and implementing, the



question of exact ABCs for periodic structure prob-
lems is not fully settled yet. Some progresses can
be found in the recent research articles [19], [20],
[21], [22], [23], [25], [40], [56], [58], [63], [64],
[72], [73], [74] and [78]. For a comprehensive re-
view on the theory of waves in locally periodic me-
dia including a survey on physical applications we
refer the interested reader to [27].
In the existing literature frequency domain methods
(FDMs) are usually considered for wave problems
with periodic structures [39]. These methods are
able to exploit the special geometric structure and
are based on an eigenmode expansion in every lon-
gitudinally uniform cell. Frequently, the FDMs are
used in conjunction with the perfectly matched layer
(PML) [12] technique for dealing with unbounded
domains. Afterwards the bidirectional beam prop-
agation methods (BiBPMs) [34] were introduced.
Like the FDMs, they can utilize the periodic geom-
etry but additionally they (and also the eigenmode
expansion methods in [12] and [34]) are able to re-
solve the multiple reflections at the longitudinal in-
terfaces.
The methods of Jacobsen [36] and Yuan & Lu [72]
were developed to be more efficient than the eigen-
mode expansion methods, because it turns out that
solving the eigenmodes in each segment is quite
time consuming. Recently, a DtN mapping method
[71] was developed by Yuan and Lu that is more ac-
curate than the BiBPMs, since this approach works
(mostly) without any approximation. In [73] the ef-
ficiency of this sequential DtN approach was further
improved by a recursive doubling process for the
DtN map.
In this chapter we study a numerical method for the
Helmholtz equation

−∆u(x)+(V − z)u(x) = f (x). (2)

Here z denotes a complex parameter, and V = V (x)
is a sufficiently smooth real function bounded from
both below and above. The domain of definition and
the function V are assumed to be periodic at least on
some part of the region.
The Helmholtz equation is one of the fundamental
equations of mathematical physics and models time-
harmonic wave propagation. In many cases, the
Helmholtz equation (2) is posed on the unbounded
domain R2 and solved as a boundary value problem
with some radiation boundary conditions, for exam-
ple, see [41].
In some special cases [36] it is possible to obtain
analytic expressions of the solution, but in general,
the Helmholtz equation (2) has to be solved numer-

ically. However, If the number of periodic cells is
large, then a direct discretization of the whole do-
main involves a huge number of unknowns which
makes it costly and even impractical from an imple-
mentational point of view. In this chapter our goal
is to find a smart resolution without naively solving
the whole domain problem.
The most interesting property of periodic arrays, es-
pecially in optical applications in nano- and micro-
technology, is the capability of selecting waves in
a range of frequencies that are allowed to pass or
blocked through the media. Waves in periodic ar-
rays only exist when their frequency lies inside
some allowed continuous bands separated by for-
bidden gaps. This fact corresponds mathematically
to the dispersion diagram of suitable differential op-
erator having so-called pass bands and stop bands.
Since the governing wave equation is either of pe-
riodic variable coefficient, or defined on a domain
consisting of periodic subregions, theoretical anal-
ysis is very limited, and numerical simulation is a
fundamental tool for the design, analysis and finally
optimization of the periodic arrays.
In many cases some defect cells are artificially in-
troduced into a perfect periodic array for some ad-
ditional interesting property. For example, if the de-
fect cells are properly designed, some defect modes
[59] can exist for certain frequencies in the band
gaps. This phenomena has many important appli-
cations, e.g. in light emitting devices (LEDs) and
photonic circuits [52].
The organization of this chapter is as follows. In
Section 2, we present an elegant analytical expres-
sion of the impedance operator for problems with
periodic coefficients. In Section 3 we use this re-
sult to compute bound states for the Schrödinger op-
erator. In Section 4 we show how the results can
be generalized to the time-dependent Schrödinger
equation, a diffusion equation and a second order
hyperbolic equation and present a concise numeri-
cal example.
In the sequel of the chapter we turn our considera-
tions to more complicated periodic structures. We
consider in Section 5 the Helmholtz equation (2)
without the source term f (x) on an array that is
periodic in one direction and perform a cell anal-
ysis. Next, we explain how an improvement to the
approach of Yuan and Lu [73] can be achieved by
introducing Sommerfeld-to-Sommerfeld (StS) map-
pings. Moreover, we construct an efficient and ro-
bust method for numerically evaluating these StS
operators. In Section 6 we present an application
of the methods of Section 5 to waveguide prob-



lems discussing concisely the so-called pass and
stop bands. We consider in Section 7 the tran-
sient Schrödinger equation on a semi-infinite array
periodic in one direction and show how our fast
evaluation method of Section 5 computes the exact
StS mapping very efficiently. In Section 8 we dis-
cuss the numerical simulation of the time-dependent
Schrödinger equation in two space dimensions with
a bi-periodic potential function containing a defect.
In Section 9 we return to the model problem of the
Helmholtz equation now posed on a semi–infinite
periodic array. Afterwards, we propose two differ-
ent methods: the extrapolation method (Section 10)
that is based on the limiting absorption principle
(LABP) and the asymptotic method (Section 11)
based on a conjecture about the asymptotic behav-
ior of an LABP solution. Our proposed algorithm
combines the doubling technique of Section 5 (now
for evaluating the operator related to infinite ar-
rays) and the limiting procedure (letting ε → 0)
with the extrapolation technique. The numerical
tests in Section 12 supports the validity of our ba-
sic conjecture on how to identify the traveling Bloch
waves which are compatible with the LABP, since
from the numerical point of view the asymptotic
method presents the same results as the extrapola-
tion method does.

2. THE IMPEDANCE EXPRESSION
We consider the general second order ODE

− d
dx

(
1

m(x)
dy
dx

)
+V (x)y = ρ(x)zy, ∀x≥ 0, (3)

where z denotes a complex parameter whose value
space is to be determined. We assume that the
functions m(x), V (x) and ρ(x) are all S-periodic in
[0,+∞) and centrally symmetric in each period, i.e.,

m(x) = m(S− x), V (x) = V (S− x),
ρ(x) = ρ(S− x), a.e.x ∈ [0,S].

(4)

The symmetry condition (4) simply implies that the
even extensions of these functions to the whole real
axis are still S-periodic. Moreover, we assume that
the functions m(x), V (x) and ρ(x) are sufficiently
smooth and bounded, i.e. there exist several con-
stants M0, M1, V0 and ρ0, such that

0 <M0 ≤ m(x)≤M1 < +∞, V (x)≥V0,

ρ(x)≥ ρ0 > 0, ∀x ∈ [0,S].

By introducing the new variable

w =
1

m(x)
dy
dx

,

the second order ODE (3) is transformed into a first
order ODE system

d
dx

(
w
y

)
=

(
0 V (x)−ρ(x)z

m(x) 0

)(
w
y

)
, (5)

for x≥ 0. The first part of this chapter deals with the
L2-solution of (3) in [0,+∞). To be more precise,
we want to analyze

1. for which parameter z does the general ODE
(3) possess a nontrivial L2-solution y(x) ?

2. and in this case, is it possible to formulate a
closed form of the impedance I := y′(0)/y(0),
i.e. the quotient of Neumann data over Dirich-
let data evaluated at x = 0?

For any two points x1 and x2, the ODE system (5)
uniquely determines a linear transformation from
the two-dimensional vector space associated with
x1, to the same space associated with x2. We identify
this transformation with the 2-by-2 matrix T (x1,x2),
which is an orthogonal change of basis matrix with
periodicity properties. This matrix T satisfies the
same form of equation as (5), namely:

d
dx

T (x1,x) =
(

0 V (x)−ρ(x)z
m(x) 0

)
T (x1,x),

(6)
for all x1 ≥ 0 and x≥ 0.

Lemma 2. The transformation matrix T possess the
following properties:

T (x,x) = I2×2, (7a)
detT (x1,x2) = detT (x1,x1) = 1, (7b)

T (x2,x3)T (x1,x2) = T (x1,x3), (7c)
T (x1 +S,x2 +S) = T (x1,x2). (7d)

Proof. We prove a more general result. Suppose

T ′ = AT,

where T is an n-by-n matrix-valued function. Then

(detT )′ = trace(A)detT.

We write T into a column of row vectors T =
(t>1 , · · · , t>n )>.Then

(detT )′=
n

∑
k=1

det((t>1 , · · · , t>k−1,(t
>
k )′, t>k+1, · · · , t>n )>).

Since

(t>k )′ =
n

∑
l=1

aklt>l ,



we have

(detT )′

=
n

∑
k=1

det((t>1 , · · · , t>k−1,
n

∑
l=1

aklt>l , t>k+1, · · · , t>n )>)

=
n

∑
k=1

n

∑
l=1

det((t>1 , · · · , t>k−1,aklt>l , t>k+1, · · · , t>n )>)

=
n

∑
k=1

n

∑
l=1

δlk det((t>1 , · · · , t>k−1,aklt>l , t>k+1, · · · , t>n )>)

=
n

∑
k=1

akk det((t>1 , · · · , t>k−1, t
>
k , t>k+1, · · · , t>n )>)

= trace(A)detT.

Here, A is a 2-by-2 matrix with zero diagonal. Ac-
cording to the above result we have

detT (x1,x2) = detT (x1,x1) = 1.

We proceed with a small illustrating example show-
ing that there might not exist any nontrivial L2 solu-
tions of the second order ODE (3) for some z in the
complex plane.

Example 1. We assume for simplicity that all coef-
ficients m(x), ρ(x) and V (x) are constant, hence the
problem is periodic with any period. E.g. setting

V = 0, ρ = 1, m = 1, z = 1

leads to a constant system matrix A in (5) or (6)

A =
(

0 −1
1 0

)
Then the matrix T (x1,x2) is simply Exp((x2−x1)A),
where Exp denotes the matrix exponential. The two
eigenvalues of T (0,S) have modulus 1 and thus pre-
vent any nontrivial L2 solution.
In fact, as revealed later in this section (see Figs. (1)-
(3) and the related discussion, if z lies in one of the
so-called pass bands, then there exists no nontriv-
ial L2 solution. In this constant coefficient example
there is only one pass band (0,+∞) and z = 1 lies
exactly in this interval.

2.1 The Impedance Expression

The next step of the construction of the ABC is
to consider the polar form of the eigenvalue σ

with modulus lower than 1 and express the L2-
bounded solution in order to finally extract the
impedance condition. According to (7a), the ma-
trix T (0,S) has two eigenvalues σ(6= 0) and 1/σ

with |σ | ≤ 1. Their associated eigenvectors are
denoted by (c+,d+)> and (c−,d−)>. If |σ | < 1,
then T (0,x)(c±,d±)> yields two linearly indepen-
dent solutions of the ODE system (5). By set-
ting σ = eµS with Re µ < 0 it is straightforward to
verify that e∓µxT (0,x)(c±,d±)> are periodic func-
tions. Therefore, we conclude that

y+ := T (0,x)(c+,d+)> = eµxe−µx T (0,x)(c+,d+)>

is L2-bounded, while

y− := T (0,x)(c−,d−)> = e−µxeµx T (0,x)(c−,d−)>

is not. For the L2-bounded solution y+, the
impedance I is thus given as

I :=
y′+(0)
y+(0)

= m(0)
c+

d+
. (8)

We remark that σ and (c+,d+)> depend on z, and
hence the impedance I also depends on z. In the
sequel we will refer to σ as the Floquet’s factor [9,
42, 51]. It typically reflects how fast the L2-bounded
solution of the ODE (3) decays to zero when x tends
to +∞: the smaller its modulus, the faster. Also note
that σ(z̄) = σ(z) and I(z̄) = I(z) holds.
For any fixed z, the impedance I = I(z) in (8) can be
computed numerically with arbitrary high accuracy.
First we solve the ODE system (5) to get T (0,S).
Then we compute σ and its associated eigenvec-
tor (c+,d+). Finally we use (8) to determine the
impedance (cf. the impedance plots in Figs. (5), (6)
for some values of z).
In general, the matrix T (0,S) cannot be represented
with a simple analytical expression in terms of the
functions m(x), V (x) and ρ(x). However, it can be
computed sufficiently accurately by integrating the
ODE (6) numerically (setting x1 = 0) in the interval
[0,S] with the initial data T (0,0) = I2×2. Since this
is a standard task, the detailed discussion is omitted
here.

2.2 Numerical Tests A,B and C

In the sequel we present three numerical examples

Case A: m(x) = ρ(x) = 1, V (x) = 2cos(2x);
Case B: m(x) = ρ(x) = 1+ cos(2x)/5,

V (x) = cos(2x);
Case C: m(x) = ρ(x) = 1+ cos(2x)/5,

V (x) = sin(2x).

that provide an illustration of what can be expected
for the computation of the eigenvalues showing



some of its expected properties. This is an impor-
tant issue since it shows where the solution to the
periodic equation is bounded in L2.
Figs. (1)-(3) show the modulus of σ , which denotes
the eigenvalue of T (0,S) with a smaller modulus.
We observe that apart from some intervals in the real
axis, for any z in the complex plane, σ has a mod-
ulus less than 1, thus the second order ODE (3) has
a nontrivial L2-solution. Furthermore, it turns out
that the ending points of these intervals are exactly
the eigenvalues of the following characteristic prob-
lem :
Find λ ∈R and a nontrivial y∈C1

per[0,2S], such that

− d
dx

(
1

m(x)
dy
dx

)
+V (x)y = ρ(x)λy. (9)

We note that the symmetry condition (4) is not nec-
essary for the above statements (In fact Case C does
not satisfy (4)). We admit that the above statements
have not been proven up to this time, but a vast num-
ber of other numerical evidences also support their
validity.
If the coefficient functions m(x), V (x) and ρ(x) sat-
isfy the symmetry condition (4), then the character-
istic problem (9) has a nice property: all the eigen-
values can be classified into two different groups

a1 < a2 < a3 < .. . and b1 < b2 < b3 < .. . ,

where the eigenvalues ar are associated with even
eigenfunctions, and br with odd eigenfunctions. Be-
sides, it holds that

a1 < min(a2,b1)≤max(a2,b1) < min(a3,b2) < .. .

For the Schrödinger equation (SE) with a periodic
cosine potential, a special case of (3) with m(x) =
ρ(x) = 1 and V (x) = 2qcos(2x), Zheng formulated
in [78] a conjecture upon the impedance expression

ISE(z) =− +
√
−z+a1

+∞

∏
r=1

+
√
−z+ar+1

+
√
−z+br

, (10)

Im z > 0, where +
√
· denotes the branch of the square

root with positive real part and the branch cut is set
along the negative real axis. While the validity (10)
was checked numerically in [78] the analytical proof
was done recently by Zhang and Zheng in [76] Since
formally ISE(z̄) = ISE(z) for any z with Im z 6= 0, it
is thus tempting to generalize the above conjecture
to our general second order ODE (3), i.e.,

I(z) =−
√

m(0)ρ(0) +
√
−z+a1·

·
+∞

∏
r=1

+
√
−z+ar+1

+
√
−z+br

, Im z 6= 0. (11)

Fig. (1): Case A: Modulus of σ with respect to z.

Fig. (2): Case B: Modulus of σ with respect to z.

Fig. (3): Case C: Modulus of σ with respect to z.



Example 2. Let us briefly show how to obtain the
constant coefficient case from the more general for-
mula (11). The impedance for constant coefficients
is given by

I(z) =−
√

mρ
+

√
−z+

V
ρ

=− +
√

m(V −ρz).

(12)

All the eigenvalues of (9) are

λn =
( nπ

S )2 +mV
mρ

.

The eigenspace of λ0 is the set of constant func-
tions. For n > 0, the eigenvalue λn is degener-
ate. Its eigenspace is two-dimensional, spanned by
cos(πx/S) and sin(πx/S). Notice that cos is even
and sin is odd. Thus we have

an = λn−1, n≥ 1, and bn = λn, n≥ 1.

Since ar+1 = br for any r ≥ 1, the equation (11)
yields the correct impedance expression

I =−
√

mρ
+
√
−z+a1 =− +

√
m(V −ρz).

2.3 Numerical Tests D and E

Let us consider another two numerical tests:

Case D: m(x) = ρ(x) = 1,

V (x) =
+∞

∑
n=−∞

e−16(x−π/2−nπ)2
,

Case E: m(x) = 1,

V (x) = 0, ρ(x) = 1+ cos(2x)/5.

Case D corresponds to the Schrödinger equation
with a periodic Gaussian potential, cf. Fig. (4), and
Case E could arise from a second order hyperbolic
wave equation in a periodic medium.
Figs. (5) and (6) present the impedance function I(z)
when z is very close to the real axis. It can be
clearly seen that the impedance turns out to be ei-
ther real or purely imaginary. Those real intervals
with purely imaginary impedance are exactly those
values of z for which the ODE (3) has no nontrivial
L2-solution. Recall that this statement does not rely
on the symmetry property of the coefficients (4). In
the engineering literature these intervals are called
pass bands, while their complementary intervals are
called stop bands. This notion of ’pass’ and ’stop’
refers to allowing and preventing the existence of
traveling wave solutions.

Fig. (4): Periodic Gaussian potential function
V (x) = ∑

+∞
n=−∞ e−16(x−π/2−nπ)2

.

Fig. (5): Case D: Impedance I(z) for the
Schrödinger equation with a periodic Gaussian po-
tential V (x) = ∑

+∞
n=−∞ e−16(x−π/2−nπ)2

.

Fig. (6): Case E: Impedance plot for m = 1, V = 0
and ρ = 1+ cos(2x)/5.



Let us note that the impedance I(z) becomes much
more complicated as z approaches the real axis if
one of the coefficient functions m(x), V (x) and ρ(x)
is not centrally symmetric, cf. (4).
Furthermore, we emphasize that the eigenvalues ar
and br can be computed with a high-accuracy solver
for the characteristic problem (9). The first few
eigenvalues are listed in Tables 1 and 2 with 6 dig-
its. We observe that the relative difference between
ar+1 and br decays quickly for increasing index r.

r ar+1 br r ar+1 br
0 1.30811(-1) 7 4.91344(1) 4.91486(1)
1 1.00842(0) 1.26431(0) 8 6.41442(1) 6.41386(1)
2 4.25428(0) 4.03081(0) 9 8.11403(1) 8.11423(1)
3 9.06010(0) 9.22586(0) 10 1.00142(2) 1.00141(2)
4 1.61965(1) 1.60886(1) 11 1.21141(2) 1.21141(2)
5 2.51111(1) 2.51730(1) 12 1.44141(2) 1.44141(2)
6 3.61574(1) 3.61260(1) 13 1.69141(2) 1.69141(2)

Table 1: Case D: The first several eigenval-
ues of (9) with m(x) = ρ(x) = 1 and V (x) =
∑

+∞
n=−∞ e−16(x−π/2−nπ)2

.

r ar+1 br r ar+1 br
1 9.08164(-1) 1.10938 7 4.92536(1) 4.92537(1)
2 4.06748 3.98676 8 6.43296(1) 6.43296(1)
3 9.04010 9.06316 9 8.14157(1) 8.14157(1)
4 1.60896(1) 1.60838(1) 10 1.00512(2) 1.00512(2)
5 2.51315(1) 2.51328(1) 11 1.21618(2) 1.21618(2)
6 3.61880(1) 3.61877(1) 12 1.44735(2) 1.44735(2)

Table 2: Case E: The first few eigenvalues of
(9), where m(x) = 1, V (x) = 0 and ρ(x) = 1 +
cos(2x)/5. Notice that a1 = 0.

If the coefficient functions m(x) and ρ(x) are con-
stant and V (x) = 2qcos(2x) with q > 0, then the
general ODE (3) is reduced to the well-known
Mathieu’s equation [9, 51]. In this case, we obtain

a1 < b1 < a2 < b2 < a3 < b3 < .. . .

However, in general this property does not hold, and
we can only expect the following

a1 < min(a2,b1)≤max(a2,b1))
< min(a3,b2)≤max(a3,b2) < .. . .

Note that the stop bands are characterized as

(−∞,a1), (min(a2,b1),max(a2,b1)),
(min(a3,b2),max(a3,b2)), . . .

and the pass bands are given by

(a1,min(a2,b1)), (max(a2,b1),min(a3,b2)),
(max(a3,b2),min(a4,b3)), . . .

Now let us consider the expression (11) with the in-
finite product limited to R factors:

IR(z) =−
√

m(0)ρ(0) +
√
−z+a1·

·
R

∏
r=1

+
√
−z+ar+1

+
√
−z+br

, Im z 6= 0. (13)

Figs. (7) and (8) show the maximum errors between
the impedance I(z) and IR(z) on 4001 equidistant
points on three segments of the upper half complex
plane. We detect that these errors become very small
with increasing R. This observation has also been
made for many other numerical tests.

Fig. (7): Case D: Maximum error between
the impedance I(z) and IR(z). Segment One:
[−10,10] + 10−13i. Segment Two: [−10,10] + i.
Segment Three: [−10,10]+10i.

Fig. (8): Case E: Maximum error between
the impedance I(z) and IR(z). Segment One:
[−10,10] + 10−13i. Segment Two: [−10,10] + i.
Segment Three: [−10,10]+10i.



It is thus reasonable to conjecture that the limit of
IR(z) as R tends to +∞ is the impedance I(z), i.e. the
formula (11) states the correct impedance expres-
sion.
If z = z0 is a real number, then the impedance ex-
pression (11) might not be well-defined. If z0 lies in
one of the stop bands, we already know that

lim
ε→0+

Im I(z0 + ε) = 0.

Due to the symmetry property of the impedance, i.e.
I(z̄) = I(z), we can define

I(z0) = lim
ε→0+

I(z0± ε).

Hence the impedance expression (11) still can be
considered valid. If z0 lies in one of the pass bands,
the ODE (3) has no nontrivial bounded L2-solution.
In this case, we have to specify what kind of solution
is really what we are seeking for. The impedance of
this solution is thus the one-sided limit of I(z0 + ε)
as either ε → 0+ or ε → 0−. In most cases, this
choice can be made naturally under physical con-
siderations.
Let us finally remark that the impedance formula-
tion was proven very recently by Zhang and Zheng
[76].

3. BOUND STATES FOR THE SCHRÖ-
DINGER OPERATOR
As a first application of the impedance expression
(11), we consider the following bound state problem
for the Schrödinger operator :
Find an energy E ∈ R and a nontrivial real function
u ∈ L2(R), such that

−d2u
dx2 +V (x)u = Eu, x ∈ R, (14)

where

V (x) =

{
2+2cos(πx), |x|> 1,

0, |x|< 1.

The potential function V (x) is periodic in
R\(−1,1). In order to ensure that the solution
u has a bounded L2-norm, the energy E must be
valued in the stop bands. The first few eigen-
values of the characteristic problem (9) with
m(x) = ρ(x) = 1 and V (x) = 2− 2cos(πx) (NOT
V (x) = 2+2cos(πx)) are listed in Table 3.
The first three stop bands are given by

(−∞,1.80087), (3.41926,5.41414),
(11.8359,12.0349).

r ar+1 br r ar+1 br
0 1.80087 3 2.42294(1) 2.42345(1)
1 3.41926 5.41414 4 4.14920(1) 4.14919(1)
2 1.20349(1) 1.18359(1) 5 6.36935(1) 6.36935(1)

Table 3: The first few eigenvalues of (9) with m(x) =
ρ(x) = 1 and V = 2−2cos(πx).

If E is a bound state energy, then it must be an
eigenvalue of the following nonlinear characteris-
tic problem :
Find an energy E ∈ R and a nontrivial real function
u ∈ L2(−1,1), such that

−d2u
dx2 +V (x)u = Eu, x ∈ (−1,1), (15a)

−du
dx

(−1) = I(E)u(−1), (15b)

du
dx

(1) = I(E)u(1). (15c)

A direct discretization of the above problem (15)
leads to a very complicated nonlinear algebraic
equation with respect to E, and its solvability is
not completely clear. Actually, the problem (15) is
equivalent to the following fixed point problem.
For a given energy E we can solve the linear char-
acteristic problem :
Find a function Φ(E)∈R and a nontrivial real func-
tion u∈ L2(−1,1), such that the following boundary
value problem holds

−uxx +V (x)u = Φ(E)u, x ∈ (−1,1), (16a)

−du
dx

(−1) = I(E)u(−1), (16b)

du
dx

(1) = I(E)u(1). (16c)

The bound state energy thus satisfies E = Φ(E), i.e.
E is a fixed point of the function Φ(E). Notice that
Φ(E) is a multi-valued function and hence a series
of bound states are expected.
Fig. (9) shows the first three branches of Φ(E)
being restricted to [−8,15]. The time-harmonic
Schrödinger equation is discretized by 50 eighth-
order finite elements in [−1,1]. I(E) is approxi-
mated by I14(E), which is equal to I(E) within ma-
chine precision if |E|< 20. Three bound states exist
in this energy range.
By performing the Newton-Steffenson iterations,
the energies are found to be E0 = 0.642647, E1 =
4.88651 and E2 = 12.0164. Our computations show
that these values do not change within 6 digits by
refining the finite element mesh.
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Fig. (9): The first three branches of Φ(E) being
restricted to [−8,15]: E0 = 6.42647(−1). E1 =
4.88651. E2 = 1.20164(1).

Next, the bound state wave functions (that are not
normalized) are plotted in the Fig. (10). We ob-
serve in Fig. (10) that the ground state E0 is well-
localized, while the second excited bound state E2
is greatly delocalized.

This demonstrates the advantage of the artificial
boundary method and especially our ABCs (16b)–
(16c), since a direct domain truncation method ne-
cessitates a very large computational domain to en-
sure the approximating accuracy of the wave func-
tion.
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Fig. (10): The ground state E0 and the first two ex-
cited bound states E1, E2.

4. EXACT ARTIFICIAL BOUNDARY
CONDITIONS FOR TIME-DEPEN-
DENT PROBLEMS
Based on the fundamental impedance expression
(11), exact artificial boundary conditions can be de-
rived for many time-dependent periodic structure
problems, e.g., the Schrödinger equation (SE)

iρ(x)
∂u
∂ t

+
∂

∂x

(
1

m(x)
∂u
∂x

)
= V (x)u,

the diffusion equation (DE)

ρ(x)
∂u
∂ t

=
∂

∂x

(
1

m(x)
∂u
∂x

)
−L(x)u,

and the second order hyperbolic equation (HE)

∂

∂x

(
1

m(x)
∂u
∂x

)
−L(x)u = ρ(x)

∂ 2u
∂ t2 .

Here, the coefficients V (x), ρ(x), m(x) and L(x) are
supposed to be centrally symmetric periodic func-
tions at infinity. Moreover, ρ(x) and m(x) are posi-
tive, and L(x) is nonnegative. Now the free parame-
ter involved during the derivation of the impedance
operator for stationary problems plays the role of the
Laplace variable s. The impedances for these three
equations are given by

ISE(is) =−
√

m(0)ρ(0) +
√
−is+a1·

·
+∞

∏
r=1

+
√
−is+ar+1

+
√
−is+br

, (17)

and

IDE(−s) =−
√

m(0)ρ(0) +
√

s+a1·

·
+∞

∏
r=1

+
√

s+ar+1
+
√

s+br
, (18)

and

IHE(−s2) =−
√

m(0)ρ(0) +
√

s2 +a1·

·
+∞

∏
r=1

+
√

s2 +ar+1
+
√

s2 +br
. (19)

In equations (17)-(19) the variable s with Re s > 0
denotes the free argument in the Laplace domain.
Notice that due to our assumption, all coefficients
ar and br in (18) and (19) are nonnegative and thus
the formulas (18), (19) are well-defined. The nu-
merical solution to the Schrödinger equation in con-
junction with the ABC (17) has been investigated in
[78]. Similar techniques can be used for the diffu-
sion equation with the ABC (18) with minor modi-
fications.



4.1 A second order hyperbolic
equation in 2D

We consider the propagation of electromagnetic
waves in a waveguide with cavity, cf. the schematic
map Fig. (11). For a TM polarized electromagnetic
wave, the electric field E is governed by the equa-
tion

∂ 2E
∂x2 +

∂ 2E
∂ z2 −

ε(x,z)
c2

∂ 2E
∂ t2 = 0. (20)

The relative dielectric permittivity ε , depending
only on x after the artificial boundary, is supposed
to be periodic. We assume that this waveguide is en-
closed with a perfect conductor and hence we have
a homogeneous Dirichlet boundary condition E = 0
on the physical boundary.

Fig. (11): Schematic of a waveguide with cavity.

On the semi-infinite slab region [0,+∞)× [0,1], the
characteristic decomposition can be applied with re-
spect to the z variable. The eigenvalues are given by
n2π2 and the eigenfunctions are sin(nπz), n≥ 1. An
exact ABC in the frequency domain is thus set up as

Ên
x (0,s) =−

√
ε(0)
c

+
√

s2 +an
1

·
∞

∏
r=1

+
√

s2 +an
r+1

+
√

s2 +bn
r

Ên(0,s), n≥ 1. (21)

Here, Ên(x,s) denotes the n-th mode of Ê(x,z,s) in
the z-direction defined as

Ên(x,s) = 2
∫ 1

0
Ê(x,z,s)sin(nπz)dz, x≥ 0, n≥ 1.

Ê(x,z,s) is determined by Ên(x,s) as

Ê(x,z,s) =
+∞

∑
n=1

Ên(x,s)sin(nπz), x≥ 0.

The constants an
r and bn

r in (21) are the eigenval-
ues of the characteristic problem (9) with the coef-
ficients m(x) = 1, V (x) = n2π2 and ρ(x) = ε(x)/c2.

By setting

ŵn
k(s) =

∞

∏
r=k

+
√

s2 +an
r+1

+
√

s2 +bn
r

Ên(0,s), k ≥ 1, n≥ 1,

we get the recursion relation

+
√

s2 +bn
k ŵn

k(s) = +
√

s2 +an
k+1 ŵn

k+1(s),

k ≥ 1, n≥ 1 and (21) reads

Ên
x (0,s) =−

√
ε(0)
c

+
√

s2 +an
1 ŵn

1(s), (22)

n≥ 1. Returning to the physical domain yields

dwn
k

dt
=

dwn
k+1

dt
+

√
an

k+1J1(
√

an
k+1 t)

t
∗wn

k+1

−
√

bn
kJ1(

√
bn

k t)
t

∗wn
k , k ≥ 1, n≥ 0,

and from (22) we obtain

∂En

∂x
(0, t) =−

√
ε(0)
c

(dwn
1

dt
+

√
an

1J1(
√

an
1t)

t
∗wn

1

)
=−

√
ε(0)
c

(
∂En

∂ t
(0, t)

+
+∞

∑
k=0

√
an

k+1J1(
√

an
k+1 t)

t
∗wn

k+1

−
+∞

∑
k=1

√
bn

kJ1(
√

bn
k t)

t
∗wn

k

)
.

(23)

Here, ∗ denotes a convolution with respect to the
time variable t and J1 is the Bessel function of first
order. In a real implementation the infinite summa-
tion in (23) has to be truncated by only keeping the
first Kn terms:

∂En

∂x
(0, t) =−

√
ε(0)
c

(∂En

∂ t
(0, t)

+
Kn

∑
k=0

√
an

k+1J1(
√

an
k+1 t)

t
∗wn

k+1

−
Kn

∑
k=1

√
bn

kJ1(
√

bn
k t)

t
∗wn

k

)
,

(24)

and
wn

Kn+1(t) = En(0, t).

If we want to resolve the n-th mode in the z-
direction, we typically set Kn ≥ 0. In order to ensure



the approximating accuracy of the ABC, Kn should
be increased for larger values of n. Of course, if we
are not interested in the n-th mode at all, we only
need to set Kn =−1. In the next numerical example,
we set Kn = 10 for any n = 0,1 . . . ,N, and Kn =−1
for any n = N +1, . . . , where N denotes the number
of modes in the z-direction we want to resolve.

4.2 Numerical Example

We now study the wave field generated by a periodic
disturbance at the left physical boundary

E(−2,z, t) = sin(πz)
+∞

∑
n=0

e−160(t−(n+0.5))2
, z∈ (0,1).

The wave speed is set to 1, and the dielectric permit-
tivity ε is set to be

ε(x,z) =

{
1 ,x < 0,

1.2−0.2cos(2πx) ,x > 0.

We limit our computational time interval to [0,6].
Due to the finite wave propagation speed (at most
1), we can compute a reference solution Eref in
a large domain (−2,4)× (0,1) ∪ (−1,0)× (1,2)
with small mesh sizes ∆x = ∆z = 0.00125 and
∆t = 0.000625. The leap-frog central difference
scheme is employed in all the computations. We use
the standard fast evaluation technique proposed by
Alpert, Greengard and Hagstrom [2] (cf. also [77])
for the convolution operations involved in the ABC
(24). The poles and weights are taken from the web
page of Hagstrom. The relative L2-error is defined
as

||Eref(·, ·, t)−Enum(·, ·, t)||L2

||Eref(·, ·,6)||L2
,

where Eref stands for the reference solution, while
Enum denotes the numerical solution.
In Figs. (12) and (13) we compare the numerical so-
lutions with the reference solutions at two different
time steps t = 3 and t = 3. No difference can be
observed with eyes.
In Fig. (14) we depict the errors when different num-
ber of modes in the z-direction are used. The accu-
racy of the numerical solutions is greatly improved
for large number of modes.
The error evolution with respect to the time t is
shown in Fig. (15). At the initial stage, the wave
does not reach the artificial boundary, thus the ABC
has no influence on the numerical solutions. The
error arises completely from the interior discretiza-
tion. After a critical time point (almost t = 2.5), the
artificial boundary condition comes into effect.

Fig. (12): Solutions at time t = 3. The number of
modes is 10. The reference solution is obtained by
taking ∆x = ∆z = 0.00125 and ∆t = 0.000625.

Fig. (13): Solutions at time t = 6. The number of
modes is 10. The reference solution is obtained by
taking ∆x = ∆z = 0.00125 and ∆t = 0.000625.

Fig. (14): Errors at time t = 6. ∆x = ∆z = 0.02.
∆t = 0.01. The reference solution is obtained by
taking ∆x = ∆z = 0.00125 and ∆t = 0.000625. The
line is x = 0.



Fig. (15): Relative L2 error. ∆x = ∆z = 0.005. ∆t =
0.0025. The reference solution is obtained by taking
∆x = ∆z = 0.00125 and ∆t = 0.000625.

We see that if enough number of modes are used,
the error from the approximate boundary condition
is nearly on the same level of interior discretization,
which means the ABC is sufficiently accurate in this
parameter regime.

Finally, we analyzed numerically in Fig. (16) the
convergence rate of the relative L2-errors at t = 6.
Data-fitting reveals that the errors decay with an or-
der of 1.851 in the parameter range ∆t ∈ [ 0.02

7 ,0.01],
when the number of modes in the z-direction is set
to 10.

Fig. (16): Relative L2 error. ∆x = ∆z = 2∆t. The
reference solution is obtained by taking ∆x = ∆z =
0.00125 and ∆t = 0.000625.

5. BOUNDARY MAPPINGS FOR PE-
RIODIC ARRAYS
Let us consider the Helmholtz equation

−∆u(x)+(V − z)u(x) = f (x). (25)

without source term, i.e., V (x)≡ 0 and f (x)≡ 0, on
an array that is periodic in one direction, i.e. con-
sisting of N identical cells as illustrated in Fig. (17).

Fig. (17): Schematic view of a periodic array con-
sisting of N cells.

We suppose that appropriate homogeneous linear
boundary conditions are specified at the upper and
lower, and the interior (if existing) boundaries, and
these boundary conditions have the same periodicity
consistent with that of the periodic structure. Here,
“appropriate” means that these boundary conditions
do not influence the well-posedness of the interior
Helmholtz equation.
We define two Sommerfeld mappings of u as

G x
u = (∂x + +

√
z)u, F x

u = (−∂x + +
√

z)u.

It was proven in [20] that for given boundary data
F x

u on Γi and G x
u on Γi+k, the Helmholtz equation

(25), together with the boundary conditions on the
upper and lower, and the interior (if existing) bound-
aries, is well-posed on the domain ∪i+k−1

l=i Cl :

Lemma 3 (Lemma A.1. [20]). The Helmholtz
equation (25) is uniquely solvable in ∪i+k−1

l=i Cl for
any fi ∈ (H1/2(Γi))′, gk ∈ (H1/2(Γk))′ and any z ∈
Z\{0}

−∆u(x)+ zn2u(x) = 0, x ∈Ωi,k ≡ ∪i+k−1
l=i Cl ,

∂yu(x) = 0, x ∈ ∪N−1
i=0 Σ

±
i ,

−∂xu(x)+ +
√

zu(x) = fi, x ∈ Γi,

∂xu(x)+ +
√

zu(x) = gk, x ∈ Γk,

where n ∈C1(∪l∈ZCl), Cl and Σ
±
l are defined as in

Fig. (17).

This implies that there exist four linear operators
Ak, Bk, Ck and Dk satisfying

G x
u |Γi = AkF

x
u |Γi +BkG

x
u |Γi+k ,

F x
u |Γi+k = CkF

x
u |Γi +DkG

x
u |Γi+k .

(26)



Numerically, these operators can be derived by
an appropriate spatial discretization of the domain
∪k−1

l=0Cl . But if k is big, a large number of unknowns
would get involved, which leads to a high computa-
tional effort. Our task is now to design an efficient
and robust algorithm for evaluating these operators.

5.1 The recursive doubling method

Suppose for k∈ {m,n}, the four linear operators Ak,
Bk, Ck and Dk have already been obtained. From
(26) we obtain

G x
u |Γi = Am(CnF

x
u |Γi−n +DnG

x
u |Γi)+BmG x

u |Γi+m ,

F x
u |Γi = CnF

x
u |Γi−n +Dn(AmF x

u |Γi +BmG x
u |Γi+m).

It is easy to prove that I−AmDn and I−DnAm (I
denotes the identity operator) are invertible and thus

G x
u |Γi = (I−AmDn)−1AmCnF

x
u |Γi−n

+(I−AmDn)−1BmG x
u |Γi+m ,

F x
u |Γi = (I−DnAm)−1CnF

x
u |Γi−n

+(I−DnAm)−1DnBmG x
u |Γi+m .

(27)

Substituting the above expressions into (26) gives

G x
u |Γi−n = [An +Bn(I−AmDn)−1AmCn]F x

u |Γi−n

+Bn(I−AmDn)−1BmG x
u |Γi+m ,

F x
u |Γi+m = Cm(I−DnAm)−1CnF

x
u |Γi−n +[Dm

+Cm(I−DnAm)−1DnBm]G x
u |Γi+m ,

which imply the relations

Am+n = An +Bn(I−AmDn)−1AmCn,

Bm+n = Bn(I−AmDn)−1Bm,

Cm+n = Cm(I−DnAm)−1Cn,

Dm+n = Dm +Cm(I−DnAm)−1DnBm.

(28)

Hence, for any fixed cell number N, the operators
AN , BN , CN , and DN can be obtained by the fol-
lowing steps:

1. Derive A1, B1, C1, and D1 by the cell analysis.
If N = 1, it is done.

2. Write the number N into binary form
( jL · · · j0)2, with L = [log2 N] and jL = 1.

3. Use the doubling relations (28) L times by set-
ting m = n = 2k−1 to get A2k , B2k , C2k , and
D2k for k = 1, . . . ,L.

4. For l = L− 1, . . . ,0, if jl 6= 0, then use (28)
by setting m = ( jL · · · jl+10 · · ·0)2 and n = 2l to
obtain A( jL··· jl0···0)2 , B( jL··· jl0···0)2 , C( jL··· jl0···0)2
and D( jL··· jl0···0)2 .

This procedure uses (28) at most 2[log2 N] times.
Given the boundary data F x

u |Γ0 and G x
u |ΓN , in some

cases it is necessary to obtain other data in a sub-
domain of ∪N−1

l=0 Cl , for example, F y
u |Σ− and G y

u |Σ−
where Σ− = ∪N−1

i=0 Σ
−
i . We need only to compute all

F x
u |Γi and G x

u |Γi+1 since for each i they completely
determine the function u restricted to Ci. If N hap-
pens to be a power of 2, say N = 2L, this can be
achieved efficiently with the following algorithm:
For p = L, . . . ,1 and k = 0, . . . ,2L−p− 1, compute
G x

u |Γk2p+2p−1 and F x
u |Γk2p+2p−1 using (27) by setting

i = k2p +2p−1 and n = m = 2p−1.
For a general cell number N, we proceed in the fol-
lowing way:

1. Write N into binary form ( jL · · · j0)2, with L =
[log2 N] and jL = 1;

2. For l = 0, . . . ,L, if jl 6= 0, compute Ak, Bk,
Ck, and Dk for k = ( jl · · · j0)2 and k = N −
( jl · · · j0)2, and use (27) by replacing i,n with
( jl · · · j0)2 and m with N − ( jl · · · j0)2 to de-
rive G x

u |Γ( jl ··· j0)2
and F x

u |Γ( jl ··· j0)2
. Then use

the algorithm above for a power of 2 to de-
rive G x

u |Γi and F x
u |Γi for any i = ( jk · · · j0)2 +

1, · · · ,( jl · · · j0)2 − 1, where k is the largest
number satisfying k < l and jk 6= 0.

For any i = 1, . . . ,N− 1, the above algorithm uses
(28) at most 2[log2 N] times and (27) at most [log2 N]
times. After all F x

u |Γi and G x
u |Γi are derived, F y

u |Σ−i
and G y

u |Σ−i are then obtained by the cell analysis.
The final results can be written into the following
form

G y
u |Σ− = (F → G )F x

u |Γ0 +(G → G )G x
u |ΓN ,

F y
u |Σ− = (F →F )F x

u |Γ0 +(G →F )G x
u |ΓN .

Here (F →G ), (G →G ), (F →F ) and (G →F )
are four linear operators defined in suitable distribu-
tional spaces.
Remark. If the boundary condition on ΓN is given
as a Sommerfeld-to-Sommerfeld (StS) mapping

G x
u |ΓN = ENF x

u |ΓN +SN , (29)

where EN is a linear operator and SN is a function
defined on ΓN , we have

G x
u |ΓN = EN(I−DNEN)−1CNF x

u |Γ0

+[I +EN(I−DNEN)−1DN ]SN ,



and

G x
u |Γ0 = [AN +BNEN(I−DNEN)−1CN ]F x

u |Γ0

+[BN +BNEN(I−DNEN)−1DN ]SN . (30)

The invertibility of I−DNEN is obvious if the pe-
riodic array problem is well-posed with the StS
boundary mapping (29) on ΓN . This expression (30)
yields an exact StS mapping at the leftmost bound-
ary Γ0. Furthermore, if the Dirichlet-to-Neumann
(DtN) mapping is well-defined on Γ0, it can be de-
rived straightforwardly from (30).

Remark. Recently, Yuan and Lu [73] proposed an
analogous technique for deriving the exact DtN
mapping. In their cell analysis, instead of using
Sommerfeld data on Γi and Γi+1, they used Dirich-
let data to determine Neumann data. A problem will
appear if−z happens to be one of the eigenvalues of
the operator −∆ on ∪i+2J−1

k=i Ck for some J with ho-
mogeneous Dirichlet boundary conditions specified
on Γi and Γi+2J , since in this case, the Dirichlet-to-
Neumann (DtN) mapping does not exist at all. One
might argue that the probability for this to happen
is very small, but if the total number of periodic
cells is large, the eigenvalues of −∆ with Dirich-
let boundary conditions are very dense in the pass
bands. This implies that if there are some eigenval-
ues of −∆ very close but never equal to s, though
the DtN mapping exists, it is very ill-conditioned.

6. APPLICATION TO WAVEGUIDES
Here we present a first application of the pro-
posed technique to waveguide problems. Consider
the Helmholtz equation in the waveguide shown in
Fig. (18). The domain between Γ1 and Γ2 consists
of four periodic cells. Each cell has a size of 1× 2
with a hole of 0.5×1 in the center. The domain be-
tween Γ3 and Γ4 also contains four periodic cells.
Each cell has a size of 1×1 with a hole of 0.5×0.5.
These two periodic structures are joined with a junc-
tion region between Γ2 and Γ3. The domains left to
Γ1 and right to Γ4 are homogeneous.

Fig. (18): Schematic of a model waveguide. Two
waveguides with different periodic materials are
joined with a junction zone between Γ2 and Γ3.

The governing equation is the Helmholtz equation
(25) without source term f (x) and z(x)≡−k2, i.e.

∆u+ k2u = 0, (31)

where k > 0 is the real wave number. Zero Dirichlet
data is specified on the interior boundaries, and zero
Neumann data on the top and bottom boundaries. A
plane wave u0(x,y) = e−ikx is traveling in the waveg-
uide from the left side. It is well-known that the dis-
turbance part u− u0 satisfies the left-going bound-
ary condition on Γ1, i.e.,

∂

∂x
(u−u0) = +

√
−∂ 2

y − k2 (u−u0), (x,y) ∈ Γ1,

or equivalently in the form of StS mapping,

F x
u =

ik− +
√
−∂ 2

y − k2

ik + +
√
−∂ 2

y − k2
G x

u +2iku0, (x,y) ∈ Γ1.

(32)
The wave function u satisfies the right-going bound-
ary condition on Γ4, i.e.,

∂u
∂x

=− +
√
−∂ 2

y − k2 u, (x,y) ∈ Γ4,

or equivalently,

G x
u =

ik− +
√
−∂ 2

y − k2

ik + +
√
−∂ 2

y − k2
F x

u , (x,y) ∈ Γ4. (33)

Now by using the technique in the last section,
we could derive the StS mapping on Γ2 and Γ3.
The wave function is then resolved by solving the
Helmholtz equation only in the junction region be-
tween Γ2 and Γ3.

6.1 Band Structure Diagrams

To understand the typical wave behaviour in peri-
odic waveguides we must consider the band struc-
ture diagrams of the characteristic equation −∆u =
λu restricted to a single periodic cell. As assumed,
the top and bottom boundary conditions are homo-
geneous Neumann, and the interior boundary condi-
tion is homogeneous Dirichlet. The boundary con-
ditions at the left and right boundaries of the single
cell are pseudoperiodic, namely,

uright = eiθ uleft, ∂xuright = eiθ
∂xuleft,

where the parameter θ lies in the interval [0,2π].
For each value of θ , there exists a sequence of



real eigenvalues λ that are shown in the following
band structure diagrams. These eigenvalues, also
regarded as discrete energies, correspond to a se-
ries of Bloch waves which could travel through the
waveguides without damping.
Figs. (19) and (20) show these band structure dia-
grams for the two periodic structures to the left and
to the right.

Fig. (19): Band structure with stop bands
for the left periodic structure. The first two
stop bands are the intervals (−∞,8.27±0.01) and
(16.69±0.01,19.49±0.01).

Fig. (20): Band structure with stop bands for
the right periodic structure. The first two
stop bands are the intervals (−∞,23.61±0.01) and
(29.85±0.01,47.10±0.01).

The results are obtained by an eighth-order finite el-
ement discretization using the step sizes ∆x = ∆y =
0.125. For the left periodic structure between Γ1
and Γ2, the first two stop bands are (−∞,8.27±0.01)
and (16.69±0.01,19.49±0.01), while for the right
periodic structure between Γ3 and Γ4, they are

(−∞,23.61±0.01) and (29.85±0.01,47.10±0.01). The
first eigenvalue of the Dirichlet boundary value
problem for the left periodic structure is 19.49±0.01,
while the first eigenvalue is 47.10±0.01 for the right
periodic structure.

We consider in the sequel five cases: k =
√

8, k =√
19.49, k = 6, k =

√
47.10 and k = 8.

1. k2 = 8 lies in stop bands of both two structures.

2. k2 = 19.49 is the first eigenvalue of the Dirich-
let boundary value problem for the left periodic
structure.

3. k2 = 36 lies in pass bands of both two struc-
tures.

4. k2 = 47.10 is the first eigenvalue of the Dirich-
let boundary value problem of the right peri-
odic structure.

5. k2 = 64 lies in pass bands of both two struc-
tures.

We point out the fact that the cases k =
√

19.49 and
k =
√

47.10 cannot be solved with Yuan and Lu’s
method [73]. Figs. (21)-(25) show the real part of
the wave function for the five chosen wave numbers.
Again an eighth-order finite element code was used
in the computation with the step sizes ∆x = ∆y =
0.125.

Fig. (21): Real part of the wave function for k =
√

8.

Fig. (22): Real part of the wave function for k =√
19.49.



Fig. (23): Real part of the wave function for k = 6.

Fig. (24): Real part of the wave function for k =√
47.10.

Fig. (25): Real part of the wave function for k = 8.

7. EXACT StS MAPPING FOR SEMI-
INFINITE PERIODIC PROBLEMS

In many cases the exact StS (thus DtN or DtS) map-
ping is necessary to handle semi-infinite periodic ar-
ray problems properly, see Fig. (26). Recently, Joly,
Li and Fliss [40] presented a Newton-type method
for the Helmholtz equation when z has a nonzero
imaginary part. In this case any outgoing wave de-
cays to zero exponentially fast at infinity. In the
previous section, we have proposed a fast algorithm
within O(log2 N) operations for computing the exact
StS mapping

g0 = AN f0 +BNgN .

If the solution decays in one periodic cell with a fac-
tor of σ , by setting N = d− lnε

σ
e, it is hopeful that

AN gives an approximation of the exact StS map-
ping on Γ0 with an error of O(ε). Here ε denotes
the machine precision.

Fig. (26): Schematic view of a semi-infinite periodic
array. Each cell has a size of 1× 1, and a hole of
0.5×0.5 lies in the center.

It turns out that if Im z 6= 0, or z is real but in the
stop bands, the operator AN converges with an ex-
ponential rate to the exact StS operator. In Fig. (27),
we plot the relative errors of AN w.r.t. Aref, which
is obtained by setting N = 1024. In the computation
we set ∆x = ∆y = 0.125 and use an eighth-order fi-
nite element method, thus in the discrete level AN
is expressed with a 65-by-65 matrix. Recall that
k2 = 23,31 are in stop bands, and k2 = 25,50 in pass
bands, cf. Fig. (20).
As a conclusion, using the doubling procedure of
Section 5.1 at most J = dlog2d− lnε

σ
ee times gives

the exact StS boundary mapping at the leftmost
boundary up to machine precision. Our technique
presents a very fast evaluation of the exact StS map-
ping.
If z lies in the stop bands, some traveling Floquet
modes would appear, and the above argument ceases
to hold. To obtain a well-posed PDE problem, we
have to specify the outgoing waves and incoming
waves. In a recent work of Joly et al. [40] a method
is proposed to resolve this problem. However, we
will not discuss this issue in this chapter.



Fig. (27): Convergence of the StS mapping.

7.1 Application to the time-depen-
dent Schrödinger equation

As an application, we consider the linear time-
dependent Schrödinger equation

iut +uxx = Vu, x ∈ R. (34)

The initial data u0(x) is chosen as

u0(x) = exp(−x2 + ik0x)

and the potential function V is set to

V (x) = ∑
n∈Z,n 6=0

V0 exp
(
−(x−10n)2).

In the Laplace domain the Schrödinger equation
(34) is transformed into

−ûxx +(V − is)û =−iu0, x ∈ R, (35)

where Re s > 0 and û denotes the Laplace transfor-
mation of u defined by

û(x,s) =
∫ +∞

0
u(x, t)e−stdt.

The function u0 is well-supported in the interval
[−5,5]. Outside of [−5,5], the potential function
V can be considered periodic with a period of 10.
For any fixed s, the equation (35) can be solved
in [−5,5] with a high-order spatial discretization
method. Here we use M eighth-order finite ele-
ments, which include 8M + 1 grid points. The StS
boundary conditions at x = ±5 are derived by the
method presented in the beginning of this section.
The same number of grid points are used in the dis-
crete periodic cell analysis.

The inverse Laplace transformation is evaluated nu-
merically as

u(x, t) =
1

2πi

∫
γ+i∞

γ−i∞
est û(x,s)ds

≈ 1
2π

∫ fmax

− fmax
χ( f )e(γ+i f )t û(x,γ + i f )d f ,

(36)

and the integral is further approximated by the
middle-point rule. Several parameters need to be
tuned: the damping factor γ , the cutoff frequency
fmax, and the number of quadrature points N f . In
principle, the bigger is γ , the smoother is the func-
tion û, thus the number of quadrature points can be
made smaller. But to guarantee stability γ cannot
be too large. This is typically because there is an
exponential factor eγt involved in the integral. The
cutoff frequency fmax depends on the regularity of
the solution. The smoother is u, the smaller is fmax.
We leave open the theoretical investigation on the
optimal choice of these parameters in this chapter.
For the considered model problem when k0 = 2 and
M = 16, we set

fmax = 200, γ = 1, N f = 1024,

and the filtering function χ as

χ( f ) = exp
(
−(1.2 f / fmax)20) .

If V0 = 0, the exact solution is

u(x, t) =

√
i

−4t + i
exp

(
−ix2− k0x+ k2

0t
−4t + i

)
..

The relative L2-errors in the computational region
[−5,5] are listed in Table 4 at different time points.
We observe that in this time regime the relative er-
rors are very small. If V0 6= 0, the analytical ex-
act solution is in general not available. In Fig. (28)
we illustrate the solution at different time points for
V0 = 10. The dashed blue line shows the potential
function scaled by 1/V0.

8. NUMERICAL SIMULATION OF
THE 2D SCHRÖDINGER EQUATION
Here we consider the following two-dimensional
time-dependent Schrödinger equation

iut +uxx +uyy = Vu, ∀(x,y) ∈ R2, ∀t > 0, (37)

u(x,y,0) = u0(x,y), ∀(x,y) ∈ R2, (38)

u(x,y, t)→ 0, r =
√

x2 + y2→+∞, ∀t > 0. (39)



(a)

(b)

(c)

(d)

Fig. (28): Evolution of Gaussian packet in a periodic
potential. (a) t = 1. (b) t = 2. (c) t = 3. (d) t = 4.

Time Point Relative L2-Error
1.0 1.83(-8)
1.5 2.12(-8)
2.0 2.66(-8)
2.5 3.14(-8)
3.0 3.56(-8)
3.5 3.92(-8)

Table 4: Relative L2-errors in [−5,5] at different
time points for V0 = 0.

The time evolution of the Gaussian wave packet is
presented in Fig. (29). The potential function V =
V (x,y) is bi-periodic with a periodicity of 1×1 and
a defect exists in the center of this periodic structure.
The initial data u0 is assumed locally supported, say
in the defect cell.

The definition domain of the above problem is un-
bounded, and as a first step we could truncate the do-
main by introducing a rectangular artificial bound-
ary and on it imposing the periodic boundary condi-
tion.
This treatment is justified if the time interval of sim-
ulation is finite and the number of cells enclosed by
the artificial boundary is sufficiently large.

Fig. (29): A bi-periodic potential function with a
defect in the center.

The next step is to find a suitable numerical scheme
to resolve the wave field. Our basic idea is analo-
gous to that in the last section for handling the one-
dimensional Schrödinger equation with periodic po-
tentials at infinity.



We first go to the frequency domain by solving the
Helmholtz equation

−uxx−uyy +(V − is)u =−iu0 (40)

with a series of complex parameters s, and then per-
form the inverse Laplace transformation with a fre-
quency filter. Notice that in (40) we use the same no-
tation u to represent its Laplace-transformed func-
tion. This is mainly for the brevity of notations used
in the following of this section. Of course we do not
indent to solve the equation (40) on the whole trun-
cated domain, since a large number of unknowns
would still get involved. Instead, we try to find in the
following subsection an accurate boundary condi-
tion on the defect cell boundary Γi

E ∪Γi
S∪Γi

W ∪Γi
N ,

and perform computation only on the defect cell.

8.1 The Boundary Condition on
Defect Cell Boundary

Let us first consider the equation (40) on the geom-
etry shown in Fig. (30). Suppose periodic bound-
ary conditions are specified on Σ0 and ΣM . Set
ΓW = ∪M−1

k=0 ΓW,k and ΓE = ∪M−1
k=0 ΓE,k. In the y-

direction, we have M periodic layers.

Fig. (30): Schematic view of a bi-periodic structure
with periodic boundary conditions on Σ0 and ΣM .

We define the discrete Fourier transformation in the
y-direction as

ûk(x,y) =
M−1

∑
m=0

u(x,y+mL)ω
km, ω = e−2iπ/M,

k = 0,1, . . . ,M− 1. The inverse transformation is
given as

u(x,y+mL) =
1
M

M−1

∑
k=0

ûk(x,y)ω
−km.

It is straightforward to verify that

ûk(x,y+L) = ω
−kûk(x,y).

Thus the problem on the domain shown in Fig. (30)
can be reduced to M periodic array problems with
pseudo-periodic boundary conditions on Σ0 and Σ1.
By the analysis in the first section, we get

G x
ûk
|ΓW,0 = ˆAkF

x
ûk
|ΓW,0 + B̂kG

x
ûk
|ΓE,0 ,

F x
ûk
|ΓE,0 = ĈkF

x
ûk
|ΓW,0 + D̂kG

x
ûk
|ΓE,0 ,

and

G y
ûk
|Σ0 =

̂(F → G )k F x
ûk
|ΓW,0 + ̂(G → G )k G x

ûk
|ΓE,0 ,

F y
ûk
|Σ0 =

̂(F →F )k F x
ûk
|ΓW,0 + ̂(G →F )k G x

ûk
|ΓE,0 .

Then going back to the variable u of (40) yields

G x
u |ΓW,m = A mF x

u |ΓW +BmG x
u |ΓE ,

F x
u |ΓE,m = C mF x

u |ΓW +DmG x
u |ΓE ,

and

G y
u |Σm =

(F → G )m F x
u |ΓW +(G → G )m G x

u |ΓE ,

F y
u |Σm =

(F →F )m F x
u |ΓW +(G →F )m G x

u |ΓE ,

where

A m F x
u |ΓW =

1
M

M−1

∑
n=0

[
M−1

∑
k=0

ˆAkω
k(n−m)

]
F x

u |ΓW,n ,

Bm G x
u |ΓE =

1
M

M−1

∑
n=0

[
M−1

∑
k=0

B̂kω
k(n−m)

]
G x

u |ΓE,n ,

C m F x
u |ΓW =

1
M

M−1

∑
n=0

[
M−1

∑
k=0

Ĉkω
k(n−m)

]
F x

u |ΓW,n ,

Dm G x
u |ΓE =

1
M

M−1

∑
n=0

[
M−1

∑
k=0

D̂kω
k(n−m)

]
G x

u |ΓE,n ,

and

(F → G )m F x
u |ΓW =

1
M

M−1

∑
n=0

[
M−1

∑
k=0

̂(F → G )kω
k(n−m)

]
F x

u |ΓW,n ,



(G → G )m G x
u |ΓE =

1
M

M−1

∑
n=0

[
M−1

∑
k=0

̂(G → G )kω
k(n−m)

]
G x

u |ΓE,n ,

(F →F )m F x
u |ΓW =

1
M

M−1

∑
n=0

[
M−1

∑
k=0

̂(F →F )kω
k(n−m)

]
F x

u |ΓW,n ,

(G →F )m G x
u |ΓE =

1
M

M−1

∑
n=0

[
M−1

∑
k=0

̂(G →F )kω
k(n−m)

]
G x

u |ΓE,n .

Note that the above operators can be evaluated effi-
ciently by FFT.
Now come back to the equation (40) on the geom-
etry shown in Fig. (29). Since periodic boundary
conditions are specified on the boundary of the trun-
cated domain, applying the above analysis we have

G y
u |Γ−E ∪Γ

+
W

= (F → G )H
m1

F x
u |Γ+

S ∪Γi
E∪Γ

−
N

+(G → G )H
m1

G x
u |Γ−S ∪Γi

W∪Γ
+
N
,

F y
u |Γ+

E ∪Γ
−
W

= (F →F )H
m2

F x
u |Γ+

S ∪Γi
E∪Γ

−
N

+(G →F )H
m2

G x
u |Γ−S ∪Γi

W∪Γ
+
N
,

G x
u |Γ+

N∪Γ
−
S

= (F → G )V
n1

F y
u |Γ−W∪Γi

N∪Γ
+
E

+(G → G )V
n1

G y
u |Γ+

W∪Γi
S∪Γ

−
E
,

F x
u |Γ−N∪Γ

+
S

= (F →F )V
n2

F y
u |Γ−W∪Γi

N∪Γ
+
E

+(G → G )V
n2

G y
u |Γ+

W∪Γi
S∪Γ

−
E
,

(41)

and

G x
u |Γi

E
= A H

m1
F x

u |Γ+
S ∪Γi

E∪Γ
−
N

+BH
m1

G x
u |Γ−S ∪Γi

W∪Γ
+
N
,

F x
u |Γi

W
= C H

m1
F x

u |Γ+
S ∪Γi

E∪Γ
−
N

+DH
m1

G x
u |Γ−S ∪Γi

W∪Γ
+
N
,

G y
u |Γi

N
= A V

n1
F y

u |Γ−W∪Γi
N∪Γ

+
E

+BV
n1

G y
u |Γ+

W∪Γi
S∪Γ

−
E
,

F y
u |Γi

S
= C V

n1
F y

u |Γ−W∪Γi
N∪Γ

+
E

+DV
n1

G y
u |Γ+

W∪Γi
S∪Γ

−
E
.

(42)

Here we use the superscripts H and V to distin-
guish those operators in two different directions.
Given F x

u |Γi
E

, G x
u |Γi

W
, F y

u |Γi
N

and G x
u |Γi

S
, in princi-

ple G y
u |Γ−E ∪Γ

+
W

, F y
u |Γ+

E ∪Γ
−
W

, G x
u |Γ+

N∪Γ
−
S

and F x
u |Γ−N∪Γ

+
S

can be determined by the operator equations (41).
Thus then (42) implicitly define an StS mapping
from F x

u |Γi
E

, G x
u |Γi

W
, F y

u |Γi
N

and G x
u |Γi

S
, to G x

u |Γi
E

,
F x

u |Γi
W

, G y
u |Γi

N
and F x

u |Γi
S
. A DtN mapping can be

further derived on the boundary of the defect cell,
and the computation can now be performed solely
on the defect cell.
Unlike the periodic array problems which are pe-
riodic only in one direction, the derivation of StS
mapping becomes much more complicated. On
the discrete level we need to solve a linear system
with unknowns G y

u |Γ−E ∪Γ
+
W

, F y
u |Γ+

E ∪Γ
−
W

, G x
u |Γ+

N∪Γ
−
S

and F x
u |Γ−N∪Γ

+
S

. This operation is still much time-
consuming. However, if the size of domain is en-
larged, the number of unknowns is only increased
linearly for two-dimensional problems.

8.2 A Numerical Example

The initial function is

u0(x,y) = exp(−100x2−100y2 +20xi).

The potential function is

V (x,y) = ∑
m,n∈Z

V0 exp(−100(x−m)2−100(y−n)2)

−V0 exp(−100x2−100y2).

The periodic cell is of size 1× 1, and the origin is
located in the center of the defect cell [−0.5,0.5]×
[−0.5,0.5]. The whole computational domain con-
tains 9× 9 = 81 periodic cells. We set the cut-
off frequency as 40000, and use the middle-point
quadrature rule to approximate the integral (36).
The number of quadrature points is 1024. Each cell
is discretized into 8× 8 = 64 eighth-order finite el-
ements. In Table 5 we list the relative L2-errors at
different time points when V0 = 0. The reference so-
lution is obtained by the spectral method with same
grid points. We see that in this time regime, the er-
rors are always less than 0.02 percent. In Figs. (31)-
(33), we show several snapshots for the modulus of
wave functions when V0 = 0, and in Figs. (34)-(36)
for the potential V0 = 4000. Note that only 9 cells
including the defect cell are shown in those figures.

Time Point (×0.0125) Relative L2-Error
1.0 4.05(-5)
1.5 6.21(-5)
2.0 8.65(-5)
2.5 1.19(-4)
3.0 1.51(-4)

Table 5: Relative L2-errors in [−0.5,0.5]2 at differ-
ent time points for V0 = 0.



Fig. (31): V0 = 0.

Fig. (32): V0 = 0.

Fig. (33): V0 = 0.

Fig. (34): V0 = 4000.

Fig. (35): V0 = 4000.

Fig. (36): V0 = 4000.



9. A MODEL PROBLEM
We consider a closed waveguide consisting of an in-
finite number of identical cells, see Fig. (37). There
C j denotes the j-th periodic cell, and Γ j the j-th
cell boundary. The governing wave equation is the
Helmholtz equation

∆u+ k2n2u = 0, (x,y) ∈Ω = ∪+∞

j=1C j, (43)

where k denotes the reference wave number, and
n = n(x,y) is the refraction index function. On each
cell boundary Γ j we define two Sommerfeld data as-
sociated with the function u as

f j(u) = (∂x + ik)u|Γ j , g j(u) = (∂x− ik)u|Γ j , (44)

where i denotes the imaginary unit. To clarify the
physical meaning of these two data, let us first
return to the one-dimensional constant coefficient
Helmholtz equation

uxx + k2u = 0.

Two linearly independent solutions are e±ikx. As a
common convention, eikx represents a wave travel-
ing to the right, and e−ikx to the left. An easy com-
putation yields

(∂x + ik)eikx = 2ikeikx, (∂x− ik)eikx = 0,

and

(∂x + ik)e−ikx = 0, (∂x− ik)e−ikx =−2ike−ikx.

These expressions above imply that the operator
∂x + ik eliminates the left-going wave while the op-
erator ∂x− ik eliminates the right-going wave. Thus,
the functions f j and g j in (44) contain some infor-
mation about the right-going and left-going waves
respectively. They are further referred to as incom-
ing or outgoing relying on the location of Γ j with
respect to (w.r.t.) the concerned part of the domain.
For example, w.r.t. C j, f j is incoming and g j is out-
going, but w.r.t. C j−1, f j is outgoing and g j is in-
coming.
The boundary conditions on the top, bottom and in-
terior (if existing) boundaries could be either Neu-
mann or Dirichlet, or any combination, but they
need to be consistent with the geometry periodicity.
Moreover, these boundary conditions should guar-
antee the well-posedness of the Helmholtz equation
(43) on the union of any finite number of periodic
cells, say ∪N−1

j=0 C j, if the incoming Sommerfeld data
are prescribed on its left and right boundaries, say
Γ0 and ΓN .

We remark that these restrictions are in fact very
mild thanks to the Holmgren uniqueness theorem
[35, Section 5.3]. In the sequel, if not specified oth-
erwise, we assume homogeneous Neumann bound-
ary conditions at the top and bottom boundaries.

Fig. (37): Schematic of a semi-infinite periodic ar-
ray. C j denotes the j-th periodic cell. Γ j is the left
cell boundary of C j and the right cell boundary of
C j−1 (for j ≥ 1).

9.1 The periodic Arrays

Three different periodic arrays (PA) will be consid-
ered in this chapter, and we will refer to them as
PA-One, PA-Two and PA-Three. All of them con-
sist of periodic cells with size of 1×1. More details
are given below.

• PA-One. Homogeneous waveguide. n = 1.

• PA-Two. A hole of size 0.5×0.5 is located in
the center of every periodic cell. Zero Dirich-
let boundary condition is applied at the hole
boundary. n = 1.

• PA-Three. Rectangular waveguide. n(x,y) =
1+0.5cos(2πx)sin(2πy).

To explore the wave property in a periodic array, it is
usually helpful to consider the dispersion diagram of
the characteristic equation −∆u = En2u, restricted
to a single periodic cell, say C0. The boundary con-
ditions at the left and right boundaries are pseudope-
riodic, namely,

u|Γ1 = eiθ u|Γ0 , ux|Γ1 = eiθ ux|Γ0 ,

where the parameter θ is valued in [0,2π). For each
θ , there exists a sequence of real eigenvalues E, usu-
ally called energies. All energies E w.r.t. θ then
compose the dispersion diagram. The dispersion
relation for PA-One, the homogeneous waveguide,
can be obtained analytically as

E jm = j2
π

2 +(θ +2πm)2.

This multi-valued function is plotted in Fig. (38).
For PA-Two and PA-Three, no analytical expres-
sions of dispersion relation are available, and a spa-
tial discretization method has to be employed.



We use the eighth-order FEM method with mesh
sizes ∆x = ∆y = 0.125 for all the numerical tests re-
ported in this chapter.

Fig. (38): Dispersion diagram of PA-One, an homo-
geneous waveguide.

The dispersion diagrams for PA-Two and PA-Three
are shown in Figs. (39)-(40). A significant phenom-
ena could be observed that unlike the homogeneous
waveguide, there are some bands of energy values
in the dispersion diagrams of PA-Two and PA-Three
that could not be reached for any parameter θ .

Fig. (39): Dispersion diagram of PA-Two. The
first two stop bands are (0,23.61±0.01) and
(29.85±0.01,47.10±0.01).

Physically, waves with energy (here k2) in these
bands could not propagate in the medium. Right
in this context, they are usually referred to as stop
bands in the literature. In fact, it is exactly this re-
markable property which makes the periodic struc-
tures extremely useful, for example, they could be

Fig. (40): Dispersion diagram of PA-Three.The
first two stop bands are (11.20±0.01,19.29±0.01) and
(37.08±0.01,39.58±0.01).

elaborately designed to act as some kind of fre-
quency selecting modules in the microwave and op-
tical engineering.
This work is aimed at developing an efficient
method for deriving an exact boundary mapping of
semi-infinite periodic arrays for any real wavenum-
ber k.

10. THE LIMITING ABSORPTION
PRINCIPLE
The first problem we are facing is how to guar-
antee the well-posedness of the Helmholtz equa-
tion (43), which naturally arises due to the absence
of a radiation-like condition at infinity. Although
the constant coefficient case with separable geome-
tries is well solved, this problem is not trivial at all
and largely remains open for the variable coefficient
Helmholtz equation.
There are at least three methods of possibly deriving
a unique solution of the Helmholtz equation in un-
bounded domains: asymptotic radiation condition,
limiting absorption principle and limiting amplitude
principle [67]. In this chapter we employ the limit-
ing absorption principle (LABP). The LABP is said
to hold at k > 0 if and only if for any f0(u)∈ L2(Γ0)
(take f0(u) as a unity), the solution uε ∈ H1(Ω) of
the following damped Helmholtz equation

∆uε +(k2 + iε)n2uε = 0 (45)

with the boundary condition

f0(uε) = f0(u),



converges to a unique solution u ∈ H1
loc(Ω) of the

Helmholtz equation (43), and the outgoing Sommer-
feld datum g0(uε) = A ε

inf f0(uε) also converges to
the unique function g0(u). This makes it possible to
define a Sommerfeld-to-Sommerfeld (StS) mapping
Ainf as the limit of A ε

inf, which maps f0(u) to g0(u),
namely,

g0(u) = Ainf f0(u).

Let us start considering PA-One first. In this case
the separation of variables method is available. We
set

uε =
+∞

∑
n=0

uε,n cos(nπy)

and

f0(u) =
+∞

∑
n=0

f0(un)cos(nπy),

g0(uε) =
+∞

∑
n=0

g0(uε,n)cos(nπy).

Then (45) is transformed into a sequence of ODE
problems:

uε,n
xx +(k2 + iε−n2

π
2)uε,n

xx = 0,

f0(uε,n) = f0(un), ∀n = 0,1, . . . .

The bounded solutions of the above problems are

uε,n =
f0(un)

i
√

k2 + iε−n2π2 + ik
ei
√

k2+iε−n2π2x.

Hence, we have

g0(uε,n) =
i
√

k2 + iε−n2π2− ik

i
√

k2 + iε−n2π2 + ik
f0(un),

and

g0(un)
de f
= lim

ε→0
g0(uε,n) =

i
√

k2−n2π2− ik

i
√

k2−n2π2 + ik
f0(un).

(46)
Besides, it is straightforward to verify that

g0(uε,n) = g0(un)

+


2
√

iε f0(un)
k +O(ε), k = nπ,

ikε f0(un)

(
√

k2−n2π2+k)2
√

k2−n2π2
+O(ε2), k 6= nπ.

(47)

The expression (47) states that the convergence rate
of g0(uε) to

g0(u) =
+∞

∑
n=0

g0(un)cos(nπy)

is of first order with respect to ε if k is unequal to
any nπ with n≥ 0. If k is equal to some n0π , which
implies the resonance of the n0-th mode in the y-
direction, the convergence rate would degenerate to
half order. But the LABP holds independent of the
wavenumber k.
Based on the above analysis, we conjecture that, un-
der some mild restrictions on the geometry and the
refraction index function, the LABP holds for every
k > 0 for more general semi-infinite periodic arrays.
Some numerical evidences will be reported in the
end of this section.
The LABP itself suggests a method for deriving the
exact StS mapping on the left boundary Γ0: first
compute the exact StS mapping of the problem (45)
for a given ε , denoted by A ε

inf, and then let ε tend to
zero. In [20] the authors proposed a fast evaluation
method for the exact StS mapping of the damped
Helmholtz equation (45). The basic idea is as fol-
lows. For any N > 0, the damped Helmholtz equa-
tion (45) is well-posed on the domain ∪N−1

j=0 C j, with
the incoming Sommerfeld data f ε

0 and gε
N prescribed

at the boundaries Γ0 and ΓN . Thus there are four
linear scattering operators A ε

N , Bε
N , Cε

N and Dε
N sat-

isfying

gε
0 = A ε

N f ε
0 +Bε

Ngε
N , f ε

N = Cε
N f ε

0 +Dε
Ngε

N .

Since gε
N goes to zero exponentially fast as N tends

to infinity, it is reasonable to expect that A ε
N con-

verges and the limit is just the exact StS mapping
A ε

inf. Note that the fast doubling procedure and the
involved scattering operators are explained previ-
ously in Section
In Fig. (41) we plot the relative errors of the scatter-
ing operators A ε

N compared to the reference oper-
ator A ε

ref, which is obtained by using the doubling
technique 20 times, i.e., N = 220. Since FEM is
used, the scattering operators are approximated by
matrices of rank 65× 65. We could see that the
doubling technique really leads to an efficient al-
gorithm. Also notice that when k2 lies in the stop
bands, for example k2 = 23,31, AN itself converges
as N goes to infinity. This implies that when k2 is
in the stop bands, we could derive the StS mapping
directly without considering the LABP.
Next we explain how to let ε tend to zero. In light of
the expression (47), if the resonance does not occur,
the exact StS mapping Ainf is expected to bear an
asymptotic expansion like

A ε
inf = Ainf + εA

(1)
inf + ε

2A
(2)

inf + · · · . (48)

Thus in most cases, the convergence rate of the
LABP is of first order. This observation is supported



Fig. (41): Relative errors of A ε
N to the reference StS

mapping A ε
ref, which is obtained by setting N = 220.

Fig. (42): The reference operator Aref is obtained by
setting ε = 10−7.

Fig. (43): The reference matrix Aref,2 is obtained
by using extrapolation technique twice with ε0 =
0.00125, i.e., Aref,2 = A ε0

inf /3−2A
ε0/2

inf +8A
ε0/4

inf /3.
A ε

in f ,1 =−A ε
inf +2A

ε/2
inf is obtained by using extrap-

olation technique once.

by the numerical evidences shown in Fig. (42). Note
that the convergence rate could be improved by stan-
dard extrapolation techniques. In Fig. (43) we show
the errors of the StS operators extrapolated once to
the reference operator, which is obtained by using
extrapolations twice and setting a small damping pa-
rameter ε0 = 0.00125. We could see that the accu-
racy is greatly improved, and second order rate can
be clearly observed. We should also notice that if
k is close to a resonance wave number, for example
k2 = 23.61, 47.1, the asymptotic convergence rate
could only manifest for sufficiently small damping
parameters.

11. ASYMPTOTIC BEHAVIOUR OF
AN LABP SOLUTION
The last section showed that if k is not a reso-
nance wave number, the extrapolation technique
could yield very accurate solution. Obviously this
algorithm needs to evaluate the scattering operators
for a sequence of ε , and this turns out to be com-
putationally quite expensive. Besides, though the
chance of k being a resonance wave number is very
rare, if k is close to a resonance wave number, the
extrapolation method could not present very accu-
rate result. In this section we will develop a new
method by directly using the scattering operators for
the undamped Helmholtz equation.
Recall from the last section that when k2 lies in the
stop bands, the exact StS mapping could be com-
puted by the doubling technique without using the
LABP. This is due to the fact that the solution lies
in L2(Ω), and thus it decays exponentially fast at in-
finity. If k2 lies in the pass bands (complementary
energy intervals of stop bands), in general an LABP
solution cannot be expected to decay. Our basic idea
is to separate those traveling (not-decaying) waves
and evanescent (decaying) waves, and handle them
by different means.
First let us introduce some notations. Suppose u and
v are two solutions of the Helmholtz equation (43).
Define the co-related energy flux of u and v as

E (u,v) =−2ik
[
(ux,v)Γ j − (u,vx)Γ j

]
= ( f (u), f (v))Γ j − (g(u),g(v))Γ j .

Besides, the energy flux of u is defined as E (u,u),
which is also equal to

E (u,u) = 4k Im
∫

Γ j

uxūdy.

We should remark that the co-related energy flux
does not rely on the choice of Γ j. Moreover, E (·, ·)
defines a sesquilinear form.



A nontrivial solution u of the Helmholtz equation
(43) or (45) is regarded as a Bloch wave associated
with the Floquet multiplier α ∈ C if it satisfies the
following two conditions

u|Γi+1 = αu|Γi , ux|Γi+1 = αux|Γi , ∀ i = 0,1, . . . .

We denote by F the set of all Floquet factors. A
Bloch wave is referred to as evanescent, traveling, or
anti-evanescent if the associated Floquet multiplier
α satisfies |α| < 1, |α| = 1, or |α| > 1. If |α| = 1,
we refer to α as a unitary Floquet multiplier. The
set of unitary Floquet multipliers is denoted by UF.
Note that the Floquet factor cannot be zero due to
the mentioned Holmgren uniqueness theorem. For
any α ∈ F, all associated Bloch waves together with
zero function form a linear space. This space, de-
noted by Eα , is called an (α-periodic) eigenfunction
space. Here we list a couple of propositions about
the Floquet theory from [42].

Proposition 4. If α ∈ F, then 1/α ∈ F either.

Proposition 5. UF is a finite set. For any α ∈ UF,
Nα = dimEα < +∞.

Proposition 6. Given two Floquet multipliers α j
and αk, and two functions ϕ j ∈ Eα j and ϕk ∈ Eαk .
If α jα

∗
k 6= 1, then E (ϕi,ϕ j) = 0.

Proposition 7. If u is an LABP solution, then the
energy flux of u is nonnegative.

Obviously, an LABP solution u cannot include the
anti-evanescent Bloch waves, thus asymptotically,
u is a combination of traveling Bloch waves. It is
known that not every traveling Bloch wave is an
LABP solution. We need to pick out those com-
patible with the LABP. To get some insight, let us
consider the homogeneous waveguide problem.
Suppose k = π . Then the traveling Bloch wave
space is given by

Span{e−iπx,eiπx,cos(πy)}.

If the x-period L is set as a non-integer positive
number, then we get three unitary Floquet multipli-
ers: e−iπL associated with Span{e−iπx}, eiπL with
Span{eiπx} and, 1 with Span{cos(πy)}. Since

E (e−iπx,e−iπx) = 4π Im
∫ 1

0
(−iπe−iπx)eiπx dy

∣∣∣
x=0

=−4π
2,

and an LABP solution has a nonnegative energy
flux, e−iπx is thus not admissible. Comparatively,

we have

E (eiπx,eiπx) = 4π Im
∫ 1

0
(iπeiπx)e−iπx dy

∣∣∣
x=0

= 4π
2,

and

E (cos(πy),cos(πy)) = 4π Im
∫ 1

0
(0)eiπxdy

∣∣∣
x=0

= 0.

The problem appears when L is taken as an integer.
For example, let us take L = 1. In this case there are
two unitary Floquet multipliers 1 and −1, namely,

α1 =−1←→ Eα1 = Span{e−iπx, eiπx},
α2 = 1←→ Eα2 = Span{cos(πy)}.

Eα2 represents a resonance space, and two-
dimensional space Eα1 contains both the left-going
and right-going traveling waves. The problem is
how to classify these two kind of waves. One may
say the energy principle could still work, since ob-
viously the Bloch wave eiπx is outgoing, and e−iπx

is incoming. But the question is that Eα1 may have
different basis representation, for example,

Eα1 = Span{e−iπx +2eiπx, e−iπx +3eiπx}
= Span{eiπx +2e−iπx, eiπx +3e−iπx}.

For the first representation, both basis functions
are right-going, and for the second, both are left-
going. However, generally we could not distinguish
an LABP outgoing traveling wave only through its
energy flux.
The above problem becomes even more severe if we
take L = 2. In this case there exists only one unitary
Floquet multiplier

α = 1←→ Eα = Span{e−iπx, eiπx,cos(πy)}.

It is not hard to find different basis representations
for Eα , which have completely different signs of en-
ergy flux. As a conclusion, if α is a unitary Floquet
multiplier and the associated eigenfunction space
Eα is multi-dimensional, we have to resort to other
criterion to determine the LABP right-going Bloch
waves.
Let us remark here that for a three-dimensional
waveguide problem, the chance for Eα being multi-
dimensional is absolutely not rare, though it seems
true for two-dimensional waveguide problems.



Suppose α ∈ UF, and {ϕ j}Nα

j=1 constitute a set of
basis functions of Eα , orthonormal w.r.t. the n2-
weighted inner product (·, ·)n2 defined as

(ϕ j,ϕk)n2 =
∫

C0

n2
ϕ jϕ̄k dy.

We define the energy flux matrix M = (m jk) as

m jk = E (ϕ j,ϕk), ∀ j,k = 1,2, · · · ,Nα .

It is easy to verify that M is a Hermitian matrix,
which implies the existence of a unitary matrix U ,
such that

U>MŪ = Λ = diag(λ1,λ2, . . . ,λNα
),

where λ j are real eigenvalues of M ordered by

λ1 ≥ λ2 ≥ ·· · ≥ λm1 > 0 = λm1+1 = . . .

· · ·= λm2 = 0 > λm2+1 ≥ ·· · ≥ λNα
.

We introduce a new set of basis function {ψ j}Nα

j=1 as

(ψ1, . . . ,ψNα
) = (ϕ1, . . . ,ϕNα

)U,

which will be referred to as a canonical set of basis
functions of Eα . Now we could separate Eα into
three parts, i.e.,

Eα = Rα ⊕Sα ⊕Lα ,

with

Rα = Span{ψ1, · · · ,ψm1},
Sα = Span{ψm1+1, · · · ,ψm2},
Lα = Span{ψm2+1, · · · ,ψNα

}.

Proposition 8. For any α ∈Eα , {λ j}Nα

j=1 are invari-
ant quantities, and R, S and L are invariant sub-
spaces of Eα . Besides, for any ϕ1 ∈ Rα , ϕ2 ∈ Sα ,
ϕ3 ∈ Lα , we have

E (ϕ1,ϕ1) > 0, E (ϕ2,ϕ2) = 0, E (ϕ3,ϕ3) < 0.

For the homogeneous waveguide problem, it is
straightforward to verify that Rα is the admissible
LABP Bloch wave space with positive energy flux.
Sα is the resonance wave space, which is also ad-
missible to the LABP. Note that if Sα is excluded
from the asymptotic solution space, the Helmholtz
equation would loose solvability for some incoming
Sommerfeld data f0.
Based on these facts, for a general semi-infinite pe-
riodic array, we make the following conjecture.

Conjecture 1. Suppose α1, . . . ,αM are all unitary
Floquet multipliers, and ϕ

α j
1 , . . . ,ϕ

α j
Nα j

constitute a
set of orthonormal basis functions of Rα j ⊕ Sα j .
Then asymptotically, any LABP solution u lies in
the space

Span{ϕα j
k | j = 1, . . . ,M,k = 1, . . . ,Nα j}. (49)

Although we have no proof of this conjecture yet,
its validity is strongly supported by the numerical
tests given in the next section. Let us remark here

that according to Proposition 6, {ϕα j
k }

M,Nα j
j=1,k=1 in fact

constitute a set of basis functions of the LABP right-
going Bloch wave space.

12. EVALUATION OF THE EXACT StS
MAPPING

Based on Conjecture 1, we know when N is large,
asymptotically,

fN(u)≈
M

∑
j=1

Nα j

∑
k=1

t j
k f0(ϕ

α j
k ),

gN(u)≈
M

∑
j=1

Nα j

∑
k=1

t j
k g0(ϕ

α j
k ).

Or in an abbreviated vector form,

fN(u)≈ FT, gN(u)≈ GT, (50)

where

F = (F1, · · · ,FM), G = (G1, · · · ,GM),

T = (T1, · · · ,TM)>

with

Fj = ( f0(ϕ
α j
1 ), · · · , f0(ϕ

α j
Nα j

)),

G j = (g0(ϕ
α j
1 ), · · · ,g0(ϕ

α j
Nα j

)),

Tj = (tα j
1 , · · · , tα j

Nα j
),

(51)

Recall that

g0(u) = AN f0(u)+BNgN(u),
fN(u) = CN f0(u)+DNgN(u).

Using (50) T could be derived by the least square
method as

T ≈ (F−DNG)−1CN f0(u). (52)



Here, −1 denotes the pseudo-inverse operator. We
then have

g0(u) = AN f0(u)+BNgN(u)

≈ (AN +BNG(F−DNG)−1CN) f0(u),

which means that by putting

˜AN = AN +BNG(F−DNG)−1CN ,

the limit of ˜AN would give the exact StS mapping
Ainf on the left boundary Γ0.
The key step to implement the above algorithm is to
derive a canonical set of basis functions for all uni-
tary Floquet multipliers, i.e. we need to compute the
functions Fj and G j defined in (51). This objective
can be achieved by the following steps:

1. Solve the generalized eigenvalue problem(
−A1 I
−C1 0

)(
f0
g0

)
= α

(
0 B1
−I D1

)(
f0
g0

)
to obtain all (different) unitary Floquet multi-
pliers {α j}M

j=1 and their associated generalized

eigenfunctions ( f
α j
0,k,g

α j
0,k), k = 1, · · · ,Nα j .

2. If Eα j is one-dimensional, i.e. Nα j = 1, com-
pute the energy flux of the eigenfunction ϕ

j
1 as-

sociated with the Sommerfeld data ( f
α j
0,1,g

α j
0,1)

by

E (ϕ j
1 ,ϕ j

1) = ( f
α j
0,1, f

α j
0,1)Γ0 − (gα j

0,1,g
α j
0,1)Γ0 .

If and only if E (ϕ j
1 ,ϕ j

1) ≥ 0, then ϕ
j

1 is an ad-
missible LABP traveling Bloch wave, i.e., Fj =
( f

α j
0,1), G j = (gα j

0,1). Otherwise, Fj = G j = /0.

3. If Eα j is multi-dimensional, i.e., Nα j > 1,
derive a set of orthonormal eigenfunctions

{ϕα j
k }

Nα j
k=1 of the following problem

∆u+ k2n2u = 0,

u|Γ1 = α ju|Γ0 , ux|Γ1 = α jux|Γ0 .

Compute the associated Sommerfeld data
{ f0(ϕ

α j
k )} and {g0(ϕ

α j
k )}. Compute the en-

ergy matrix M = (mkl) with

mkl = ( f0(ϕ
α j
k ), f0(ϕ

α j
l ))Γ0

− (g0(ϕ
α j
k ),g0(ϕ

α j
l ))Γ0 ,

for all k, l = 1, · · · ,Nα j . Find a unitary matrix
U = (ulk) to diagonalize M, such that

U>MŪ = Λ = diag(λ1,λ2, . . . ,λNα j
),

where λ j are real eigenvalues of M ordered by

λ1 ≥ λ2 ≥ ·· · ≥ λm1 > 0 = λm1+1 = . . .

· · ·= λm2 = 0 > λm2+1 ≥ ·· · ≥ λNα j
.

Set Fj = (F1
j , · · · ,Fm2

j ) and G j =
(G1

j , · · · ,G
m2
j ) with

Fk
j =

Nα j

∑
l=1

f0(ϕ
α j
l )ulk, Gk

j =
Nα j

∑
l=1

g0(ϕ
α j
l )ulk,

for all k = 1, · · · ,m2.

4. Finally, set F = (F1, · · · ,FN) and G =
(G1, · · · ,GN).

In the following we will report our numerical tests.
For simplicity, we refer to the StS mapping derived
with the LABP as LABP-StS, and the StS mapping
based on the asymptotic expansion of the traveling
Bloch waves as ASYM-StS. First we consider the
PA-One. In this case the analytical StS mapping is
available. For the n-th mode in the y-direction, the
exact StS mapping is given as in (46). The com-
puted StS mapping, no matter which method is em-
ployed, is diagonalizable. In Table 6 we list the er-
rors of ASYM-StS. We see generally the asymptotic
method presents very accurate results except on the
resonance wave number. For example, if k = π , the
first y-mode is resonant.

k = π k = 5π

4 k =
√

2π k =
√

3π

n = 0 1.50(-9) 4.60(-9) 7.02(-12) 5.91(-13)
n = 1 7.58(-6) 1.78(-9) 1.07(-9) 9.44(-13)
n = 2 2.13(-12) 3.52(-12) 1.31(-11) 3.23(-12)
n = 3 5.44(-13) 8.74(-13) 2.80(-12) 5.40(-13)
n = 4 2.28(-13) 3.24(-13) 1.00(-12) 2.10(-13)

Table 6: Errors of Direct computation.

In Table 7 we list the errors of the LABP-StS. They
are derived with two times of extrapolation. We
see that except at the resonance wave numbers, this
method presents the results at least of the same qual-
ity of those derived by the asymptotic method. But
when resonance occurs, the extrapolation technique
is only of little use. In order to obtain high accuracy,
one has to make the damping parameter very small,
but this probably implies a numerical stability prob-
lem.
For the other two periodic structures PA-Two and
PA-Three, no analytical expression is available on
the exact StS mapping. We compare the numerical
solutions by two different methods. From Table 8-
9, we could conclude in principle these two methods



k = π k = 5π

4 k =
√

2π k =
√

3π

n = 0 5.03(-9) 3.53(-12) 6.91(-12) 1.07(-12)
n = 1 5.68(-3) 7.30(-12) 1.52(-8) 1.49(-12)
n = 2 2.26(-12) 3.43(-12) 1.26(-11) 3.40(-12)
n = 3 7.51(-13) 8.22(-13) 2.99(-12) 5.82(-13)
n = 4 2.39(-13) 2.74(-13) 1.06(-12) 2.37(-13)

Table 7: ε = 0.00125. Extrapolation.

bring the same results. When k is away from the res-
onance wave number, these two methods present the
results of same quality. But their difference becomes
big when k approaches the resonance wave number.
Considering the results for the homogeneous waveg-
uide problem, we thus believe at the resonance wave
numbers, the asymptotic method presents better so-
lution.

Relative error
k2 = 25 1.31(-12)
k2 = 50 3.26(-12)
k2 = 23.61 3.89(-8)
k2 = 47.1 6.76(-5)

Table 8: ε = 0.00125. Comparison. PA-Two

Relative error
k2 = 5 9.58(-13)
k2 = 25 9.26(-13)
k2 = 11.20 7.16(-9)
k2 = 19.29 6.23(-10)

Table 9: ε = 0.00125. Comparison. PA-Three.

CONCLUSIONS
In this chapter we have generalized a recent result
of Zheng [78] and derived an exact Dirichlet-to-
Neumann artificial boundary condition for general
problems with periodic structures at infinity. We
considered in detail the bound state problem for the
Schrödinger operator and a second order hyperbolic
equation in two space dimensions. The proof of
this new kernel expression for the artificial bound-
ary condition was presented recently by Zhang and
Zheng [76].
Secondly, we introduced a fast evaluation method of
the Sommerfeld-to-Sommerfeld (StS) mapping for
periodic structure problems. Our proposed strat-
egy is an improvement of the recently developed
recursive doubling process by Yuan and Lu for the
evaluation of Dirichlet-to-Neumann maps. We pre-
sented numerical results for the Helmholtz equation

and the time-dependent Schrödinger equation in one
and two space dimensions with periodic structures
including cases where the method of Yuan and Lu
fails.
In the last part of this chapter we considered the
Helmholtz equation in the semi-infinite periodic ar-
ray in this paper. Since no radiation-like bound-
ary condition is specified at infinity, the Helmholtz
equation is in general not well-posed. To solve
this problem we employed the limiting absorption
principle. We have proposed a new algorithm
which combines the doubling procedure of the sec-
ond part and the extrapolation technique to obtain
high-accuracy approximation to the exact StS map-
pings. Considering the computational complexity,
we present another method which uses the asymp-
totic behavior of a limiting absorption principle so-
lution. Though we could not prove, the validity of
this method is strongly supported by our numerical
evidences.
We believe that these results can be generalized to
the derivation of fully discrete artificial boundary
conditions in the spirit of [15] for periodic poten-
tial problems. These boundary conditions are di-
rectly derived for the numerical scheme. Another
very challenging task would be the extension of the
present work to multi-dimensional problems with
periodic structures. Furthermore, our ideas can be
extended to more complicated wave-like equations,
such as Maxwell’s equations and elastic wave equa-
tions. Besides, many relevant theoretical problems
are left open in this chapter.
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