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Abstract In this paper the field/circuit coupling is reconsidered oon-linear)
lumped electric circuits refined by 3-D magnetoquasistati@luctor models, where
the circuit is described by modified nodal analysis and the fie discretized in
the terms of the finite integration technique. The couplifighe two systems of
differential-algebraic equations is discussed and twoerigal approaches are pro-
posed, the weak (co-simulation) and strong coupling (mtmo). The DAE-index
of the subproblems and of the full problem are analyzed aaddnmvergence prop-
erties of the co-simulation are studied by inspecting thgeddencies of algebraic
constraints on solutions of previous iterations. Finallynputational results of a
simple half rectifier circuit are exemplarily given to prave concepts.

1 Introduction

Many basic elements in circuit analysis are described bg-{tinear relations, dis-
regarding field effects. Sometimes, they are replaced by mamplex but more re-
alisticcompanion model® meet reality. These give, however, only a partial insight
into field effects. In contrasefined modelsdlirectly rely upon Maxwell’s equations.
We restrict our analysis to the refinement of two conductpesy which are embed-
ded into electric circuits and exhibit proximity and skirfieets with eddy currents.
The coupled problem is a system of differential-algebrgications (DAES) orig-
inating from Kirchhof’s Laws and the discrete Maxwell Egoas. It can be directly
addressed by solving omaonolithic system using a field- or circuit-oriented ap-
proach. In the field approach, commonly the circuit is désatiusing loop/branch
technigues and is solved within the field simulator. Thisrapph is quite successful
and well understood [1], but it is neither efficient for caagl with very large cir-
cuits nor usable within modern circuit simulators that aasdal on modified nodal
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analysis (MNA). The circuit-oriented approach relies on MMIthough intensive
research has been carried out [2], companion models dreiskispread.
Obviously the strongly coupled approaches above will netltae advantages
of both simulators. Thereforeo-simulationbecomes beneficial [3]. It allows the
use of different simulators for each subproblem and it gtesia natural support
for diversifying integration methods and time-steppingssmultirate) towards the
subproblems. The coupling is given mathematically by a dyinateration scheme.
The paper is organized as follows: In Sections 2 and 3 welrgmatircuit and
field settings, in Section 4 we analyze the DAE-index of thilfgystem, in Sec-
tion 5 we introduce the monolithic coupling and its co-siatidn with index and
convergence analysis, in Sections 6 and 7 we give an examgléal conclusions.

2 Lumped Electric Circuit

Electric circuits are given by elements connected by Kiaffih Laws and their
description is given here in terms of MNA, which yields DAESc® it is based on
redundant coordinates. In the charge-flux oriented fortimnia[4], the system reads

Acdq+Arr(ALet) +ALiL +Aviv +Aii(t) +Ayix (ATet) =0,
§o-Ale=0,  Aje-v()=0, (1)
q_qC(A£e7t):O7 (D_(DL(iL’t):O’
with incidence matrice8, node potentials, independent and controlled current and
voltage sourcek i) andv, currents through voltage and flux controlled elemépts
andi_, charges and fluxesand @, functions of charges, fluxes and resistanggs
@ andr (with positive definite derivatives), respectively.
The numerical properties of (1) are well known, e.g. the DA#ex has been dis-

cussed by decomposing the unknogeniy,i_,q, @) into algebraic and differential
parts using a projectdPc onto the kernel OAE, ie.,

QckerAL =kerAL and ALQc =0,
and its complementary projectids = | — Qc. We assume in the terms above

C1 No loops of capacitors and voltage sources, i.e (&gAr,Ay)" = {0}.
C2 No cutsets of inductors and/or current sources, i.e Qkéx, = {0}.
C3 \oltage controlled current sources parallel to capaciices QLA i, = 0.

This splits the unknown intg:= (Ree, j.)" andz:= (Qce, jv,q,®)", such that
%y: f]_(y,Z,i)\), Ozgl(y,Z), (2)

is an index-1 description of (1) since the derivatgtzgl can be shown to be non-
singular assumin@1-C3. This motivates the following important property [5]:
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Theorem 1.Let us consider a lumped electric circuit in forfh) that respect<3,
then the flux/charged oriented MNA leads to an index-1 DAEI{C?2 hold, it leads
otherwise to an index-2 DAE.

3 Electromagnetic Field

The electromagnetic field is described by Maxwell’s equetidVe assume that they
are spatially discretized by either the finite integratienhnique or the finite ele-
ments method using lowest-order Whitney elements and stagjgeids [6, 7]. This
gives their discrete counterpart, also called the Maxw@ltid Equations (MGE)

Ce=-4b, Ch=gd+7], Sd=q, $=0, @

with discrete curl operator§ andC, divergence operators and §, electric and
magnet|c field strengtle andh, current density, discrete magnetic and electric flux

i, b andd, respectively. For linear materials, MGE are accomplished

o)

G:M“ﬁ, :M£@7 :MUéa (4)

with symmetric positive (semi-)definite matrickly, M. andM for the permeabil-
ities, permittivities and conductivities, respectivebnly My is generally singular
due to non-conducting regions [8]. We obtain from (3,4) thd-curl equation

0

Mgﬁa+Mg /a—i_K == -SI‘C7 (5)

with a denoting the magnetic vector potential (MVP) aad:= CM,C.

4 Field Models as Refined Network Elements

Conductor models for connecting field and circuit parts agé-known. Most com-
mon are solid and stranded conductors (Fig. 1). We use tlea giymbol for a (mul-

(a) Solid (b) Stranded (c) Symbol

Fig. 1: Conductor models (a), (b) and device symbol (c) that embeds both into the circuit.
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tiport) device that consists of (multiple) conductors oftbtypes which are tightly
coupled by the field. The latter is described by the curl-egdation and excited by
the source current densitly,. due to the connected circuit [9]. Typically voltages
of solids {/s0)) and currents of stranded conductakg)(are considered to be given
and thus the excitation reads

Tsrc = Mg QsoiVsol + Qstrlstr - (6)

Here Q = [Qso1, Qstr] denotes the coupling matrix. Each column corresponds to a
conductor model and imposes currents/voltages onto edgt® grid. The un-
known currentssg and voltagessy are obtained by the additional equations

P T ds P T da
isol = GsolVsol — QsoMo ¢ @ Vsir = Rsrstr+ Qs @ 5 (7)

with the diagonal matrices of solid conductan€gg and stranded resistandeg; =
thrl. Let the model above fulfill the following assumptions

F1 The field is magnetoquasistatic, i.e., nhépa < max| ] grd-
F2 The solution is unique, i.efMg, K] := det(AMg + K, ) # 0 for aA.
F3 The models are spatially disjunct, i.Qg) ~Q(J.> =0, foralli # j.

F4 The excitation is consistent, i.e., k€Qso) = {0}, ker(CM ) = {0}.

'g,aniso~str

The first assumptioR1 implies the neglect offlggt—zza in the curl-curl equation (5),
such that (5) becomes a first order DAE, which is generallyumiquely solvable
due to the non-trivial nullspaces &y, andC. Thus the integlration requires the
selection of one solution within the equivalent class defibg b = Ca, therefore
we need thgaugingassumptiori-2, [10]. FromF3 we obtain the equivalent form

Mo fillin %a‘f' Kva = MgQsolVsol + QstiGstrVstr 1= Tsrc ) (8a)

QloKva =isol, (8b)

G‘strQ-srtrlvl;anigKva = istr ) (8C)

where Mg aniso 1S the pseudoinverse of the anisotropic conductivity mator

stranded conductors aidy siiin := Mg + QstertrQ;r is a combined (dense) ma-
trix for both conductor types.

Lemma 1. Let the field problem consist of solid and stranded condwsotgrich ful-
fill F1-F3, then the curl-curl equatiofBa)is (algebraic) index-1 for given voltages
and has only non-trivial components in the differentialtpar

Proof. The matrix pencil of (8a) is regular due K2, so the symmetric positive
semi-definiteness d¥l; fiin implies that (8a) is index-1 and there is the Kronecker
form

%al(t) + Ulval al(t) = Ul T:rc ) (9a)
a(t) = Uz j e, (9b)
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that splits the MVPa = V1a; + V»ay into differential and algebraic components by
using the regular matricés™ = (U ,UJ ) andV = (V1 , ). From

U2Mo fitin = Uz (Mo + QstGsuQdyy) =0

follows that bothU,Mg andU2QsGstr Vanish because the imagesM§ and Qs
are distinct, sinc&3 is assumed. Hence we finally conclude that=U, j = 0. O

Let us now study the full system (8) in the abstract form

a=fa(a,v,), 0= fp(a,vy), 0=0(a,iy), (20)

o

where the voltages, = (Vsol,Vstr)" and the currents, = (isoisy)" are combined
in vectors. The algebraic evaluatidg, is trivial in our case because of Lemma 1
and the algebraic functiogp consists of

0= 0s0i(a,isol) 0= 0gsu(a,istr)-

System (10) establishes a relation between curréptsi{,) and voltagesysol, Vstr)
and we can choose which quantity is treated as unknown fdr eaeductor type
in the field system, since then the other quantity is definethbycoupled electric
circuit. Therefore we will distinguish between the possibéts in the following.

Theorem 2. Let the field problem consist of solid and stranded condgctanich
fulfill F1-F4, then the systerf8) has (differential) index-2 and only for the case of
given voltages g4 and \y it has index-1.

Proof. In the case of given voltages the currentsare obtained by evaluations of
the algebraic equatiog,. Thus one differentiation with respect to time yields an
ODEs, hence we have (differential) index-1. In all otheresathe arguments are
analogue to the case of giveya andvsy. Now the functionfo, in (10) depends on
the unknowrvsg and one time derivative yields the additioméden constraint

d . 0 d. d.
0= agsol(ay isal) = ﬁgsol' f2(a, Vsol) + a'sol =: hsol(@, Vsols &ISOO)

and since the conductivity matricéd; andMg aniso reflectF3 (Mg anisdQsol = 0),
another differentiation of this constraint gives

0
Wsolhsol = Q-srolKv M;ﬁuin MaQsoI = Qlo|Kv Qsol = Q-sro|CTMvCQsol ;
which is non-singular due tB4; thus it is index-2. |

We conclude, if some voltage is considered unknown, theris(8h index-2 Hes-

senberg system (with index-1 evaluations), which is ldssoihditioned than the

general case. Additionally the index-2 variables entercthraputation linearly and

without time-dependence. Therefore the differential congnts are not affected by
the derivatives of perturbations, [11], and thus the nucaédifficulties correspond

to index-1.
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5 Coupling

We assign the voltagesg to differences of node potentiaésand map the controlled
current sources, to the currents through the conductors in (1)

v =Ale, ir = (isobist) - (11)
We finally obtain themonolithicsystem consisting of (1), (8) and (11).

Theorem 3.Let us consider an electric circuit in the forgh) with C1-C2, which is
monolithically coupled vigl1)to a field mode(8) of solid and stranded conductors
fulfilling F1-F4, then the full system is (differential) index-1.

Proof. The algebraic part of the MVP is insignificant for solid andetled conduc-
tors according to Lemma 1. Hence after embedding the fietdtire circuit system
the separated unknowns of the full system read

y:=(Pee ji,a1)", z:= (Qce jv,q, @,ix)". (12)

The critical partial derivative of the algebraic equatig-rg consisting ofg; andgp
is non-singular, since the first is regular dueG&-C2 and the second is just an
evaluation of a differential variabl@{). Thus we have index-1. m|

The assumptiorC3 is not required in the monolithic coupling because the alge-
braic part of the MVP was shown to vanish for the excitemerstodifi and stranded
conductors.

Alternatively the subproblems could be treated separételgwaveform relax-
ation schemdof Jacobi or Gaul3-Seidel type). When applying these schémes
DAEs one has to pay attention to algebraic constraints t@awmmerical instabili-
ties, [12]. We suggest the following GaulR-Seidel scheme

%a(n = fz(fa(l),v(o)), v - A} (y(O) —|—Z(O)), %y(l) _ f1(y(l),z<1>,'f\1>),
0=go(a,i"), 0=gi(y? 2V.i{"),

where the field is coupled via the current souriget® the circuit. The scheme above
shows directly that there is no dependence in algebraicti@ns @1, g2) on old
algebraic iterates (, zZ) and hence the convergence is guaranteed [13] and we obtain:

Lemma 2. Let us consider an electric circuit in the for(i) that respect$1-C2
is coupled via(11) to a field mode(8) of solid and stranded conductors fulfilling
F1-F4, then both subproblems are index-1 and the waveform-rétaxabove will
converge.

The additional assumptio@3 can eliminate the,-dependence of the algebraic
equationg; and allows us to exchanges the computational order of thereblems
and thus we may compute the circuit first without losing theveogence guarantee.
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1 2 3

v(z)<> % =——c | R

0

(a) Half rectifier: veg = 250V, f = 50Hz (b) Voltage in nodes 1 and 3,
Rioag= 100Q and Shockley diode Is=1pA obtained by nono, H =5us

Fig. 2: Refined half rectifier circuit and its input and computed output voltages.

6 Numerical Experiments

The numerical experiments have been obtained with codeishahplemented
within the COMSON DP(ht t p: / / www. conson. or g) using field models con-
structed byEM Studiofrom CST(ht t p: / / www. cst . com). Itis capable of both,
the monolithic and the co-simulation of non-linear cirsuiéfined by (linear) con-
ductor models. The discussed schemes have been supplied®t where the time
integration is kept simple by using Backward Euler.

The example of Fig. 2 is a refined half rectifier with a transfer consisting
of two stranded conductors and a solid core. The co-sinmmatiithout iterations
of time frames ¢osi ml) is slightly faster than the monolithic simulationt{no)
using the same time stepisand it yields comparable results if the accuracy require-
ment is quite low. For decreasing step sizesi ml does not linearly improve its
accuracy asrono andcosi nB (3 iterations) do (Fig. 3), but the latter has an in-
creased computational effort due to the additional iteresti

Adaptive time-integrators in the co-simulation apply tlzeng step size to the
circuit and the field, as long as they do not have multiratemtidl itself. This is in
line with the fact that the field reflects the dynamics of thepted circuit nodes.

7 Conclusions

The field problem is essentially an index-1 DAE, the monditoupled system is
still index-1 and the convergence of the proposed co-sitiomas guaranteed, as
documented by the computation of a refined rectifier cirdiie co-simulation uses
problem-specific software packages and exploits multpatentials if available in
the circuit, but does not have all possible benefits. Apiyrstep size and iteration
control will improve efficiency, and the use of more complepigalent circuits
(e.g. additional inductivities) might require fewer fielddates [14, 15].
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(a) nono, H = 100us

(b) cosi nB, H=100us

(c) cosiml, H=100us

o5 oor o0z

(d) mono, H = 10us

o0 T

(e) cosi nB, H =10us

o5 oor T

(f) cosi L, H = 10us

Fig. 3: Errors in the voltages compared to the results of mono, H =5-10-° from Fig. 2b
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