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Abstract

Mathematical modelling of dynamical processes often yields systems of ordi-
nary differential equations (ODEs) or differential algebraic equations (DAEs).
We investigate corresponding boundary value problems. Considering uncer-
tainties in physical parameters of the systems, we introduce random variables.
This stochastic model is resolved by the strategy of the polynomial chaos.
A non-intrusive approach requires the solution of a large number of nonlinear
systems with relatively small dimension. An intrusive approach yields just a
single nonlinear system with a relatively high dimension. Alternatively, we
present a non-intrusive method, which still exhibits a single large nonlinear
system. Consequently, the convergence of only one Newton iteration has to
be ensured to solve the boundary value problem, while many initial value
problems of the original ODEs or DAEs are involved.

Key words: polynomial chaos, ordinary differential equations, differential
algebraic equations, boundary value problem, uncertainty quantification

1. Introduction

Time-dependent systems of ordinary differential equations (ODEs) or dif-
ferential algebraic equations (DAEs) result from mathematical modelling of
electric circuits, mechanical systems or chemical reactions, for example. Fur-
thermore, a space discretisation of partial differential equations often yields
systems of ODEs or DAEs in time. We consider boundary value problems of
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these dynamical systems. Several classes of numerical methods already exist
for this type of problems, see [6, 13]. Each technique results in a nonlinear
system of algebraic equations for corresponding approximations.

We assume that some physical parameters exhibit uncertainties. Conse-
quently, we replace these parameters by random variables. For uncertainty
quantification, the stochastic model can be resolved by a quasi Monte-Carlo
simulation, for example. Alternatively, the generalised polynomial chaos
(gPC) provides spectral methods based on an expansion with orthogonal ba-
sis polynomials, see [1, 4]. Unknown coefficient functions can be determined
via an intrusive or a non-intrusive approach, respectively. The non-intrusive
approach is also called stochastic collocation, see [14, 15]. Thereby, we can
include numerical methods for the original dynamical systems directly. The
intrusive approach, which is also called stochastic Galerkin method, applies a
larger coupled system of ODEs or DAEs satisfied by the coefficient functions,
cf. [8, 9].

In case of boundary value problems, the non-intrusive approach yields a
large number of nonlinear systems of algebraic equations with relatively small
dimension. Hence sophisticated algorithms are required to provide appropri-
ate starting values and to ensure the convergence in each Newton iteration. In
contrast, the intrusive approach involves just a single large nonlinear system
of algebraic equations following from the larger coupled system of ODEs or
DAEs. Thus only one Newton iteration has to be controlled. In this paper,
we arrange an alternative technique, which also yields one large nonlinear
system. The unknown coefficient functions do not satisfy a system of ODEs
or DAEs but a projection relation. We apply transformations from the level
of the original solutions to the level of the coefficients and vice versa. The
technique is non-intrusive, since initial value problems of the original dynam-
ical systems are solved. We focus on the case of ODEs, because the strategy
is similar to a shooting method. The technique combines advantages from
both the intrusive and the non-intrusive approach.

The paper is organised as follows. We introduce the boundary value
problems of ODEs or DAEs with random parameters in Sect. 2. The gPC
techniques using the intrusive approach and the non-intrusive approach are
outlined in Sect. 3. We construct and analyse the combined method in Sect. 4.
Finally, the results of numerical simulations of an illustrative example are
presented.
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2. Problem Definition

In this section, we define boundary value problems of a class of dynamical
systems, which depend on parameters. A stochastic model follows from the
introduction of random parameters.

2.1. Boundary value problems

We consider dynamical systems of the form

M(p)x′(t,p) = f(t,x(t,p),p), (1)

where the right-hand side f as well as the matrix M ∈ Rn×n involve param-
eters p = (p1, . . . , pq) ∈ Q ⊆ Rq. Thus the solution x : [a, b] × Q → Rn

depends on time and on the parameters. On the one hand, the system (1)
consists of implicit ordinary differential equations (ODEs) in case of regular
matrices M(p). On the other hand, the system (1) results in differential al-
gebraic equations (DAEs) for singular matrices. Although some components
of the solution may be just continuous functions in case of DAEs, let x be
smooth with respect to time in the following.

We assume that M(p) is either regular or singular for all p ∈ Q given
some relevant set Q ⊆ Rq. The analytical and numerical behaviour of DAEs
is characterised by the index of the system, where several concepts of index
definitions exist, see [5], for example. For different parameters, the index of
the systems (1) may vary.

Imposing an initial condition

x(a,p) = s(p), (2)

we assume the existence of a unique solution for t ∈ [a, b] provided that the
initial values are consistent in case of DAEs.

We consider two-point boundary value problems

G(x(a,p),x(b,p),p) = 0 (3)

for each p ∈ Q with a general (nonlinear) function G : Rn ×Rn ×Q → Rn.
Thus the boundary conditions are allowed to be parameter-dependent. Often
linear boundary conditions

G(xa,xb,p) ≡ A(p)xa + B(p)xb + c(p) (4)

3



with matrices A(p), B(p) ∈ Rn×n and a vector c(p) ∈ Rn are imposed. For
example, we obtain periodic boundary value problems by the choice

A(p) = I, B(p) = −I, c(p) = 0

with the identity matrix I ∈ Rn×n. Consequently, the periodic boundary
conditions do not depend explicitly on the parameters.

2.2. Numerical methods

We can solve a boundary value problem (1),(3) numerically by well-known
techniques, see [6, 13]. The most important types are

• (multiple) shooting methods,

• finite difference methods,

• expansion methods (Galerkin, collocation, etc.).

Each technique yields a nonlinear system of algebraic equations, whose so-
lution represents a numerical approximation of some data corresponding to
the exact solution. Typically, the nonlinear systems are solved by a Newton
iteration.

We outline the (simple) shooting method, since a similar approach will
be used later to resolve the stochastic model in Sect. 4.2. Let p ∈ Q be fixed.
The solution x(b,p) of (1) depends on the initial values (2). We denote this
dependence by x(b,p; s(p)). The shooting technique consists in solving the
nonlinear system

G(s(p),x(b,p; s(p)),p) = 0 (5)

for the unknowns s(p). An evaluation of (5) for given values s(p) is done by
solving an initial value problem (1),(2). In a Newton iteration, we require
the Jacobian matrix of the nonlinear system (5) with respect to the initial
values. Using a short notation, it follows

∂G

∂s
=

∂G

∂xa

+
∂G

∂xb

· ∂x

∂s
.

The partial derivatives of G can often be determined explicitly. Two ap-
proaches exist to compute the sensitivity matrices ∂x

∂s
at t = b in case of

ODEs, cf. [12]. On the one hand, numerical differentiation can be applied,
where n additional initial value problems (1),(2) are solved. On the other
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hand, the sensitivity matrix represents the solution of an initial value prob-
lem of a linear matrix differential equation. The shooting technique as well
as the multiple shooting can be generalised to the case of DAEs, see [2, 7],
for example.

If a numerical solution of a boundary value problem (1),(3) is given for
the parameters p1 ∈ Q, then we can use it as starting values for a Newton
iteration corresponding to a boundary value problem for some p2 ∈ Q. How-
ever, the convergence of the iteration may fail for largely differing solutions.
In this case, we apply a continuation method, see [3], based on the homotopy

pλ := (1− λ)p1 + λp2 for λ ∈ [0, 1].

The choice λ = 0 reproduces the known solution, whereas λ = 1 represents
the desired state. Hence the continuation method employs variations in the
scalar parameter λ.

2.3. Stochastic model

We assume that the chosen parameters exhibit some uncertainties. Con-
sequently, we substitute the parameters by independent random variables
p : Ω → Q with respect to some probability space (Ω,A, P ). Thereby, we
apply classical random distributions like Gaussian distribution, uniform dis-
tribution, beta distribution, etc. The solution of the system (1) becomes
a random process x(t,p(ω)) for ω ∈ Ω. We are interested in key data of
this process like the expected value and the variance or more sophisticated
quantities.

Given a function f : Q → R depending on the parameters, we denote the
expected value (if exists) by

〈f〉 :=

∫

Ω

f(p(ω)) dP (ω) =

∫

Q

f(p)ρ(p) dp. (6)

Since we consider classical random distributions for the parameters, a cor-
responding probability density function ρ : Rq → R exists. The expected
value (6) implies the inner product

〈fg〉 =

∫

Q

f(p)g(p)ρ(p) dp (7)

for two functions f, g : Q → R depending on the parameters. Let

L2(Q, ρ) :=
{
f : Q → R : 〈f 2〉 < ∞}

.
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We apply the expected value (6) also to vector-valued or matrix-valued func-
tions component-wise.

The above stochastic model can be resolved by a quasi Monte-Carlo sim-
ulation, for example. This strategy will be discussed in a more general frame-
work within Sect. 3.2.

3. Polynomial Chaos

In this section, we introduce the approach of the generalised polynomial
chaos (gPC) applied to the stochastic model, where boundary value problems
are involved.

3.1. gPC expansions

Using the stochastic model from the previous section, we assume that
each component of the solution of (1) exhibits finite second moments in each
time point t ∈ [a, b], i.e., x(t, ·) ∈ L2(Q, ρ)n. It follows the existence of the
expansion

x(t,p(ω)) =
∞∑
i=0

vi(t)Φi(p(ω)) (8)

point-wise for each t ∈ [a, b], where (Φi)i∈N represents a complete set of multi-
variate basis polynomials Φi : Rq → R. We apply an orthonormal basis, i.e.,
it holds 〈ΦiΦj〉 = δij with the Kronecker delta. Let Φ0 ≡ 1. Each classical
random distribution implies according orthogonal polynomials. For exam-
ple, the Legendre polynomials and the Hermite polynomials correspond to
the uniform distribution and the Gaussian distribution, respectively. The or-
thonormal multivariate polynomials are just the products of the orthonormal
univariate polynomials. If all random parameters exhibit Gaussian distribu-
tions, then the concept of the (homogeneous) polynomial chaos applies. In
contrast, the gPC refers to non-Gaussian random distributions.

The coefficient functions vi : [a, b] → Rn are unknown a priori. They
satisfy the relation

vi(t) = 〈x(t,p)Φi(p)〉 (9)

for each i ∈ N and each t ∈ [a, b]. The formula (9) comprises probabilistic
integrals according to (6).

We achieve a finite approximation by a truncation of the series (8), i.e.,

x(m)(t,p(ω)) :=
m∑

i=0

vi(t)Φi(p(ω)). (10)
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We require numerical methods to obtain approximations of the unknown
coefficient functions in (10). Numerical techniques based on the gPC ex-
pansion (8) are spectral methods, since a representation involving globally
defined basis functions is used. For further details on gPC expansions, we
refer to [1, 4, 14, 15].

3.2. Non-intrusive techniques

Using non-intrusive methods, the unknown coefficient functions are de-
termined via an approximative evaluation of the probabilistic integrals in (9).
A sampling method yields the corresponding approximations. In case of low
dimensions q, multidimensional quadrature can be applied, i.e., tensor prod-
uct formulas of one-dimensional quadrature schemes. Sparse grids become
advantageous for medium dimensions. In case of high dimensions q, quasi
Monte-Carlo simulations have to be preferred.

In each method, we obtain a sequence of grid points p1, . . . ,pK ∈ Q. For
example, we consider two independent random variables p1, p2 ∈ [−1, +1]
with identical beta distribution. The corresponding probability density func-
tion of each variable reads

ρ(pi) = C(α, β)(1− pi)
α(1 + pi)

β for i = 1, 2 (11)

with constants α, β ≥ 0. Figure 1 illustrates the behaviour of the grid points
in the different methods setting α = β = 1, for example.

For each grid point, a boundary value problem (1),(3) of the original
system has to be solved. Hence well-known techniques yield numerical ap-
proximations as described in Sect. 2.2. Since the existing numerical methods
can be used directly, the approach is called non-intrusive. The crucial part
of the computational effort consists in solving the boundary value problems
(1),(3). The gPC expansion of the results represents just a post-processing
step. Considering the probabilistic integrals (9), the discretisation reads

vi(t)
.
=

K∑

k=1

wk x(t,pk)Φi(p
k) (12)

for each i = 0, 1, . . . , m and each t ∈ [a, b]. The weights wk ∈ R follow from
the underlying sampling method. For example, it holds wk = 1/K in case of
(quasi) Monte-Carlo methods.
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Figure 1: Grid points for two independent random variables with identical beta distri-
bution: Monte-Carlo simulation with 400 points (a), Gauss-Jacobi quadrature with 400
nodes (b), sparse grid of level 4 with 223 points (c) and of level 5 with 617 points (d).

Since a numerical method implies a nonlinear system of algebraic equa-
tions, appropriate starting values are required for the Newton iteration corre-
sponding to each grid point. We apply the numerical solution of a grid point
as starting values for a neighbouring point. Thus a sophisticated ordering of
the grid points is necessary to achieve an efficient technique, which means a
low number of steps in each Newton iteration. The determination of such an
ordering represents a non-trivial task in case of higher dimensions q, cf. Fig-
ure 1 for q = 2. If the convergence of an iteration fails, then we can apply
the continuation method outlined in Sect. 2.2. However, this application in-
creases the computational effort. Hence we have to control the convergence
of a large number of Newton iterations by sophisticated algorithms.
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3.3. Intrusive techniques

In the intrusive method, a Galerkin approach yields a system of ODEs or
DAEs, which is solved by an approximation of the unknown coefficient func-
tions. Inserting the finite approximation (10) in the dynamical system (1),
we obtain the residual

r(t,p) :≡ M(p)

(
m∑

i=0

v′i(t)Φi(p)

)
− f

(
t,

m∑
j=0

vj(t)Φj(p),p

)
, (13)

which is not identical to zero in general. The approximations v0, . . . ,vm are
determined such that the residual (13) becomes small in some sense. The
Galerkin approach demands that the residual is orthogonal to the space of
applied basis functions with respect to the inner product (7). In our case, it
follows

m∑
i=0

〈M(p)Φi(p)Φl(p)〉v′i(t) =

〈
f

(
t,

m∑
j=0

vj(t)Φj(p),p

)
Φl(p)

〉
(14)

for l = 0, 1, . . . , m. The equations (14) represent a coupled system of (m+1)n
ODEs or DAEs for the unknown coefficient functions. In case of implicit
ODEs (1), mathematical modelling often results in symmetric positive def-
inite matrices M(p). If the matrices M(p) are symmetric positive definite
for all p ∈ Q, then the coupled system (14) consists again of implicit ODEs.

We repeat the above Galerkin approach for the boundary conditions (3)
and obtain the relations

〈
G

(
m∑

i=0

vi(a)Φi(p),
m∑

i=0

vi(b)Φi(p),p

)
Φl(p)

〉
= 0 (15)

for l = 0, 1, . . . ,m. Thus (m + 1)n boundary conditions (15) are available.
In the linear case (4), the relations become

m∑
i=0

〈A(p)Φi(p)Φl(p)〉vi(a)

+
m∑

i=0

〈B(p)Φi(p)Φl(p)〉vi(b) + 〈c(p)Φl(p)〉 = 0

(16)
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for l = 0, 1, . . . , m. Using the notation v := (v>0 , . . . ,v>m)>, the boundary
conditions (16) exhibit the form

Ãv(a) + B̃v(b) + c̃ = 0 (17)

with constant matrices Ã, B̃ and a constant vector c̃, i.e., we obtain a linear
two-point boundary value problem again. For example, periodic boundary
value problems simply demand

vl(a) = vl(b) for all l (18)

due to the orthogonality of the basis polynomials.
Hence we achieve a two-point boundary value problem (14),(15) for the

unknown coefficient functions. Remark that the exact solution of this bound-
ary value problem represents just an approximation of the exact coefficients
in (8). Nevertheless, we denote the functions by the same symbol for conve-
nience. The approach is called intrusive, since a larger coupled system has
to be resolved. Moreover, the probabilistic integrals in (14),(15) have to be
computed analytically (if possible) or numerically.

We can use common numerical schemes to solve the two-point boundary
value problem (14),(15) as outlined in Sect. 2.2. Just one large nonlinear
system of algebraic equations has to be solved in this intrusive approach.
Thus we have to control the convergence of only a single Newton iteration,
which is more comfortable and robust.

In the intrusive approach, a continuation method can be applied if ade-
quate starting values for the solution of the large nonlinear system are not
available. Given the expected value p̄ := 〈p〉 of the parameters, we assume
that the solution x(t, p̄) of the boundary value problem (1),(3) is already
determined. We define the random variables

pλ(ω) = λ(p(ω)− p̄) + p̄ for λ ∈ [0, 1].

In case of λ = 0, the coupled system (14) becomes deterministic and the
solution of the boundary value problem reads (due to Φ0 ≡ 1)

v0(t) = x(t, p̄), vi(t) = 0 for i ≥ 1. (19)

We retrieve the desired random distribution in case of λ = 1. Consequently,
a continuation technique based on the parameter λ can be applied, see [3].
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Stochastic models according to periodic boundary value problems (1),(4)
have been solved successfully by the intrusive approach for implicit systems
of ODEs in [10] and for systems of DAEs in [8, 11]. Quasiperiodic solu-
tions of (1) have been considered via a strategy based on multirate partial
differential algebraic equations in [9].

4. Combined Technique

In the intrusive method, all calculations are performed with respect to
the coefficient functions using the coupled system (14). In the non-intrusive
method, the original systems (1) are resolved and the results are expanded
in the gPC. Now we develop an alternative technique, where the unknowns
are the coefficient functions. However, just the original systems (1) are con-
sidered in this technique.

4.1. Preliminaries

For the design of the method, we introduce the following operators. Let

R : `2(Z)n → L2(Q, ρ)n, (ui)i∈N 7→
∞∑
i=0

uiΦi(p).

The application of R corresponds to a reconstruction step. The operator R
is an isometry and thus bijective. The inverse operator reads

R−1 : L2(Q, ρ)n → `2(Z)n, y(p) 7→ (〈y(p)Φi(p)〉)i∈N .

This operation represents a projection step into the gPC. On the one hand,
the reconstruction can be applied directly to a finite set of coefficients (ui)

m
i=0.

We define the restricted operator

R̃ : Rn×(m+1) → L2(Q, ρ)n ∩ C(Rq)n, (ui)
m
i=0 7→

m∑
i=0

uiΦi(p).

The functions in the image of this restriction are continuous. On the other
hand, we apply a truncation in the projection step and arrange the operator

R̃−1 : L2(Q, ρ)n → Rn×(m+1), y(p) 7→ (〈y(p)Φi(p)〉)m
i=0 .
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Concerning the evolution in time, we describe the solution of the initial value
problems of the system (1) by the operator

Sa,b : C(Q)n → C(Q)n, s(p) = x(a,p) 7→ x(b,p).

Thereby, we assume that the image of a continuous function is again a con-
tinuous function with respect to the parameters. Moreover, let the image of
Sa,b ◦ R̃ be in L2(Q, ρ)n for some further restriction in the domain of depen-
dence of R̃ due to our considerations in Sect. 3.1. As an abbreviation, we
define the operator

U : G → Rn×(m+1), U := R̃−1 ◦ Sa,b ◦ R̃ (20)

using an adequate subset G ⊆ Rn×(m+1).
In case of DAEs (1), the image of R̃ may include inconsistent initial

values. An outcome is to restrict the domain of dependence of R̃ further to
appropriate degrees of freedom. Modifications, which are applied in solving
boundary value problems of DAEs in comparison to ODEs, see [2, 7], can
be used. The following method can be generalised directly to the case of
semi-explicit systems of DAEs with index 1.

4.2. Shooting Method

We apply the boundary conditions (15) obtained by the Galerkin ap-
proach. Let v := (v>0 , . . . ,v>m)> again. Inserting the constructed approxima-
tion v(b)

.
= U(v(a)) from (20) yields

〈
G

(
m∑

i=0

vi(a)Φi(p),
m∑

i=0

(U (v(a)))i Φi(p),p

)
Φl(p)

〉
= 0 (21)

for l = 0, 1, . . . , m. Hence the method consists in solving the (m + 1)n
equations (21) for the unknowns v(a) ∈ Rn×(m+1). This approach is similar
to a shooting method, since we determine the unknown initial values of the
gPC representation. However, there is no system of differential equations,
which the coefficient functions satisfy now.

The boundary conditions (21) can also be written in the shorter form

〈
G

(
R̃ (v(a)) (p),

((
Sa,b ◦ R̃

)
(v(a))

)
(p),p

)
Φl(p)

〉
= 0 (22)
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solve coupled system
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projection

R̃−1

reconstruction

R̃

Figure 2: Initial value problems in polynomial chaos approach.

for l = 0, 1, . . . ,m. If a sampling method has to be employed for evaluat-
ing (21), then the formula (22) should be used, since an additional sampling
for an approximative evaluation of the operator R̃−1 is omitted.

Nevertheless, the relation (21) often allows for further manipulations. For
example, the linear boundary conditions (4) imply, see (17),

Ãv(a) + B̃ U(v(a)) + c̃ = 0,

where the result of the operator U is written as a long vector.
We discuss the evaluation of the operator U within a numerical method.

Figure 2 outlines the procedure in connection to the intrusive approach from
Sect. 3.3. Let x(t,p; s(p)) be the solution of the initial value problem (1),(2).
We discretise the operator R̃−1 via a sampling method using a finite subset
QK ⊂ Q with K elements, i.e.,

(U(v(a)))i
.
=

K∑

k=1

wkΦi(p
k)x

(
b,pk;

m∑
j=0

vj(a)Φj(p
k)

)
. (23)

Hence the reconstruction is done in the finite set of grid points pk ∈ QK

only to obtain the initial values. We solve the initial value problems of the
dynamical system (1) via standard integrators in time. The final values of
the integration are considered in the sampling method for the approximative
projection.

The boundary conditions (21) represent a nonlinear system for the un-
known initial values. Typically, the nonlinear systems are resolved by a
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Newton iteration. Thus we require the Jacobian matrices ∂U(v(a))
∂v(a)

. It holds

∂

∂vj(a)

(
m∑

i=0

vi(a)Φi(p)

)
=

m∑
i=0

Φi(p)
∂vi(a)

∂vj(a)
= Φj(p)I

with the identity matrix I ∈ Rn×n. Differentiating the discrete formula-
tion (23) yields

∂(U(v(a)))i

∂vj(a)
=

K∑

k=1

wkΦi(p
k)Φj(p

k)
∂x

∂s

∣∣∣∣
t=b,p=pk,s=s(pk)

with s(p) = R̃(v(a)). Hence we achieve an approximation of the Jacobian

matrix ∂U(v(a))
∂v(a)

by sampling the sensitivity matrices ∂x
∂s

. The computation
of the sensitivity matrices can be done by the two approaches outlined in
Sect. 2.2.

In the above approach, we have to control just a single Newton iteration
like in the intrusive techniques from Sect. 3.3. Nevertheless, numerical meth-
ods for initial value problems of the original dynamical systems (1) can be
used directly, which results in a non-intrusive technique. We obtain a high
potential for parallelism, since an ordering of the initial value problems is
not necessary for efficiency in contrast to the non-intrusive techniques from
Sect. 3.2. If adequate starting values for the single nonlinear system are not
available, we can apply the same continuation method as in the intrusive
methods.

4.3. Multiple shooting

The generalisation of the above technique to a multiple shooting method,
see [13], is straightforward. We introduce time points a = t0 < t1 < · · · <
tr−1 < tr = b, where r − 1 inner nodes occur. In each subinterval [tj, tj+1],
we apply an evolution according to (20), i.e.,

v(tj+1) =
(
R̃−1 ◦ Stj ,tj+1

◦ R̃
)

(s(tj)) for j = 0, 1, . . . , r − 1 (24)

given some starting values s(tj) ∈ Rn×(m+1). Thus v(tj+1) depends on s(tj)
only. The continuity of the coefficient functions at the inner nodes implies
the conditions

v(tj) = s(tj) for j = 1, . . . , r − 1. (25)
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We arrange a nonlinear system including the continuity equations (25) and
the boundary conditions (15), where s(t0) is identical to v(a). We can solve
this nonlinear system for the unknowns s(tj) with j = 0, 1, . . . , r − 1 by
methods of Newton type again. The evaluation of these nonlinear systems
and their Jacobian matrices is done as described in Sect. 4.2, since the rela-
tions (24) involve an operator of the form (20).

4.4. Finite difference methods

Finite difference schemes can be seen as a multiple shooting method with
many subintervals in time, where just one integration step is done in each
subinterval. The corresponding continuity conditions are used to eliminate
unknowns in the nonlinear system.

To illustrate the concepts, we consider explicit ODEs, i.e., M(p) = I in
the system (1). Let a grid of time points a = t0 < t1 < · · · < tr = b be given.
The explicit Euler scheme reads

x(tj+1,p) = x(tj,p) + (tj+1 − tj)f(tj,x(tj,p),p). (26)

Although the solution of the difference method represents just an approxi-
mation of the exact solution of the dynamical system (1), we apply the same
symbol for convenience. At t = tj+1, the projection step implies

vl(tj+1) = 〈x(tj+1,p)Φl(p)〉
= 〈x(tj,p)Φl(p)〉+ (tj+1 − tj)〈f(tj,x(tj,p),p)Φl(p)〉

for each l = 0, 1, . . . , m. Considering the reconstruction step as well as the
projection step at t = tj, it follows

vl(tj+1) = vl(tj) + (tj+1 − tj)

〈
f

(
tj,

m∑
i=0

vi(tj)Φi(p),p

)
Φl(p)

〉
.

This numerical scheme coincides with the intrusive approach from Sect. 3.3,
where the coupled system (14) is discretised by the explicit Euler method.

Alternatively, the implicit Euler scheme results in

x(tj+1,p) = x(tj,p) + (tj+1 − tj)f(tj+1,x(tj+1,p),p). (27)

If x(tj,p) is given, then a nonlinear system has to be solved for x(tj+1,p).
The projection steps yield for each l = 0, 1, . . . , m

vl(tj+1) = vl(tj) + (tj+1 − tj)〈f(tj+1,x(tj+1,p),p)Φl(p)〉. (28)

There are two possibilities to continue now:
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1. If we replace x(tj+1,p) in (28) by the reconstruction step at t = tj+1,
then it follows just the intrusive approach from Sect. 3.3, where the
coupled system (14) is discretised by the implicit Euler scheme.

2. We obtain x(tj,p) in (27) via the reconstruction step at t = tj. The
nonlinear systems (27) are solved for each p ∈ QK in a sampling
method. The projection step is used at t = tj+1. This strategy still rep-
resents a non-intrusive approach, since the scheme (27) discretises the
original dynamical system (1). However many reconstruction steps as
well as projection steps are required, which cause a significant amount
of computational work.

Hence finite difference methods, which are used in the context of the strat-
egy presented in this section, either coincide with an intrusive approach or
become unfavourable due to a computational overhead.

5. Illustrative Example

As test example, we consider the Duffing oscillator, see [12]. The corre-
sponding nonlinear system of ODEs of first order reads

x′1(t) = x2(t)

x′2(t) = A sin (2πt)− µx2(t)− νx1(t)− θx1(t)
3,

(29)

where a periodic input signal is included. We choose the constant parameters
µ = 0.5 and ν = 1. Furthermore, we arrange the random parameters

A = 20(1 + 0.2p1), θ = 10(1 + 0.1p2)

using independent random variables p1, p2 ∈ [−1, 1] with identical beta dis-
tributions according to (11) for α = β = 1. We consider periodic boundary
conditions, since a forced oscillation satisfying (29) exists with period T = 1
for each tuple of parameters.

The corresponding gPC expansion (8) is based on the Jacobi polynomials.
We apply two-variate polynomials up to degree 4, where m + 1 = 15 basis
functions appear in (10). Hence 30 coefficient functions are involved. Periodic
boundary conditions (18) with a = 0 and b = 1 are considered.

We determine a reference solution using the non-intrusive approach from
Sect. 3.2. Thereby, a two-dimensional Gauss-Jacobi quadrature with 10× 10
nodes yields the approximations (12). The boundary value problems of (29)
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Figure 3: Expected value (left) and standard deviation (right) for stochastic solution of
Duffing oscillator (x1: solid line, x2: dashed line).

are resolved by a shooting method. Trapezoidal rule solves the involved
initial value problems, where a local error control with relative tolerance
εr = 10−6 and absolute tolerance εa = 10−8 is used. Figure 3 illustrates
the reconstructed expected value and standard deviation of the two random
components of the Duffing oscillator (29). The expected value resembles the
deterministic solution in case of A = 20, δ = 10. Furthermore, Figure 4
depicts the coefficient functions corresponding to the first component of the
Duffing oscillator. The second component exhibits a similar behaviour. We
recognise that the magnitude of the coefficient functions decreases signifi-
cantly for increasing polynomial degree, which indicates the convergence of
the gPC expansion (8).

For comparison, we apply the three techniques: the non-intrusive method
(Sect. 3.2), the intrusive method (Sect. 3.3) and the combined technique
(Sect. 4.2). Involved probabilistic integrals (6) are always approximated by
a two-dimensional Gauss-Jacobi quadrature with a 5× 5 grid. We solve each
periodic boundary value problem of ODEs by a shooting method. All time
integrations are performed by trapezoidal rule with tolerances εr = 10−4,
εa = 10−6. Thus we expect the same accuracy in each approach. In the
non-intrusive technique, the numerical solution of a boundary value problem
yields the starting values for the Newton iteration of a neighbouring boundary
value problem. In the intrusive and the combined method, we apply starting
values according to (19).
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Figure 4: Coefficient functions of gPC expansion corresponding to component x1 of Duffing
oscillator.
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Figure 5: Maximum error in coefficient functions corresponding to x1 (left) and x2 (right)
for different methods: non-intrusive (◦), intrusive (¦) and combined technique (+).

Figure 5 shows the maximum error in each coefficient function. Thereby,
this maximum error represents the maximum difference for t ∈ [0, 1] with
respect to the previously computed reference solution. The intrusive ap-
proach results in the highest accuracy. The non-intrusive method and the
combined technique exhibit the same accuracy. The computing times for
the non-intrusive method and the combined technique are nearly the same.
In contrast, the intrusive approach demands five times longer computations,
since many larger nonlinear systems have to be solved in the time integration.

6. Conclusions

Polynomial chaos expansions reproduce the solutions of dynamical sys-
tems with random parameters. Numerical methods can be arranged following
an intrusive or a non-intrusive approach. Considering boundary value prob-
lems, a combined technique has been presented, which exhibits advantages
from both approaches. On the one hand, just a single nonlinear system has to
be solved, which yields a robust method. On the other hand, the dynamical
systems are involved similar as in a non-intrusive approach, which provides a
high potential for parallel computations. In case of ODEs, numerical results
of a test example confirm that the combined technique exhibits the same
accuracy as the non-intrusive method. Further investigations are necessary
in the case of DAEs, since consistent initial values are required for the time
integration.
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