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Polynomial Chaos for the Computation of
Failure Probabilities in Periodic Problems

Roland Pulch

Abstract Numerical simulation of electric circuits uses systems of differential alge-
braic equations (DAEs) in general. We examine forced oscillators, where the DAE
models involve periodic solutions. Uncertainties in physical parameters can be de-
scribed by random variables. We apply the strategy of the generalised polynomial
chaos (gPC) to resolve the stochastic model. In particular, failure probabilities are
determined using the approximation from gPC. We present results of numerical sim-
ulations for a system of DAEs modelling a Schmitt trigger.

1 Introduction

Mathematical modelling of electric circuits yields time-dependent systems of or-
dinary differential equations (ODEs) or differential algebraic equations (DAEs),
see [1]. The solutions consist of unknown node voltages and branch currents. Typi-
cally, the systems include many physical parameters like capacitances, inductances,
resistances, etc. Assuming some uncertainties, we replace several parameters by
random variables. Accordingly, the solution of the DAEs becomes a random pro-
cess. The generalised polynomial chaos (gPC) provides techniques for solving the
stochastic model approximately, see [2, 3].

We consider forced oscillators, where a periodic boundary value problem of the
DAEs results for each realisation of the parameters. A Galerkin approach yields
a larger coupled system of DAEs for the finite representation in the polynomial
chaos. Thus a periodic boundary value problem of the larger system has to be solved,
which can be done by well-known techniques like shooting methods, finite differ-
ence schemes or harmonic balance, cf. [4]. Previous work on periodic problems of
ODEs or DAEs using the strategy of gPC is given in [5–7]. Moreover, a numerical
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solution of the coupled system from gPC can be used to determine failure probabil-
ities of the problem, see [2, 8].

In this article, we consider the circuit of a Schmitt trigger, which converts an
analogue input signal into a digital output signal. The mathematical model that is
used represents the circuit as a system of DAEs. Assuming a random capacitance,
we solve numerically the periodic problem of the corresponding gPC system from
the Galerkin method , i.e., one random parameter appears. An according strategy and
simulations with several random parameters are presented for ODEs in [5, 6]. We
compute failure probabilities with respect to the behaviour of the output signal based
on the gPC approximation using a common approach. Thereby, failure means that
some result exceeds a reference value, which can be determined in a post-processing
of a time integration. The numerical results illustrate the performance of the gPC
expansions.

2 Problem Definition

We consider a system of DAEs in the form

A(p)ẋ(t,p) = f(t,x(t,p),p). (1)

The matrix A ∈ Rn×n and the right-hand side f : [t0, t1]×Rn ×Rq → Rn depend
on parameters p = (p1, . . . , pq)>. Hence the solution x : [t0, t1]×Rq →Rn becomes
also parameter-dependent. Let p ∈ Q for some relevant set Q ⊆Rq of parameters.
Typically, a parameter p j is included either in the matrix A or in the right-hand
side f.

We assume that independent input signals in the right-hand side force a periodic
solution for each parameter. Thus it holds x(t,p) = x(t +T,p) for all t ∈R and each
p∈Q. where the period T > 0 is known from the input signals. We set [t0, t1] = [0,T ]
in the following.

Let the chosen parameters exhibit some uncertainty. Consequently, we arrange
random variables p : Ω → Q with respect to a probability space (Ω ,A ,P). We as-
sume that each random variable p j exhibits a classical distribution like uniform,
beta, Gaussian, etc. Consequently, the solution of the DAEs (1) becomes a random
process X : [0,T ]×Ω → Rn. We are interested in the properties of the random
process like expected values and variances or more sophisticated quantities. In par-
ticular, we will investigate failure probabilities in Section 4.

For a function f : Rq → R depending on the parameters, we denote the corre-
sponding expected value (if exists) by

〈 f (p)〉=
∫

Ω
f (p(ω)) dP(ω) =

∫

Rq
f (p)ρ(p) dp
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using the probability density function ρ : Rq → R. We apply this operation com-
ponent-wise also to vector-valued or matrix-valued functions. The expected value
implies the inner product 〈 f (p)g(p)〉 for functions f ,g :Rq →R with f ,g ∈ L2.

3 Generalised Polynomial Chaos

Now we examine the stochastic process solving the DAEs (1) with random parame-
ters. Assuming finite second moments, the stochastic process exhibits the represen-
tation

X(t,p(ω)) =
∞

∑
i=0

vi(t)Φi(p(ω)), (2)

see [2]. The functions (Φi)i∈N with Φi : Rq → R represent a complete basis of
multivariate polynomials. We apply an orthonormal basis, i.e., it holds 〈ΦiΦ j〉= δi j
with the Kronecker-delta. The coefficient functions vi : [0,T ] → Rn are unknown
a priori. The periodicity of the stochastic process X implies periodic coefficient
functions with rate T , see [7].

We truncate the series (2) to achieve the finite representation

Xm(t,p(ω)) =
m

∑
i=0

vi(t)Φi(p(ω)). (3)

Approximations for expected values and variances are obtained component-wise by

〈Xm
j (t,p)〉= v0, j(t), Var(Xm

j (t,p)) =
m

∑
i=1

vi, j(t)2 for j = 1, . . . ,n (4)

with Xm = (Xm
1 , . . . ,Xm

n )> and vi = (vi,1, . . . ,vi,n)>. The coefficient functions can
be computed approximately by stochastic collocation, see [3, 9]. Alternatively, we
construct a system of DAEs for the coefficient functions. Inserting the finite approx-
imation (3) in the DAEs (1) yields the residual

r(t,p)≡ A(p)

(
m

∑
i=0

v̇i(t)Φi(p)

)
− f

(
t,

m

∑
i=0

vi(t)Φi(p),p

)
.

Due to the Galerkin method, we demand that the residual is orthogonal to the space
of the applied basis polynomials with respect to the inner product of L2 in the prob-
ability space. It follows a larger coupled system of DAEs

m

∑
i=0
〈Φl(p)Φi(p)A(p)〉v̇i(t) =

〈
Φl(p) f

(
t,

m

∑
i=0

vi(t)Φi(p),p

)〉
(5)

for l = 0,1, . . . ,m with the coefficient functions vi(t) of (3) as unknowns. Although
the solutions of (5) are not identical to the coefficients in (2), we apply the same
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symbol for convenience. A periodic boundary value problem of the system (5) has
to be solved, which can be done by according numerical methods, see [4].

In models of electric circuits, the matrix A typically includes parameters like
capacitances C and inductances L, for example. We assume the structure of para-
meter-dependence of the matrix A motivated in [10], namely

A(p) = A0 +
q

∑
j=1

η j(p j)A j

with constant matrices A0,A1, . . . ,Aq ∈Rn×n and scalar functions η j :R→R. We
can write the complete system using Kronecker products as

[
Im+1⊗A0 +

(
q

∑
j=1

S j⊗A j

)]
v̇(t) = F(t,v) (6)

with v = (v>0 ,v>1 , . . . ,v>m)>, the identity matrix Im+1 ∈R(m+1)×(m+1) and an abbre-
viation F for the right-hand side. The matrices S j are defined via

S j = (σ j
li) ∈R(m+1)×(m+1), σ j

li := 〈η j(p j)Φi(p)Φl(p)〉.

In case of a single parameter and η1(p1) ≡ p1, the constant matrix in the left-hand
side of (6) becomes block-tridiagonal, since the matrix S1 is tridiagonal due to the
orthogonality of the basis polynomials.

4 Determination of Failure Probabilities

If the solution of the DAEs (1) exhibits specific critical values, the corresponding
electric circuit may produce a failure. We describe the state of the solution via a
function g : [t0, t1]×Rn →R, where g≤ 0 represents the undesired cases. For exam-
ple, we define as failure that a component x j for a particular j ∈ {1, . . . ,n} becomes
smaller or larger than some threshold value θ ∈R, i.e.,

g(t,x(t,p))≡ x j(t,p)−θ or g(t,x(t,p))≡−x j(t,p)+θ . (7)

In the general case, the failure probability at each time point reads

PF(t) :=
∫

Rq
χ(g(t,X(t,p)))ρ(p) dp with χ(g) :=

{
0 for g > 0,
1 for g≤ 0.

(8)

In a Monte-Carlo or quasi Monte-Carlo simulation, the integrals (8) are approxi-
mated using realisations pk ∈ Q for k = 1, . . . ,K. For each realisation, a periodic
boundary value problem of the DAEs (1) has to be solved. Alternatively, we apply
the solution of the system (5) from the gPC. The computation of this solution can
be more costly than the (quasi) Monte-Carlo simulation with same accuracy. Nev-
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ertheless, the gPC solution includes more information and may be available from
a previous simulation for another purpose. We insert the approximation (3) in the
integral (8) and thus obtain

PF(t) .=
∫

Rq
χ(g(t,Xm(t,p)))ρ(p) dp. (9)

The formulation (9) can be evaluated by (quasi) Monte-Carlo sampling again. Given
a numerical solution for the coefficients v0, . . . ,vm, just polynomials have to evalu-
ated in an approximation of (9), i.e., no further DAE systems have to be resolved,
since we apply Xm(t,p) instead of x(t,p). Sophisticated techniques have been con-
structed for this purpose in case of parameters p with Gaussian distributions and/or
small failure probabilities, see [2, 8].

We consider w.l.o.g. the first case in (7). Since we examine periodic boundary
value problems, the total probability of failure P̂F ∈ [0,1] corresponds to the time-
independent function

g(x(·,p)) =
(

min
t∈[0,T ]

x j(t,p)
)
−θ . (10)

Typically, this probability is computed by a discretisation 0≤ t1 < · · ·< tR < T and
identification of the minimum value in the grid points.

5 Illustrative Example: Schmitt Trigger

We apply the circuit of a Schmitt trigger illustrated in Figure 1. The Schmitt trigger
converts an analogue input signal uin into a digital output signal uout. A mathemat-
ical modelling yields a system of DAEs (1) for five unknown node voltages with
differential index 1, see [1]. More precisely, the system exhibits the form

A(C)u̇ = f(t,u), u : [t0, t1]→R5.

Figure 1 also shows the singular matrix A, which depends on the linear capaci-
tance C only. We use a sinusoidal input signal with period T = 2 ms. Thus all node
voltages become periodic functions.

Let the capacitance be a random variable with uniform distribution in a certain
interval. We consider two cases in the simulation, namely

case (a) : C ∈ [10−9 F,10−7 F], case (b) : C ∈ [1 ·10−10 F,2 ·10−10 F].

The first case involves large uncertainties for demonstration and corresponds to the
results displayed in Figure 2 and 3. The second case is more realistic and serves for
the computation of failure probabilities only.

We solved all periodic boundary value problems via a finite difference method,
see [4], using the unsymmetric difference formula of second order (BDF2) at
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Fig. 1 Schmitt trigger circuit (left) and capacitance matrix of the mathematical model (right).

equidistant distributed time points. Thereby, the same accuracy was demanded in
each Newton iteration and we arranged 200 grid points.

We employ the strategy of gPC based on the representation (2), where the or-
thonormal basis functions are the Legendre polynomials in case of the uniform dis-
tribution. We discuss the periodic problems of the coupled systems of DAEs (5) for
different orders m.

Figure 2 demonstrates the expected value and the standard deviation of the output
voltage in case (a) with m = 3 calculated via (4). Moreover, three samples of the
output voltage for specific values of the capacitance are given. Figure 3 shows the
other coefficient functions of (3). Although the solutions are computed in [0,T ] only,
the figures show the domain [0,2T ] for a better impression of the signals.
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Fig. 2 Expected value (left, solid line) together with three samples for C = 10− j F with j = 7,8,9
(left, dashed lines) and standard deviation (right) of output uout computed by gPC with m = 3.

In the case (a), we recognise that variations in the capacitance do not influence
the upper value of the digital output signal. In particular, the standard deviation
evidences the critical time intervals. Using C = 10−10 F of case (b), the behaviour at
the lower value becomes the same as at the upper value, which represents the desired
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Fig. 3 Coefficient functions v1,v2,v3 for output voltage uout obtained by gPC with m = 3.

behaviour. An overshoot appears for larger parameters C > 10−10 F. However, this
effect decreases again for even larger capacitances C > 10−7 F.

To illustrate the convergence of the periodic coefficient functions in (2), we com-
pute the corresponding maximal values within [0,T ] for a simulation using m = 8.
Table 1 presents these maxima with respect to the output signal in case (a) as well as
case (b). The other components exhibit a similar behaviour. We recognise the con-
vergence of the gPC representation (2) in both situations. However, case (a) implies
a much slower convergence due to the large range of the random parameter.

Next, failure probabilities are determined in this example. We demand that the
periodic output voltage must not decrease below some threshold value, which cor-
responds to the definition (10). We arrange the threshold values θ = −0.415 for
case (a) and θ =−0.34 for case (b). The corresponding total failure probability P̂F
is determined by the values in the grid points.

For large numbers of random parameters, (quasi) Monte-Carlo methods have to
be used in solving (8). Since one random parameter is considered here (only C), we
apply equidistant realisations Ck for k = 1, . . . ,K, which represents the special case
of a quasi Monte-Carlo technique. On the one hand, a reference solution of (8) is
computed by solving K = 104 systems (1). On the other hand, we sample approxi-
mations (9) with K = 103 using solutions of (5) with different numbers m. Remark
that the probability in (8) and (9) does not depend on time here, since (10) is ob-
served. The results are shown in Table 2. We note that the approximation becomes
more accurate for increasing orders m. In case (b), the usage of m = 2 already yields
a sufficient result. However, a linear approximation (m = 1) is too rough, which
indicates that the application of the gPC as a nonlinear approach is necessary.

Table 1 Maximum values of coefficients vi for output uout in gPC simulation using m = 8.

i 1 2 3 4 5 6 7 8

case (a) 2 ·10−2 1 ·10−2 5 ·10−3 3 ·10−3 2 ·10−3 1 ·10−3 6 ·10−4 3 ·10−4

case (b) 9 ·10−4 1 ·10−5 2 ·10−7 5 ·10−9 1 ·10−10 2 ·10−12 5 ·10−14 1 ·10−14
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Table 2 Computed total failure probabilities from gPC system with m = 1, . . . ,8 and reference
solution from solving the original systems.

m 1 2 3 4 5 6 7 8 ref.
case (a) 0.940 0.759 0.775 0.802 0.821 0.830 0.830 0.820 0.8177
case (b) 0.082 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.0786

6 Conclusions

We have applied the technique of the generalised polynomial chaos to periodic
boundary value problems of DAEs with time-dependent input signals. The result-
ing larger coupled systems of DAEs are solved successfully for the electric circuit
of a Schmitt trigger. Moreover, the computed numerical solution provides a cheap
method to determine failure probabilities a posteriori. In the used examples, it fol-
lows that the accuracy of the achieved failure probabilities is adequate if the order
of the polynomial chaos is chosen sufficiently high. The construction of techniques
based on generalised polynomial chaos is feasible also for autonomous oscillators
with a priori unknown periods, which will be part of further research.
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