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DAE-Index and Convergence Analysis of
Lumped Electric Circuits Refined by 3-D
Magnetoquasistatic Conductor Models

Sebastian Scḧops1, Andreas Bartel1, Herbert De Gersem2, and Michael G̈unther1

Abstract In this paper the field/circuit coupling is reconsidered for(non-linear)
lumped electric circuits refined by 3-D magnetoquasistaticconductor models, where
the circuit is described by modified nodal analysis and the field is discretized in
the terms of the finite integration technique. The coupling of the two systems of
differential-algebraic equations is discussed and two numerical approaches are pro-
posed, the weak (co-simulation) and strong coupling (monolithic). The DAE-index
of the subproblems and of the full problem are analyzed and the convergence prop-
erties of the co-simulation are studied by inspecting the dependencies of algebraic
constraints on solutions of previous iterations. Finally computational results of a
simple half rectifier circuit are exemplarily given to provethe concepts.

1 Introduction

Many basic elements in circuit analysis are described by (non-)linear relations, dis-
regarding field effects. Sometimes, they are replaced by more complex but more re-
alisticcompanion modelsto meet reality. These give, however, only a partial insight
into field effects. In contrastrefined modelsdirectly rely upon Maxwell’s equations.
We restrict our analysis to the refinement of two conductor types, which are embed-
ded into electric circuits and exhibit proximity and skin effects with eddy currents.

The coupled problem is a system of differential-algebraic equations (DAEs) orig-
inating from Kirchhof’s Laws and the discrete Maxwell Equations. It can be directly
addressed by solving onemonolithicsystem using a field- or circuit-oriented ap-
proach. In the field approach, commonly the circuit is described using loop/branch
techniques and is solved within the field simulator. This approach is quite successful
and well understood [1], but it is neither efficient for coupling with very large cir-
cuits nor usable within modern circuit simulators that are based on modified nodal
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analysis (MNA). The circuit-oriented approach relies on MNA. Although intensive
research has been carried out [2], companion models are still widespread.

Obviously the strongly coupled approaches above will not have the advantages
of both simulators. Thereforeco-simulationbecomes beneficial [3]. It allows the
use of different simulators for each subproblem and it provides a natural support
for diversifying integration methods and time-stepping rates (multirate) towards the
subproblems. The coupling is given mathematically by a dynamic iteration scheme.

The paper is organized as follows: In Sections 2 and 3 we recall the circuit and
field settings, in Section 4 we analyze the DAE-index of the field-system, in Sec-
tion 5 we introduce the monolithic coupling and its co-simulation with index and
convergence analysis, in Sections 6 and 7 we give an example and final conclusions.

2 Lumped Electric Circuit

Electric circuits are given by elements connected by Kirchhoff’s Laws and their
description is given here in terms of MNA, which yields DAEs since it is based on
redundant coordinates. In the charge-flux oriented formulation, [4], the system reads

AC
d
dt q+ARr(AT

Re, t)+AL iL +AV iV +AI i(t)+Aλ iλ (AT
λ e, t) = 0,

d
dt Φ −AT

L e= 0, AT
Ve−v(t) = 0,

q−qC(AT
Ce, t) = 0, Φ −ΦL(iL , t) = 0,

(1)

with incidence matricesA, node potentialse, independent and controlled current and
voltage sourcesi, iλ andv, currents through voltage and flux controlled elementsiV
andiL, charges and fluxesq andΦ , functions of charges, fluxes and resistancesqC,
ΦL andr (with positive definite derivatives), respectively.

The numerical properties of (1) are well known, e.g. the DAE-index has been dis-
cussed by decomposing the unknown(e, iV , iL ,q,Φ) into algebraic and differential
parts using a projectorQC onto the kernel ofAT

C, i.e.,

QC kerAT
C = kerAT

C and AT
CQC = 0,

and its complementary projectionPC = I −QC. We assume in the terms above

C1 No loops of capacitors and voltage sources, i.e., ker(AC,AR,AV)T = {0}.
C2 No cutsets of inductors and/or current sources, i.e., kerQT

CAV = {0}.
C3 Voltage controlled current sources parallel to capacitors, i.e.,QT

CAλ iλ = 0.

This splits the unknown intoy := (PCe, jL)T andz := (QCe, jV ,q,φ)T , such that

d
dt y = f1(y,z, iλ ), 0 = g1(y,z), (2)

is an index-1 description of (1) since the derivative∂
∂zg1 can be shown to be non-

singular assumingC1-C3. This motivates the following important property [5]:
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Theorem 1.Let us consider a lumped electric circuit in form(1) that respectsC3,
then the flux/charged oriented MNA leads to an index-1 DAE iffC1-C2 hold, it leads
otherwise to an index-2 DAE.

3 Electromagnetic Field

The electromagnetic field is described by Maxwell’s equations. We assume that they
are spatially discretized by either the finite integration technique or the finite ele-
ments method using lowest-order Whitney elements and staggered grids [6,7]. This
gives their discrete counterpart, also called the Maxwell’s Grid Equations (MGE)

C⌢e = − d
dt

⌢⌢

b , C̃
⌢

h = d
dt

⌢⌢

d+
⌢⌢

j , S̃
⌢⌢

d = q , S
⌢⌢

b = 0 , (3)

with discrete curl operatorsC and C̃, divergence operatorsS and S̃, electric and
magnetic field strength⌢e and

⌢

h, current density, discrete magnetic and electric flux
⌢⌢

j ,
⌢⌢

b and
⌢⌢

d, respectively. For linear materials, MGE are accomplishedby

⌢⌢

b = Mµ
⌢

h ,

⌢⌢

d = Mε
⌢e ,

⌢⌢

j = Mσ
⌢e , (4)

with symmetric positive (semi-)definite matricesMµ , Mε andMσ for the permeabil-
ities, permittivities and conductivities, respectively;only Mσ is generally singular
due to non-conducting regions [8]. We obtain from (3,4) the curl-curl equation

Mε
d2

dt2
⌢a+Mσ

d
dt

⌢a+Kν
⌢a =

⌢⌢

j src , (5)

with ⌢a denoting the magnetic vector potential (MVP) andKν := C̃MνC.

4 Field Models as Refined Network Elements

Conductor models for connecting field and circuit parts are well-known. Most com-
mon are solid and stranded conductors (Fig. 1). We use the given symbol for a (mul-

v
sol

i
sol

(a) Solid

v
str

i
str

(b) Stranded (c) Symbol

Fig. 1: Conductor models (a), (b) and device symbol (c) that embeds both into the circuit.
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tiport) device that consists of (multiple) conductors of both types which are tightly
coupled by the field. The latter is described by the curl-curlequation and excited by
the source current density

⌢⌢

j src due to the connected circuit [9]. Typically voltages
of solids (vsol) and currents of stranded conductors (istr) are considered to be given
and thus the excitation reads

⌢⌢

j src = Mσ Qsolvsol+Qstristr . (6)

HereQ = [Qsol,Qstr] denotes the coupling matrix. Each column corresponds to a
conductor model and imposes currents/voltages onto edges of the grid. The un-
known currentsisol and voltagesvstr are obtained by the additional equations

isol = Gsolvsol−QT
solMσ

d
dt

⌢a , vstr = Rstristr+QT
str

d
dt

⌢a , (7)

with the diagonal matrices of solid conductancesGsol and stranded resistancesRstr =
G−1

str . Let the model above fulfill the following assumptions

F1 The field is magnetoquasistatic, i.e., max| d
dt

⌢⌢

d| ≪ max|
⌢⌢

j src|.
F2 The solution is unique, i.e.,[Mσ ,Kν ] := det(λMσ +Kν) 6= 0 for aλ .
F3 The models are spatially disjunct, i.e.,QT

(i) ·Q( j) = 0, for all i 6= j.

F4 The excitation is consistent, i.e., ker(CQsol) = {0}, ker(CM+
σ ,anisoQstr) = {0}.

The first assumptionF1 implies the neglect ofMε
d2

dt2
⌢a in the curl-curl equation (5),

such that (5) becomes a first order DAE, which is generally notuniquely solvable
due to the non-trivial nullspaces ofMσ andC. Thus the integration requires the
selection of one solution within the equivalent class defined by

⌢⌢

b = C⌢a, therefore
we need thegaugingassumptionF2, [10]. FromF3 we obtain the equivalent form

Mσ ,fillin
d
dt

⌢a+Kν
⌢a = Mσ Qsolvsol+QstrGstrvstr :=

⌢⌢

j
∗

src , (8a)

QT
solKν

⌢a = isol , (8b)

GstrQ
T
strM

+
σ ,anisoKν

⌢a = istr , (8c)

where M+
σ ,aniso is the pseudoinverse of the anisotropic conductivity matrix for

stranded conductors andMσ ,fillin := Mσ + QstrGstrQT
str is a combined (dense) ma-

trix for both conductor types.

Lemma 1. Let the field problem consist of solid and stranded conductors which ful-
fill F1-F3, then the curl-curl equation(8a) is (algebraic) index-1 for given voltages
and has only non-trivial components in the differential part.

Proof. The matrix pencil of (8a) is regular due toF2, so the symmetric positive
semi-definiteness ofMσ ,fillin implies that (8a) is index-1 and there is the Kronecker
form

d
dt

⌢a1(t)+U1KνV1
⌢a1(t) = U1

⌢⌢

j
∗

src , (9a)
⌢a2(t) = U2

⌢⌢

j
∗

src , (9b)
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that splits the MVP⌢a = V1
⌢a1 +V2

⌢a2 into differential and algebraic components by
using the regular matricesUT =

(

UT
1 ,UT

2

)

andV = (V1 , V2). From

U2Mσ ,fillin = U2
(

Mσ +QstrGstrQ
T
str

)

= 0

follows that bothU2Mσ andU2QstrGstr vanish because the images ofMσ andQstr

are distinct, sinceF3 is assumed. Hence we finally conclude that⌢a2 = U2
⌢⌢

j = 0. 2

Let us now study the full system (8) in the abstract form

d
dt

⌢a = f2a(
⌢a,vλ ), 0 = f2b(

⌢a,vλ ), 0 = g2(
⌢a, iλ ), (10)

where the voltagesvλ = (vsol,vstr)
T and the currentsiλ = (isol, istr)

T are combined
in vectors. The algebraic evaluationf2b is trivial in our case because of Lemma 1
and the algebraic functiong2 consists of

0 = gsol(
⌢a, isol), 0 = gstr(

⌢a, istr).

System (10) establishes a relation between currents (isol, istr) and voltages (vsol, vstr)
and we can choose which quantity is treated as unknown for each conductor type
in the field system, since then the other quantity is defined bythe coupled electric
circuit. Therefore we will distinguish between the possible sets in the following.

Theorem 2.Let the field problem consist of solid and stranded conductors which
fulfill F1-F4, then the system(8) has (differential) index-2 and only for the case of
given voltages vsol and vstr it has index-1.

Proof. In the case of given voltages the currentsiλ are obtained by evaluations of
the algebraic equationg2. Thus one differentiation with respect to time yields an
ODEs, hence we have (differential) index-1. In all other cases the arguments are
analogue to the case of givenisol andvstr. Now the functionf2a in (10) depends on
the unknownvsol and one time derivative yields the additionalhidden constraint:

0 =
d
dt

gsol(
⌢a, isol) =

∂
∂ ⌢a

gsol · f2(
⌢a,vsol)+

d
dt

isol =: hsol(
⌢a,vsol,

d
dt

isol),

and since the conductivity matricesMσ andMσ ,aniso reflectF3 (Mσ ,anisoQsol = 0),
another differentiation of this constraint gives

∂
∂vsol

hsol = QT
solKνM+

σ ,fillin Mσ Qsol = QT
solKνQsol = QT

solC
TMνCQsol ,

which is non-singular due toF4; thus it is index-2. 2

We conclude, if some voltage is considered unknown, then (8)is an index-2 Hes-
senberg system (with index-1 evaluations), which is less ill-conditioned than the
general case. Additionally the index-2 variables enter thecomputation linearly and
without time-dependence. Therefore the differential components are not affected by
the derivatives of perturbations, [11], and thus the numerical difficulties correspond
to index-1.
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5 Coupling

We assign the voltagesvλ to differences of node potentialseand map the controlled
current sourcesiλ to the currents through the conductors in (1)

vλ = AT
λ e , iλ = (isol, istr)

T
. (11)

We finally obtain themonolithicsystem consisting of (1), (8) and (11).

Theorem 3.Let us consider an electric circuit in the form(1) with C1-C2, which is
monolithically coupled via(11) to a field model(8) of solid and stranded conductors
fulfilling F1-F4, then the full system is (differential) index-1.

Proof. The algebraic part of the MVP is insignificant for solid and stranded conduc-
tors according to Lemma 1. Hence after embedding the field into the circuit system
the separated unknowns of the full system read

y := (PCe, jL,
⌢a1)

T
, z := (QCe, jV ,q,φ , iλ )T

. (12)

The critical partial derivative of the algebraic equation∂
∂zg consisting ofg1 andg2

is non-singular, since the first is regular due toC1-C2 and the second is just an
evaluation of a differential variable (⌢a1). Thus we have index-1. 2

The assumptionC3 is not required in the monolithic coupling because the alge-
braic part of the MVP was shown to vanish for the excitement ofsolid and stranded
conductors.

Alternatively the subproblems could be treated separatelyby awaveform relax-
ation scheme(of Jacobi or Gauß-Seidel type). When applying these schemesto
DAEs one has to pay attention to algebraic constraints to avoid numerical instabili-
ties, [12]. We suggest the following Gauß-Seidel scheme

d
dt

⌢a(1) = f2(
⌢a(1)

,v(0)), v(0) := AT
λ (y(0) +z(0)), d

dt y
(1) = f1(y

(1)
,z(1)

, i(1)
λ ),

0 = g2(
⌢a(1)

, i(1)
λ ), 0 = g1(y

(1)
,z(1)

, i(1)
λ ),

where the field is coupled via the current sourcesiλ to the circuit. The scheme above
shows directly that there is no dependence in algebraic constraints (g1, g2) on old
algebraic iterates (iλ , z) and hence the convergence is guaranteed [13] and we obtain:

Lemma 2. Let us consider an electric circuit in the form(1) that respectsC1-C2
is coupled via(11) to a field model(8) of solid and stranded conductors fulfilling
F1-F4, then both subproblems are index-1 and the waveform-relaxation above will
converge.

The additional assumptionC3 can eliminate theiλ -dependence of the algebraic
equationg1 and allows us to exchanges the computational order of the subproblems
and thus we may compute the circuit first without losing the convergence guarantee.
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1 2 3

R
loadv(t) C

0

(a) Half rectifier: veff = 250V, f = 50Hz,
Rload= 100Ω and Shockley diode Is =1µA

-200

-100

0

100

200

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

e1
e3

(b) Voltage in nodes 1 and 3,
obtained by mono, H = 5µs

Fig. 2: Refined half rectifier circuit and its input and computed output voltages.

6 Numerical Experiments

The numerical experiments have been obtained with code thatis implemented
within theCOMSON DP(http://www.comson.org) using field models con-
structed byEM Studiofrom CST(http://www.cst.com). It is capable of both,
the monolithic and the co-simulation of non-linear circuits refined by (linear) con-
ductor models. The discussed schemes have been supplied to the DP, where the time
integration is kept simple by using Backward Euler.

The example of Fig. 2 is a refined half rectifier with a transformer consisting
of two stranded conductors and a solid core. The co-simulation without iterations
of time frames (cosim1) is slightly faster than the monolithic simulation (mono)
using the same time stepsH and it yields comparable results if the accuracy require-
ment is quite low. For decreasing step sizescosim1 does not linearly improve its
accuracy asmono andcosim3 (3 iterations) do (Fig. 3), but the latter has an in-
creased computational effort due to the additional iterations.

Adaptive time-integrators in the co-simulation apply the same step size to the
circuit and the field, as long as they do not have multirate potential itself. This is in
line with the fact that the field reflects the dynamics of the coupled circuit nodes.

7 Conclusions

The field problem is essentially an index-1 DAE, the monolithic coupled system is
still index-1 and the convergence of the proposed co-simulation is guaranteed, as
documented by the computation of a refined rectifier circuit.The co-simulation uses
problem-specific software packages and exploits multiratepotentials if available in
the circuit, but does not have all possible benefits. Applying a step size and iteration
control will improve efficiency, and the use of more complex equivalent circuits
(e.g. additional inductivities) might require fewer field updates [14,15].
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Fig. 3: Errors in the voltages compared to the results of mono, H = 5·10−6 from Fig. 2b
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