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Nonlinear Model Order Reduction Based on
Trajectory Piecewise Linear Approach:
Comparing Different Linear Cores

Kasra Mohaghegh, Michael Striebel, Jan ter Maten, and Roland Pulch

Abstract Refined models for MOS-devices and increasing complexity ofcircuit de-
signs cause the need for Model Order Reduction (MOR) techniques that are capable
of treating nonlinear problems. In time-domain simulationthe Trajectory PieceWise
Linear (TPWL) approach is promising as it is designed to use MOR methodologies
for linear problems as the core of the reduction process. We compare different linear
approaches with respect to their performance when used as kernel for TPWL.

1 Introduction

The tendency to analyze and design systems of ever increasing complexity is becom-
ing more and more a dominating factor in progress of chip design. Along with this
tendency, the complexity of the mathematical models increases both in structure and
dimension. Complex models are more difficult to analyze, anddue to this it is also
harder to develop control algorithms. Therefore Model Order Reduction (MOR) is
of utmost importance. For linear systems, quite a number of approaches are well-
established and have proved to be very useful [1]. However, accurate models for
MOS-devices introduce highly nonlinear equations. And, asthe packing density in
circuit design is growing, very large nonlinear systems arise. Hence, there is a grow-
ing request for reduced order modeling of nonlinear problems. In transient analysis
the Trajectory PieceWise Linear (TPWL) approach [2, 3] is a promising technique
as it makes use of linear MOR methods. A brief introduction toTPWL is given be-
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low. Analyzing the TPWL approach, we are interested in how different linear MOR
techniques perform when used as a linear kernel, how robust the reduced models are
and how they behave when combined to more complex systems.

2 MOR for linear problems

A continuous time-invariant (lumped) multi-input multi-output linear dynamical
system is of the form:

{

C dx(t)
dt = −Gx(t)+Bu(t),

y(t) = Lx(t)+Du(t), x(0) = x0,
(1)

wherex(t) ∈ R
n is the inner state,u(t) ∈ R

m is the input,y(t) ∈ R
p is the output.

The dimensionn of the state vector is called the order of the system.C, G, B, L and
D are the state space matrices. The dimensionn of the system exhibits the order
of elements contained in the circuit. As VLSI systems exhibit a large density of
elements,n can easily reach a million.

Basically, MOR techniques aim to derive a system:

{

C̃ dx̃(t)
dt = −G̃x̃(t)+ B̃u(t), x̃(t) ∈ R

q,

ỹ(t) = L̃x̃(t)+ D̃u(t), x̃(0) = x̃0, ỹ(t) ∈ R
p,

(2)

of orderq with q≪ n that can replace the original high-order system (1) in the sense,
that the input-output behavior, described by the transfer function in the frequency
domain, of both systems agrees. A common way is to identify a subspace of dimen-
sionq ≪ n, that captures the dominant information of the dynamics andproject (1)
onto this subspace, spanned by some basis vectors{v1, . . . ,vq}.

The reduction can be carried out by means of different techniques. Approaches
like PRIMA [4], SPRIM [5], and PMTBR [6] project the full problem (1) onto a
subspace of dimensionq. The first two rely on Krylov subspace methods. The latter
one exploits the direct relation between the multipoint rational projection framework
and the Truncated Balanced Realization (TBR). This approach can take advantage
of some a-priori knowledge of the system properties, and is based on a statistical
interpretation of the system Gramians. We give a brief review on these techniques
and analyze their behavior when used as linear kernels in TPWL.

2.1 Krylov Projection Techniques and Poor Man’s TBR

In recent years, MOR techniques based on Krylov subspaces have become the meth-
ods of choice for generating macromodels of large multi-port RLC circuits. Krylov
subspace methods provide numerically robust algorithms for generating a basis of
the reduced space, such that a certain number of moments of the transfer function of
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the original system is matched. Consequently, the transferfunction of the reduced
system approximates the original transfer functions around a specified frequency, or
a collection of frequency points [7]. Owing to their robustness and low computa-
tional cost, Krylov subspace algorithms proved suitable for the reduction of large-
scale systems, and gained considerable popularity, especially in electrical engineer-
ing. A number of Krylov-based MOR algorithms have been developed, including
techniques based on the Lanczos method [8, 9] and the Arnoldialgorithm [4, 10].
The main drawbacks of these methods are, in general, lack of provable error bounds
for the extracted reduced models, and no guarantees for preserving stability and
passivity. Nevertheless, it has been demonstrated that if the original system has a
specific structure, both stability and passivity can be preserved in the reduced sys-
tem, by exploiting the fact that congruence transformations preserve the definiteness
of a matrix. PRIMA [4] combines the moment matching approachwith projection
to arrive at a reduced system of type (2). Its main feature is that it produces provably
passive reduced models.

However, PRIMA does not preserve the structure of the systemmatrices which is
of an interest when trying to realize the reduced model. SPRIM [5], an adaption of
this method, preserves block structures of the circuit matrices and generates prov-
ably passive and reciprocal macromodels of multiport RLC circuits. The SPRIM
models match twice as many moments as the corresponding PRIMA models ob-
tained with the same amount of computational work. Also SPRIM is less restrictive
to matricesC andG in system (1), see [11].

Poor Man’s TBR (PMTBR) [6] is a projection MOR technique thatexploits the
direct relation between the multipoint rational projection framework and the Trun-
cated Balanced Realization (TBR). More details on PMTBR canbe found in [6]. In
the following simulation we assume thatC = I andD = 0 in (1).

2.2 Examples

We consider the RLC ladder networks, illustrated in Figure 1.
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C1C2CK
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R RR
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u

Fig. 1 Left: RLC circuit example 1; Right: RLC circuit example 2.

The state variablex ∈ R
2K−1 consists of the voltages of theK nodes and the

currents traversing the inductors{L1, . . . ,LK−1}. The voltageu and the currenty
represent input and output, respectively. Note that when the number of nodes isK
the order of the system becomesn = 2K −1.
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Example 1. We choose an RLC ladder network shown in Figure 1 (left). We set all
the capacitances and inductances to the same value 1 whileR1 = 1

2 and R2 = 1
5,

see [12]. We arrange 51 nodes which gives us the order 101 for the circuit.

Example 2. We use an RLC ladder network given in Figure 1 (right). We set all the
capacitances and inductances to the same value 1 whileR1 = 1

2, R2 = 1
5 andR = 1,

we choose 51 nodes which results in order 101 for the circuit.

The main reason for choosing these two examples is the behavior of Hankel sin-
gular values, see [1]. The Hankel singular values for the first example do not show
any significant decay while in the second example we observe arapid decay in
the values. The model is reduced by three linear techniques (PRIMA, SPRIM and
PMTBR) from order 101 to order 34 for both examples. Figure 2 shows the absolute
error between the transfer function of the full system and the transfer function of the
reduced system.
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Fig. 2 Left: Error plot for the Example 1; Right: Error plot for the Example 2.

As we expected the SPRIM produces a better approximation than PRIMA since
it matches twice as much moments. Although both methods havea good match
around the expansion point 0, the error increases as we are far from the expansion
point. As the Hankel singular values for the first example do not decay, the PMTBR
cannot produce an accurate model for low frequency in that case. This shows that
we can not stick to one method for reduction in general and themethod should be
chosen depending on the circuit behavior.

3 MOR for nonlinear problems

Large linear problems most frequently arise from modeling parasitic effects intro-
duced by the layout, i.e., the wiring. As structure sizes decrease and packing densi-
ties increase the growing complexity of the nominal circuitry that is build up from
transistors showing highly nonlinear behavior generates the need of MOR for non-
linear problems as well. In general an electric circuit can be described by a system
of differential-algebraic equations (DAEs) of the form:
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d
dt

[q(x(t))]+ j(x(t))+Bu(t) = 0, (3)

wherex(t)∈R
n represents the unknown vector of circuit variables at timet ∈ [t0, te];

the nonlinear functionsq, j : R
n → R

n describe the contribution of reactive and
nonreactive elements, respectively, and the matrixB distributes the input excitation
u : [t0, te] → R

m. Note that we concentrate on the statex only and omit the output
stagey in our consideration.

MOR techniques developed for linear problems (1) cannot be applied directly to
nonlinear models (3) as the transfer to a lower dimensional problem does not guar-
antee a reduction in the computational effort from evaluating the nonlinear model.

3.1 Trajectory Piecewise Linearization

The idea of TPWL [2, 3] is to represent the full nonlinear system (3) by a bunch of
order reduced linear models that can reproduce the typical behavior of the system.

For this purpose a training input ¯u(t) for t ∈ [t0, te] is chosen and a transient simu-
lation is run in order to get a trajectory, i.e., a collectionof pointsx̄0, . . . , x̄N approx-
imating x(ti) at time-pointst0 < t1 < · · · < tN = te, that reflect typical states of the
system. On the trajectory, points{xlin

1 , . . . ,xlin
s } ⊂ {x̄0, . . . , x̄N} are selected around

which the nonlinear functionsq and j are linearized. To the linear models, that
are all of dimensionn, any MOR for linear problems can be applied. This delivers
local reduced subspacesV1, . . . ,Vs of possibly different dimensionsk1, . . . ,ks. One
common subspaceV of dimensionk ≪ n is constructed that describes the primary
information of all local subspaces and on which all linear models are projected. Fi-
nally a weightingwi(V z) ∈ [0,1] for i = 1, . . . ,s with ∑s

i=1 wi(V z) = 1 is introduced
to decide which linear submodels are valid in a certain situation. The full system
shall be replaced by the reduced one given by

s

∑
i=1

wi(V z)

[

V TCiV
d
dt

z+V T GiV z+V T ( j(xlin
i )−Gix

lin
i )

]

+V T Bu(t) = 0 (4)

with Ci = ∂q
∂x

∣

∣

∣

x=xlin
i

andGi = ∂ j
∂x

∣

∣

∣

x=xlin
i

Besides the freedom in choosing which linear MOR technique to use there are
also different strategies reported for determining the linearization points along the
trajectory. In our considerations we stick to the strategy described in [3]. There
at each time-pointti both the full nonlinear system and the currently responsible
reduced linear model are discretized with the same stepsizeleading to two different
approximations ¯xi andx̂i = V zi. Whenever the difference ¯xi − x̂i becomes too large,
a new linearization point is arranged.
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3.2 Example

We apply only PRIMA and PMTBR as a linear core for TPWL. In all simulation
below the PMTBR is used unless stated otherwise. One of the partitions which is
used inside the SPRIM algorithm is always of size 2 by 2 and theother part becomes
larger as there is no inductor in the structure of the inverter chain. Therefore SPRIM
is not reasonable to apply in this test case. The inverter chain constitutes a special
class of circuit problems. Here a signal passes through the system, activating at each
time-slot just a few elements and leaving the others latent.However, as the signal
passes through, each element is active at some time and sleeping at some others. As
in [13], the training of the inverter chain during the TPWL model extraction was
done with a single piecewise linear input voltage at ¯u(t) (see also Figure 3), defined
by

ū(0) = 0, ū(5ns) = 0, ū(10ns) = 5, ū(15ns) = 5, ū(17ns) = 0.

Fig. 3 Inverter chain: training input (left) and state response (right, all stages).

In Figure 4 we see the danger of defining distances to linearization points not in
the full space but in the reduced space. Both plots are showing the signal at inverter
24. In Figure 4 in the right plot the second impulse is just notrecognized where this
seems to be no problem in the left plot. However, something else seems to be miss-
ing, even if we take the distance in the full space. In Figure 5the voltage at inverters
68 and 92 is given. In both cases, the signal cannot be recovered correctly. In the
latter one it is even not recognized at all. At the moment we cannot state reasons
for that. Obviously this is not caused by the reduction but bythe linearization or the
weighting procedure as we get similar results when turning off the reduction step.

The impact of broadening the input signalu can be seen in Figure 6, which dis-
plays the voltage at inverters 18 and 68. The signals are far away from the expected
behavior. However, there seems to be a trend towards the situation that was encoun-
tered during the training. And indeed in Figure 6 (right), atinverter 68 we find a
time shifted version of the training signal instead of the wide input signal that has
been applied now.

Finally, in Figure 7 the result of using the reduced model that arises from training
input ū of given pulse width with a slightly tighter input signalu is given for the
inverters 6 and 68, respectively. In the former the characteristic is reflected quite
well. However, in the latter the output signal seems to be just a time shifted version
of the situation during the training. Having a closer look athow the inverter chain is
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Fig. 4 Inverter chain: TPWL-resimulation, reduction to order 50, repeated pulse, inverter 24, Left:
distance defined in full space; Right: distance defined in reduced space.

Fig. 5 Inverter chain: TPWL-resimulation, reduction to order 50, repeated pulse, distance in full
space, Left: inverter 68; Right: inverter 92.

Fig. 6 Inverter chain: TPWL-resimulation, reduction to order 50, wider pulse, distance in full
space, Left: inverter 18; Right: inverter 68.

modeled we see that the input voltage is applied at a floating node. This could give
reasoning for the behavior encountered. However, also the backward and forward
validity of the linear models could be the reasons.

Fig. 7 Inverter chain: TPWL-resimulation, reduction to order 50, tighter impulse, distance in full
space, Left: inverter 6; Right: inverter 68.
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The error in Figure 8 is an overall error for all nodes. This total error shows that
PMTBR yields better approximations than PRIMA. As changingfrom one linear
method to the other the problems stay the same. Thus the reduction steps do not
cause them.
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Fig. 8 Overall error for PRIMA and PMTBR used inside TPWL.
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