N
i
&\\\\\

N
N
J

Bergische Universitt Wuppertal
Fachbereich Mathematik und Naturwissenschaften

Lehrstuhl fir Angewandte Mathematik
und Numerische Mathematik

Preprint BUW-AMNA 08/07

Kasra Mohaghegh

Nonlinear Model Order Reduction Based on Trajectory

Piecewise Linear Approach:
Comparing Different Linear Cores

October 2008

http://www-num.math.uni-wuppertal.de



Nonlinear Model Order Reduction Based on
Trajectory Piecewise Linear Approach:
Comparing Different Linear Cores

Kasra Mohaghegh, Michael Striebel, Jan ter Maten, and RidParich

Abstract Refined models for MOS-devices and increasing complexityrotiit de-
signs cause the need for Model Order Reduction (MOR) teciesithat are capable
of treating nonlinear problems. In time-domain simulatioa Trajectory PieceWise
Linear (TPWL) approach is promising as it is designed to useRvi@thodologies
for linear problems as the core of the reduction process.deare different linear
approaches with respect to their performance when usediaslker TPWL.

1 Introduction

The tendency to analyze and design systems of ever incgeaminplexity is becom-
ing more and more a dominating factor in progress of chipgteghlong with this
tendency, the complexity of the mathematical models irsgedoth in structure and
dimension. Complex models are more difficult to analyze, duelto this it is also
harder to develop control algorithms. Therefore Model ®Rleduction (MOR) is
of utmost importance. For linear systems, quite a numbeppfaaches are well-
established and have proved to be very useful [1]. Howeweurate models for
MOS-devices introduce highly nonlinear equations. Andhaspacking density in
circuit design is growing, very large nonlinear systemseariHence, there is a grow-
ing request for reduced order modeling of nonlinear prokldmtransient analysis
the Trajectory PieceWise Linear (TPWL) approach [2, 3] is@nsing technique
as it makes use of linear MOR methods. A brief introductiomBWL is given be-
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low. Analyzing the TPWL approach, we are interested in hofedint linear MOR
techniques perform when used as a linear kernel, how rofbesetiuced models are
and how they behave when combined to more complex systems.

2 MOR for linear problems

A continuous time-invariant (lumped) multi-input multisput linear dynamical
system is of the form:

{Cdﬁtt) = —Gx(t) +Bu(t), )
y(t) = Lx(t) +Du(t), x(0) =xo,

wherex(t) € R" is the inner statey(t) € R™ is the input,y(t) € RP is the output.
The dimensiom of the state vector is called the order of the systén, B, L and
D are the state space matrices. The dimensiaf the system exhibits the order
of elements contained in the circuit. As VLSI systems exthéblarge density of
elementsn can easily reach a million.

Basically, MOR techniques aim to derive a system:

{édf‘j(t‘) —Gx(t)+Bu(t), X(t)€RY, )
y(t) = LX(t) +Du(t), %(0)=%o, Yi(t) € RP,

of orderqwith g < nthat can replace the original high-order system (1) in tinssge
that the input-output behavior, described by the transfaction in the frequency
domain, of both systems agrees. A common way is to identifybagace of dimen-
sionq < n, that captures the dominant information of the dynamicsp@ngect (1)
onto this subspace, spanned by some basis veptors ., vqg}.

The reduction can be carried out by means of different teghes. Approaches
like PRIMA [4], SPRIM [5], and PMTBR [6] project the full prdem (1) onto a
subspace of dimensian The first two rely on Krylov subspace methods. The latter
one exploits the direct relation between the multipoiribra! projection framework
and the Truncated Balanced Realization (TBR). This appreac take advantage
of some a-priori knowledge of the system properties, andaget on a statistical
interpretation of the system Gramians. We give a brief igwe these techniques
and analyze their behavior when used as linear kernels in TPWL

2.1 Krylov Projection Techniques and Poor Man’s TBR

In recent years, MOR techniques based on Krylov subspavedjeaome the meth-
ods of choice for generating macromodels of large multi-BrC circuits. Krylov

subspace methods provide numerically robust algorithmgédaerating a basis of
the reduced space, such that a certain number of moments watisfer function of
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the original system is matched. Consequently, the trarfisfation of the reduced
system approximates the original transfer functions ad@uspecified frequency, or
a collection of frequency points [7]. Owing to their robusts and low computa-
tional cost, Krylov subspace algorithms proved suitabletie reduction of large-
scale systems, and gained considerable popularity, edlyanielectrical engineer-
ing. A number of Krylov-based MOR algorithms have been dgvetl, including
technigues based on the Lanczos method [8, 9] and the Aralgdrithm [4, 10].
The main drawbacks of these methods are, in general, laaloeéple error bounds
for the extracted reduced models, and no guarantees foerpieg stability and
passivity. Nevertheless, it has been demonstrated thhaé ibtiginal system has a
specific structure, both stability and passivity can be gme=d in the reduced sys-
tem, by exploiting the fact that congruence transformatipreserve the definiteness
of a matrix. PRIMA [4] combines the moment matching approadth projection
to arrive at a reduced system of type (2). Its main featurtesisit produces provably
passive reduced models.

However, PRIMA does not preserve the structure of the systairices which is
of an interest when trying to realize the reduced model. $P[8], an adaption of
this method, preserves block structures of the circuit icedrand generates prov-
ably passive and reciprocal macromodels of multiport RLECWis. The SPRIM
models match twice as many moments as the corresponding RRibtlels ob-
tained with the same amount of computational work. Also 3P RIless restrictive
to matricesC andG in system (1), see [11].

Poor Man’s TBR (PMTBR) [6] is a projection MOR technique tleaploits the
direct relation between the multipoint rational projentfoamework and the Trun-
cated Balanced Realization (TBR). More details on PMTBRImafound in [6]. In
the following simulation we assume tHat=1 andD =0 in (1).

2.2 Examples

We consider the RLC ladder networks, illustrated in Figure 1

y R, K Lik-1 ’ Ly 1 y Ry K Lk 2 Li 1
u ‘ R u R
o | o] ol o R c R C R
T =

Fig. 1 Left: RLC circuit example 1; Right: RLC circuit example 2.

The state variable € R?~1 consists of the voltages of th¢ nodes and the
currents traversing the inductof&,...,Lx_1}. The voltageu and the curreny
represent input and output, respectively. Note that whemtimber of nodes iK
the order of the system becomes- 2K — 1.
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Example 1. We choose an RLC ladder network shown in Figure 1 (left). Weake
the capacitances and inductances to the same value 1 Rahﬂe% andR, = %
see [12]. We arrange 51 nodes which gives us the order 10hdatitcuit.

Example 2. We use an RLC ladder network given in Figure 1 (right). We Heha
capacitances and inductances to the same value 1 Rhitel, R, = % andR=1,
we choose 51 nodes which results in order 101 for the circuit.

The main reason for choosing these two examples is the hwhaivHankel sin-

gular values, see [1]. The Hankel singular values for thé dixample do not show
any significant decay while in the second example we obsemapid decay in

the values. The model is reduced by three linear techniqeR&MA, SPRIM and

PMTBR) from order 101 to order 34 for both examples. Figurb@nss the absolute
error between the transfer function of the full system amdtansfer function of the
reduced system.

)
)

Fig. 2 Left: Error plot for the Example 1; Right: Error plot for the &xple 2.

As we expected the SPRIM produces a better approximationRRAMA since
it matches twice as much moments. Although both methods hayeod match
around the expansion point 0, the error increases as we rdi@fia the expansion
point. As the Hankel singular values for the first example dodecay, the PMTBR
cannot produce an accurate model for low frequency in theg.cBhis shows that
we can not stick to one method for reduction in general andrtethod should be
chosen depending on the circuit behavior.

3 MOR for nonlinear problems

Large linear problems most frequently arise from modeliagapitic effects intro-
duced by the layout, i.e., the wiring. As structure sizeselese and packing densi-
ties increase the growing complexity of the nominal cinguthat is build up from
transistors showing highly nonlinear behavior generdtesieed of MOR for non-
linear problems as well. In general an electric circuit cardbscribed by a system
of differential-algebraic equations (DAES) of the form:
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& ax(v)] + (1)) +Bu(t) = 0. ©
wherex(t) € R" represents the unknown vector of circuit variables at timéto, te];
the nonlinear functiong, j : R" — R" describe the contribution of reactive and
nonreactive elements, respectively, and the m&@rmiistributes the input excitation
u: [to,te] — R™. Note that we concentrate on the statenly and omit the output
stagey in our consideration.

MOR techniques developed for linear problems (1) cannopipdied directly to
nonlinear models (3) as the transfer to a lower dimensioradllpm does not guar-
antee a reduction in the computational effort from evahgathe nonlinear model.

3.1 Trajectory Piecewise Linearization

The idea of TPWL [2, 3] is to represent the full nonlinear sys{&) by a bunch of
order reduced linear models that can reproduce the typate\bor of the system.
For this purpose a training inputt) for t € [to, te] is chosen and a transient simu-
lation is run in order to get a trajectory, i.e., a collect@pointsXp, . .., XN approx-
imating x(t;) at time-pointsy < t; < --- < ty = te, that reflect typical states of the
system. On the trajectory, poir{gi”, ... . xi"} C {Xo,..., Xy} are selected around
which the nonlinear functiong and j are linearized. To the linear models, that
are all of dimensiom, any MOR for linear problems can be applied. This delivers
local reduced subspac¥s, . .., Vs of possibly different dimensionl, ..., ks. One
common subspacé of dimensionk < n is constructed that describes the primary
information of all local subspaces and on which all lineadels are projected. Fi-
nally a weightingw; (Vz) € [0,1] fori = 1,...,swith 3§ ; w;(Vz) = 1 is introduced
to decide which linear submodels are valid in a certain 8@naThe full system
shall be replaced by the reduced one given by

iwi(vZ) {VTQV;z+VTGin+VT(j(xf"‘)—Gix}i”) +VTBuUt)=0 (4)

ithc — 24 |
with G = 55 i andG; = 5 i

Besides the freedom in chooéing which linear MOR techniguese there are
also different strategies reported for determining thednization points along the
trajectory. In our considerations we stick to the strateggadibed in [3]. There
at each time-point; both the full nonlinear system and the currently respoasibl
reduced linear model are discretized with the same stefgsgéng to two different
approximations andx; = Vz. Whenever the difference — X; becomes too large,
a new linearization point is arranged.
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3.2 Example

We apply only PRIMA and PMTBR as a linear core for TPWL. In athsiation
below the PMTBR is used unless stated otherwise. One of ttgigas which is
used inside the SPRIM algorithm is always of size 2 by 2 andther part becomes
larger as there is no inductor in the structure of the invettain. Therefore SPRIM
is not reasonable to apply in this test case. The invertanatemstitutes a special
class of circuit problems. Here a signal passes throughysiters, activating at each
time-slot just a few elements and leaving the others latdatvever, as the signal
passes through, each element is active at some time anihgjedgome others. As
in [13], the training of the inverter chain during the TPWL neb@xtraction was
done with a single piecewise linear input voltagei@) (see also Figure 3), defined

by
U(0) =0, G(5ns =0, U(10ns =5, U(15ng =5, G(17ns = 0.
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Fig. 3 Inverter chain: training input (left) and state response friglh stages).

In Figure 4 we see the danger of defining distances to lingi@wiz points not in
the full space but in the reduced space. Both plots are slgathasignal at inverter
24. In Figure 4 in the right plot the second impulse is justrecbgnized where this
seems to be no problem in the left plot. However, somethisg gtems to be miss-
ing, even if we take the distance in the full space. In Figutteebvoltage at inverters
68 and 92 is given. In both cases, the signal cannot be rest\anrrectly. In the
latter one it is even not recognized at all. At the moment wanoa state reasons
for that. Obviously this is not caused by the reduction butHgylinearization or the
weighting procedure as we get similar results when turnihthe reduction step.

The impact of broadening the input signatan be seen in Figure 6, which dis-
plays the voltage at inverters 18 and 68. The signals arevMay &om the expected
behavior. However, there seems to be a trend towards ttegisitithat was encoun-
tered during the training. And indeed in Figure 6 (right)jraterter 68 we find a
time shifted version of the training signal instead of theevinput signal that has
been applied now.

Finally, in Figure 7 the result of using the reduced modet éneses from training
input u of given pulse width with a slightly tighter input signalis given for the
inverters 6 and 68, respectively. In the former the charatie is reflected quite
well. However, in the latter the output signal seems to begusne shifted version
of the situation during the training. Having a closer lookaiv the inverter chain is
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Fig. 4 Inverter chain: TPWL-resimulation, reduction to order S5@aated pulse, inverter 24, Left:
distance defined in full space; Right: distance defined in redlspace.
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Fig. 5 Inverter chain: TPWL-resimulation, reduction to order 5@e&ted pulse, distance in full
space, Left: inverter 68; Right: inverter 92.
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Fig. 6 Inverter chain: TPWL-resimulation, reduction to order 50¢devi pulse, distance in full
space, Left: inverter 18; Right: inverter 68.

modeled we see that the input voltage is applied at a floataig nThis could give
reasoning for the behavior encountered. However, also dokviard and forward

validity of the linear models could be the reasons.

tina ) tine |

Fig. 7 Inverter chain: TPWL-resimulation, reduction to order 5@hter impulse, distance in full
space, Left: inverter 6; Right: inverter 68.
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The error in Figure 8 is an overall error for all nodes. Thisterror shows that
PMTBR vyields better approximations than PRIMA. As changiramn one linear
method to the other the problems stay the same. Thus theti@usteps do not
cause them.

PRIMA
012} [-—- PMTBR

relative error

vvvvv

Fig. 8 Overall error for PRIMA and PMTBR used inside TPWL.
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