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Abstract

Lévy copulas opened as the generic concept to describe dependence struc-
tures of multidimensional Lévy processes. In this paper we contribute a
refinement of an existing construction pattern due to Tankov that uses
Lévy copulas for spectrally positive processes to build Lévy copulas for
general processes. This pattern involves a joining function which we
mainly cover in the present work. We deduce a probabilistic interpre-
tation of the joining function and identify separate structures for jump
sign and jump size dependence. This distinction renders natural the
simulation of multidimensional Lévy processes by series representation.
We quantify graphically the effect of hierarchial joinders using simplified
sample algorithms for path generation.

1 Introduction

Recently, a few authors set in place the notion of a Lévy copula extend-
ing the non-gaussian association between static variates to dynamic Lévy
processes; we refer to Tankov (2004),Tankov (2006) and chapter 5 in Cont
and Tankov (2004). Identifying the key role of the Lévy measure in depen-
dence modelling the authors constructed copulas for this characteristic and
derived algorithms for simulation from Lévy processes with specified depen-
dence. This necessitates the development of comprehensive copula models
to describe a wide range of dependence between process components. The
literature on parsimonious dependence structures truly speaks in favor of hi-
erarchical structures, see Embrecht et al. (2001) and Savu and Trede (2006)
for hierarchical ordinary copulas. Here we take a Lévy copula model due to
Tankov Tankov (2004) as grounds for bringing hierarchical patterns to jump
sign dependence.

In section 2 we recall the fundamental properties of a Lévy process and
state substantial formulae for describing its law. We proceed to investigate
the dependence structures of multidimensional processes in particular and
adopt the concept of Lévy copulas and Lévy copulas for spectrally posi-
tive processes as introduced in Tankov (2004). We show that Lévy copu-
las achieve to formulate general dependence patterns in multivariate Lévy
processes.

In section 3 we reproduce a theorem due to Tankov, that proposes to
construct copulas for general Lévy process by assembling copulas for spec-
trally positive Lévy processes via a joining function. We derive an instance
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of a constant joining function that covers hierarchical structures. Further we
analyze separately the conditional distributions of signs and absolute sizes
of the jumps.

In section 4 we discuss multidimensional process simulation by means of
series representation. We question how a dissociative perspective on jump
sign and jump size dependence may feed the generation of Lévy paths. We
finally exhibit the impact of hierarchical joining functions by means of graph-
ical results using simplified sample algorithms.

2 Multivariate Lévy processes and copulas

In this section we state the essentials on Lévy processes and review the
achievements in forwarding copula models to the dynamical framework of
jump processes.

A Lévy process is a Rd-valued cadlag stochastic process (Xt)t≥0 on
(Ω, F,Rd) with stationary and independent increments such that X0 = 0.
In particular, jumps of the form Xt − Xt− = ∆Xt may occur sudden and
at random but countable times. The characteristic function of an Rd-valued
Lévy process is of the form

E[eiz.Xt ] = etψ(z), where

ψ(z) = −1
2
z.Az + iγ.z +

∫

Rd

(
eiz.x − 1− iz.x1|x|≤1

)
ν(dx), (1)

where A is a symmetric nonnegative-definite square matrix, γ ∈ Rd and ν
a positive measure on Rd satisfying

∫
Rd(|x|2 ∧ 1)ν(dx) < ∞. Formula (1)

is referred to as the Lévy Khinchin representation, whereas subtraction of
iz.x1|x|≤1 is herein after referred to as compensation of small jumps. We
call ψ the characteristic exponent of Lévy process (Xt)t≥0 and identify A
as the covariance matrix of the Brownian motion part of the Lévy process
and γ as some drift vector (see annotation below). Measure ν is of particu-
lar importance to the Lévy calculus and thus merits the tag Lévy measure.
In virtue of the Lévy-Khinchin representation the triplet (γ,A, ν) uniquely
determines the distribution of process (Xt)t≥0. It is hence called the char-
acteristic triplet of Lévy process Xt.

Given that ν satisfies
∫
Rd(|x| ∧ 1)ν(dx) < ∞, meaning that the jump

process is of finite variation, the characteristic exponent can be reduced to

ψ(z) = −1
2
z.Az + ib.z +

∫

Rd

(
eiz.x − 1

)
ν(dx).
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Note here that the drift vector changes with different compensation but
the characteristic triplet corresponds conventionally to unit compensation
of small jumps. We proceed with a brief review on increasing functions.

Let F : R̄d → R̄ be a d-place function on the extended space. For
a, b ∈ R̄d with a ≤ b and (a, b] ∈ R̄d, we here define the F-volume of (a, b] to
be

VF ((a, b]) =
∑

u∈{a1,b1}×...×{ad,bd}
(−1)N(u)F (u), (2)

where N(u) = ]{k : uk = ak}, i.e. the sum of the signed values of F over
the vertices of (a, b]. F is called d-increasing if the volume VF ((a, b]) of any
d-box (a, b] ∈ R̄d is nonnegative. For I ∈ {1, ..., d} we further denote the
I-margin of F by

F I((ui)i∈I) = lim
c→∞

∑

(uj)j∈Ī∈{−c,∞}|Ī|
F (u1, ..., ud)

∏

j∈Ī

sign(uj)

with cardinality |I| and complement Ī = {1, ..., d}\I. .
For the rest of this paper we assume a Lévy process (Xt)t≥0 with char-

acteristic triplet (0, 0, ν), that is, we eclipse the Brownian motion part from
considerations. It is certainly feasible to focus on the jump component of a
Lévy process due to independence of the components. We now provide the
notion of tail integrals associated to the Lévy measure.

Definition 2.1 Let X be a Rd-valued Lévy process with Lévy measure ν.
The tail integral of ν is the function U : (R\0)d → R defined by

U(x1, ..., xd) = ν




d∏

j=1

I(xj)




d∏

j=1

sign(xj),

where

I(x) =
{

[x,∞), x ≥ 0;
(−∞, x), x < 0.

Note that (−1)dU is d-increasing and left-continuous. We know from ele-
mentary statistics that any probability measure can be characterized by its
distribution function. In a similar way, any Lévy measure corresponds to
the set of its marginal tail integrals. Next, the definition of a Lévy copula
compares to that of an ordinary copula apart from the domain.

Definition 2.2 A function F : R̄d → R̄ is called a Lévy copula, if
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1. F (u1, ..., ud) 6= ∞ for (u1, ..., ud) 6= (∞, ..,∞)

2. F (u1, ..., ud) = 0 if ui = 0 for at least one i ∈ {1, ..., d}
3. F is d-increasing

4. F i(u) = u for any i ∈ {1, ..., d}, u ∈ R.

We clearly recognize groundedness on the axes, the d-increasing property
and uniformity of the margins.

We can confine ourselves to the notion of Lévy copulas for spectrally
positive Lévy processes when limiting considerations to Lévy processes with
only positive jumps in each component, i.e. with characteristic Lévy mea-
sures ν that have restricted support [0,∞)d \ {0}.
Definition 2.3 A function F : R̄d

+ → R̄+ is called a Lévy copula, if

1. F (u1, ..., ud) 6= ∞ for (u1, ..., ud) 6= (∞, ..,∞)

2. F (u1, ..., ud) = 0 if ui = 0 for at least one i ∈ {1, ..., d}
3. F is d-increasing

4. F i(u) = u for any i ∈ {1, ..., d}, u ∈ R̄+.

In view of distinction, we shall denote copulas for spectrally positive Lévy
processes by F+. The obvious linkage between the two definitions is given
by the following result due to Tankov: if F+ is a Lévy copula on R̄d

+, then
it can be extended to a Lévy copula F on (−∞,∞]d by

F (u1, ..., ud) =
{

F+(u1, ..., ud), (u1, ..., ud) ∈ [0,∞]d;
0, otherwise.

(3)

As a consequence, findings in the general case transfer to the spectrally
positive case.

Example 2.1 Let θ > 0. Then

F+(u1, ..., ud) =

(
d∑

i=1

u−θ
i

)−1/θ

(4)

is a Lévy copula on [0,∞]d. It can be extended to a Lévy copula F on
(−∞,∞]d by

F (u1, ..., ud) =

(
d∑

i=1

|ui|−θ

)−1/θ

1ui≥0,i=1,...,d. (5)
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We refer to 4 as Clayton Lévy copula and to 5 as extended Clayton Lévy
copula.

The fundamental result now deals with the association between a Lévy
process’ marginal tail integrals through Lévy copulas. First to be announced
in Tankov Tankov (2004), it draws on a direct adaptation of Sklar’s findings
for the case of multidimensional distribution functions.

Theorem 2.1 Let ν be a Lévy measure on Rd\{0}. Then there exists a
Lévy copula F such that the tail integrals of ν satisfy

U I((xi)i∈I) = F I((Ui(xi))i∈I)

for any non-empty I ⊂ {1, ..., d} and any (xi)i∈I ∈ (R\0)d. Conversely, if
F is a d-dimensional Lévy copula and ν1, ..., νd are Lévy measures on R\{0}
with tail integrals U1, ..., Ud, then there exists a unique Lévy measure on
(R\{0})d with one-dimensional marginal tail integrals U1, ..., Ud.

The first part assigns Lévy copulas the capability to represent all types of
dependence between the jumps of a Lévy process. The second part renders
possible to construct multidimensional Lévy models by specifying separately
jump dependence structure and one-dimensional laws for the components.
We call any such F the Lévy copula of X.

We close this section with a probabilistic interpretation of Lévy copu-
las which goes also back to Tankov. Let thereto be F a Lévy copula on
(−∞,∞]d satisfying

lim
(xi)i∈I→∞

F (u1, ..., xd) = F (u1, ..., ud)|(xi)i∈I=∞ (6)

for all I ⊂ {1, ..., d}. This Lévy copula defines a positive measure µ on Rd

with Lebesgue margins such that for each a, b ∈ Rd with a ≤ b,

VF (|a, b|) = µ((a, b]).

Defining f : (u1, ..., ud) 7→ (U−1
1 (u1), ..., U−1

d (ud)), the relation between Lévy
measure ν and measure µ is

ν(A) = µ({u ∈ Rd : f(u) ∈ A}.
One can then show that there exists a family, indexed by ξ ∈ R, of positive
Radon measures K(ξ, dx2, ..., dxd) on Rd−1, such that ξ 7→ K(ξ, dx2, ..., dxd)
is Borel measurable and

µ(dx1, dx2, ..., dxd) = λ(dx1)⊗K(x1, dx2, ..., dxd).
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K(ξ, dx2, ..., dxd) is called the family of conditional probability distributions
associated to the Lévy copula F . Denoting

Fξ(x2, ..., xd) = K(ξ, (−∞, x2], ..., (−∞, xd]),

Tankov showed that there exist a nullset N such that for every ξ ∈ R \N ,
Fξ is a probability distribution function satisfying

Fξ(x2, ..., xd) = sign(ξ)
∂

∂ξ
VF ((ξ ∧ 0, ξ ∨ 0]× (−∞, x2]× ...× (−∞, xd]) (7)

in every point (x2, ..., xd) where Fξ is continuous. The conditional distribu-
tion function F+

ξ associated to Lévy copula F+ on [0,∞]d takes the form

F+
ξ (x2, ..., xd) =

∂

∂ξ
F+(ξ, x2, ..., xd). (8)

3 Modular Lévy copulas

In this paragraph we renew Tankov’s idea of constructing general Lévy cop-
ulas by joined copula modules. We discuss distributional features of copulas
of this type and promote a hierarchical joinder.

With the notion of Lévy copulas for spectrally positive processes at hand
one can think of modelling the jump dependence structure of a Rd-valued
Lévy process in each of the 2d corners separately. Tankov Tankov (2004)
accesses a such modular design pattern in his

Theorem 3.1 For each α = {α1, ..., αd} ∈ {−1, 1}d let gα(u) : [0,∞] →
[0, 1] be a nonnegative, increasing function satisfying

∑

α∈{−1,1}d with αk=−1

gα(u) = 1 and
∑

α∈{−1,1}d with αk=1

gα(u) = 1 (9)

for all u ∈ [0,∞] and all k ∈ {1, ..., d}. Moreover, let Fα be positive Lévy
copulas that satisfy the following continuity property at infinity: for all I ⊂
{1, ..., d}, (ui)i∈Ī ∈ [0,∞]|Ī| we have

lim
(ui)i∈I→(∞,...,∞)

Fα(u1, ..., ud) = Fα(v1, ..., vd),

where vi = ui for i ∈ I and vi = ∞ otherwise. Then

F (u1, ..., ud) = Fα(|u1|gα(|u1|), ..., |ud|gα(|ud|))
d∏

i=1

sign(ui)
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with α = (sign(u1), ..., sign(ud)) defines a Lévy copula.

In this section and in the following we shall refer to Lévy copulas Fα, α ∈
{−1, 1}d as modules and to the set of functions {gα, α ∈ {−1, 1}d} as joinder,
for F so-defined we shall thence use the term modular Lévy copula. It is left
as a side note that normalization of the joinder is to meet uniformity at
the margins of the modular Lévy copula; see Tankov Tankov (2004) for the
derivation.

Example 3.1 Let the module copula F+ be given by 4 choosing d = 2.
Further define the joinder by

gα(u) =
{

1, for α1 = α2;
0, otherwise.

for all u ∈ [0,∞]. This produces the modular Lévy copula F on (−∞,∞]2

with
F (u1, u2) =

(
(|u1|gα)−θ + (|u2|gα)−θ

)−1/θ
sign(u1u2),

as it were a co-moving Clayton Lévy copula.

Here we employed a piecewise constant joinder and equal modules. In view
of a parsimonious copula model (and notational ease) we shall resort to equal
modules Fα ≡ F+ in the following, the derivations still hold in the general
case. As to the joinder we shall keep to constant functions gα(u) ≡ gα ∈ R+,
too, the case of a non-constant joinder will be revisited in future works.

3.1 Hierarchical joinder

In this paragraph we propose a hierarchically structured joinder and we
illustrate how to meet normalization.

Our general conception of a hierarchical joinder is put in constant joining
functions gα ∈ R+ corresponding to the chance of jump sign vector α, where
chance is induced hierarchically by the interdependence of pairs of jump
signs. We promote the idea in the three-dimensional case. Let therefore

m1 :
(

b1 a1

a1 b1

)
, m2 :

(
b2 a2

a2 b2

)

be pair dependence matrices of jump signs. The position in the matrices
corresponds to the conventional ordering of quadrants, that is, we under-
stand entries ai as factors of equal signs and entries bi as factors of opposite
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signs for i = 1, 2. Assume now that the bivariate sign vector (α1, α2) cor-
responds to matrix m1, whereas both (α1, α3) and (α2, α3) are associated
to matrix m2. This induces a hierarchical association of the kind shown
in figure 1. What we want is to compute the chance gα of trivariate sign
vector (α1, α2, α3) by pairwise multiplication of the matrix coefficients, for
instance, the chance of (1,−1, 1) would be b1 · a2 · b2. Normalization of
the joinder is yet to be achieved. To this, let us identify the sign vector
α = (α1, α2, α3) ∈ {−1, 1}3 with vertices of an axially parallel cube in three-
dimensional space centering in the origin. This is plotted in figure 1, where
we inserted the temporary chances of the vertices resulting from the above
multiplication.

α
1

α
2

α
3

m
1

m
2

a
2
a

1
a

1

a
2
b

1
b

1

b
2
b

1
a

1

b
2
b

1
a

1 b
2
a

1
b

1

b
2
a

1
b

1

a
2
b

1
b

1

a
2
a

1
a

1

Figure 1: Left plot: Tree-diagram of hierarchic structured of sign depen-
dence. Right plot: Cube with raw vertex labelling according to dependence
matrices.

We renew condition (9)
∑

α∈{−1,1}3 with αk=−1

gα = 1 and
∑

α∈{−1,1}3 with αk=1

gα = 1

and understand it as a must for a uniform joinder on each face of the cube.
One can easily see that the faces have corresponding vertex labels. Then
with

Σ = a2a1a1 + a2b1b1 + b2a1b1 + b2b1a1

normalization is straight forward and we deduce an appropriate joinder as
given in the following table.

α1 1 1 1 1 -1 -1 -1 -1
α2 1 1 -1 -1 1 1 -1 -1
α3 1 -1 1 -1 1 -1 1 -1
gα a2a1a1

Σ
a2b1b1

Σ
b2a1b1

Σ
b2b1a1

Σ
b2b1a1

Σ
b2a1b1

Σ
a2b1b1

Σ
a2a1a1

Σ
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The above pattern is very simple, yet it allows for a variety of associations
between jump signs. One can easily think of other nestings than shown in
figure 1 but in the scope of this paper we content ourselves with the given
structure.

Example 3.2 Let F+ be a Lévy copula of Clayton type 4 choosing d = 3.
Further let a1 = 1

4 , b1 = 3
4 , a2 = 3

4 , b2 = 1
4 producing the hierarchical joinder

α1 1 1 1 1 -1 -1 -1 -1
α2 1 1 -1 -1 1 1 -1 -1
α3 1 -1 1 -1 1 -1 1 -1
gα 3

36
27
36

3
36

3
36

3
36

3
36

27
36

3
36 .

By means of Theorem 3.1 these define a modular Lévy copula F on (−∞,∞]3

as follows

F (u1, u2, u3) =





(∑3
i=1(|ui|27

36)−θ
)−1/θ ∏3

i=1 sig(ui), α1 = α2, α1 6= α3;(∑3
i=1(|ui| 3

36)−θ
)−1/θ ∏3

i=1 sig(ui), otherwise.

(10)

We have contour plotted the bivariate densities of copula 10 in figure 2
using module parameter θ ∈ {1.5, 5}. Each plot shows a cross section of the
trivariate density from different perspectives but at the same level 1 of the
hidden variable. One can clearly observe that the (1,2)-margin has greater
mass in the 3rd quadrant than in the others, meaning that a co-movement
of the 1st and 2nd component in negative direction is more likely than
jumps in other directions. In contrast, the (1,3)-margin as well as the (2,3)-
margin have greater mass in the 4th quadrant than in the others, meaning
that negative jumps in the 3rd component are most likely to accompany
positive jumps in the 1rd and 2nd component, respectively. These findings
are feasible due to a1 < b1, a2 > b2 and αi = 1 for either hidden margin
i. In virtue of a single module copula F+, the shape of the contour lines is
constant over quadrants in all three plots. As a result of a higher value for
module parameter θ the lower right plot exhibits rather clustered contours,
meaning that the level curves are more centered (at 1) and thus dependence
of absolute jump sizes is stronger.

The idea brought up in this paragraph can be readily forwarded to the
higher dimensional case. This is revisited in a future work.
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Figure 2: Contour plots of hierarchical Clayton density (10). Upper left:
(1,2)-marginal density. Upper right: (1,3)-marginal density. Lower left:
(2,3)-marginal density. Each using θ = 1.5. Lower right: (2,3)-marginal
density using θ = 5.

3.2 Conditional distributions with modular design

In this paragraph we find conditional probability distributions associated
to joinder and module. The findings herein do not depend on a hierarchic
joinder.

So far we intentionally avoided to speak of probabilities gα and rather
used the term chance. Regarding example 3.2, joinder gα = g{α1,α2,α3} only
comes as a probability distribution when conditioning on either of the values
αi, i ∈ {1, 2, 3}. For instance g{1,α2,α3} is a probability distribution function
on {−1, 1}2. In view of the conditional distribution function (8) associ-
ated to the modular Lévy copula F one would intuitively have the vector
(sign(x2), sign(x3)) be distributed according to gα given α1 = sign(x1). We
show that this is actually the case.

Let us look to this end at the conditional probability of, say, opposing
jumps x2 < 0, x3 ≥ 0 given x1 = ξ. Denoting Pξ(·) := P(·|x1 = ξ) one can
easily derive

Pξ(x2 < 0, x3 ≥ 0) = Fξ(0,∞)− Fξ(−∞,∞)− Fξ(0, 0) + Fξ(−∞, 0)

=
∂F+

∂u1
(|ξ|gξ,−1,1,∞,∞)g(ξ,−1,1), (11)
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by way of the following identities

Fξ(0,∞) =
∂F+

∂u1
(|ξ|gξ,1,1, 0,∞)g(ξ,1,1) +

∂F+

∂u1
(|ξ|gξ,1,−1, 0,∞)g(ξ,1,−1)

+
∂F+

∂u1
(|ξ|gξ,−1,1,∞,∞)g(ξ,−1,1) +

∂F+

∂u1
(|ξ|gξ,−1,−1,∞,∞)g(ξ,−1,−1)

Fξ(0, 0) =
∂F+

∂u1
(|ξ|gξ,1,1, 0,∞)g(ξ,1,1) +

∂F+

∂u1
(|ξ|gξ,1,−1, 0,∞)g(ξ,1,−1)

+
∂F+

∂u1
(|ξ|gξ,−1,1,∞, 0)g(ξ,−1,1) +

∂F+

∂u1
(|ξ|gξ,−1,−1,∞,∞)g(ξ,−1,−1)

Fξ(−∞, a) = 0 ∀a ∈ R.

Due to uniformity of F+ at the margins, as part of definition 2.3, we get

∂F+

∂u1
(|ξ|gξ,−1,1,∞,∞)g(ξ,−1,1) =

∂F 1
+

∂u1
(|ξ|gξ,−1,1)g(ξ,−1,1)

= g(ξ,−1,1).

The proving does by no means depend on a specific sign vector and so the
result can be generalized to

Pξ(sign(x2) = α2, sign(x3) = α3) = g{ξ,α2,α3}.

Same in higher dimensions, it comes with condition (9) that gα always is a
distribution function given αi ∈ {−1, 1} for one i ∈ {1, ..., d}, no matter the
joinder nor the modules.

Theorem 3.2 Let F be a modular Lévy copula on Rd with joinder gα ∈ R+

and modules Fα = F+. Further let ξ = x1 be a given realization. Then it
holds

Pξ

(
sign((X)d

i=2) = α̂
)

= g{ξ,bα}, (12)

and we call g{ξ,bα}, α̂ ∈ {−1, 1}d−1 the first conditional probability function
associated to gα.

Proof: The proof is essentially the same as in the three-dimensional case.
Suppose (α)d

i=2 = 1, the other cases being derived analogously. It holds

Pξ

(
sign((X)d

i=2) = α̂
)

=
∑

(x2,...,xd)∈{0,∞}d−1

(−1)N(x2,...,xd)Fξ(x2, ..., xd)

=
∂F+

∂u1
(|ξ|g{ξ,bα},∞, ...,∞)g{ξ,bα}

11



due to cancellation of terms, where we denote N(x2, ..., xd) = ]{k : xk = 0}.
Uniformity of F+ at the margins then gives the desired result. It justifies
the interpretation of joinder gα as chances of pure jump signs.

Knowing the conditional jump sign distribution we now interest our-
selves in the absolute jumps size distribution of (X2, ..., Xd) given their signs
(α2, ..., αd). Again we start of with an discussion of the three-dimensional
case assuming (α2, α3) = (−1, 1). By elementary statistics it holds

Pξ(|X2| ≤ x2, |X3| ≤ x3|α2, α3) = Pξ(0 ≥ X2 ≥ −x2, 0 ≤ X3 ≤ x3)/g(ξ,−1,1).

Similarly to (11) we derive an unconditional probability as follows

Pξ(0 ≥ X2 ≥ −x2, 0 ≤ X3 ≤ x3) = Fξ(0, x3)− Fξ(x2, x3)− Fξ(0, 0) + Fξ(x2, 0)

=
∂F+

∂u1
(|ξ|g(ξ,−1,1), x2g

(ξ,−1,1), x3g
(ξ,−1,1))g(ξ,−1,1).

Then the absolute jump size probability conditional on the jump signs ob-
tains as

Pξ(|X2| ≤ x2, |X3| ≤ x3|α2, α3) =
∂F+

∂u1
(|ξ|gξ,−1,1, x2g

(ξ,−1,1), x3g
(ξ,−1,1))

= F+
|ξ|gξ,−1,1(x2g

(ξ,−1,1), x3g
(ξ,−1,1))

The result is all but unexpected due to construction. The arguments used
in the three-dimensional case apply just as well for arbitrary dimensions.

Theorem 3.3 Let F be a modular Lévy copula on Rd with joinder gα ∈ R+

and modules Fα = F+. Further let ξ = x1 be a given realization. Then it
holds

Pξ(|Xi| ≤ xi, i = 2, ..., d|α̂) =
∂F+

∂u1
(|ξ|gξ,bα, xg(ξ,bα)). (13)

Proof: The proof is essentially the same as in the three-dimensional case.
Suppose (α)d

i=2 = 1, the other cases being derived analogously. By formula
(8) we have

Pξ (0 ≤ Xi ≤ xi, i = 2, ..., d) =
∑

ui∈{0,xi}
(−1)N(u2,...,ud)Fξ(u2, ..., ud)

=
∂F+

∂u1
(|ξ|g{ξ,bα}, x2, ..., xd)g{ξ,bα}

12



due to cancellation of terms. Together with formula (12) for the stand-alone
probability of the sign vector we conclude

Pξ(|Xi| ≤ xi, i = 2, ..., d|α̂) =
Pξ (0 ≤ Xi ≤ xi, i = 2, ..., d)

Pξ

(
sign(X̂) = α̂

)

=
∂F+

∂u1
(|ξ|g{ξ,bα}, xg{ξ,bα}).

Theorem 3.3 has the distribution of the transformed absolute values of jumps
(|X2|gα, ..., |Xd|gα) conditional on realized jump X1 = ξ and jump signs α
be that associated to the module F+ in the sense of (8) with conditioning
argument |ξ|gα. This feeds the idea of a modular design in a way that jump
sizes are close upon separated from jump signs.

4 Simulation by series representation

In this section we introduce a conditional sampling algorithm for modu-
lar Lévy copulas. We show further how this method avails naturally the
simulation of multidimensional Lévy processes by series representation.

Series representations go back to Rosinski and others, who proved almost
sure convergence of series of random variables to Lévy processes with speci-
fied characteristic triplets. Tankov Tankov (2004) extended their findings to
jump dependence modelling with Lévy copulas. We reproduce his findings,
while the focus is set on the finite variational case only.

Theorem 4.1 (Series representation) Let ν be a Lévy measure on Rd

(finite variation) with marginal tail integrals Ui, i = 1, ..., d and Lévy copula
F (u1, ..., ud) and let K(ξ, dx2, ..., dxd) be the corresponding conditional prob-
ability distribution. Let {Vi} be a sequence of independent r.v., uniformly
sitributed on [0, 1]. Introduce d random sequences {Γ1

i }, ..., {Γd
i }, indepen-

dent from {Vi} such that

1. N =
∑∞

i=1 δ{Γ1
i } is a Poisson random measure on R with intensity

measure λ

2. Conditionally on {Γ1
i }, the random vector ({Γ2

i }, ..., {Γd
i }) is indepen-

dent from {Γk
i } with j 6= i and all k and is distributed on Rd−1 with

law K(Γ1
i , dx2, ..., dxd).

Then {Xt}0≤t≤1 with

Xi
t =

∞∑

k=1

U−1
k (Γi

k)1[0,t](Vk), i = 1, ..., d

13



is a Lévy process on the time interval [0, 1] with characteristic function

E[eiu.Xt ] = exp
(

t

∫

Rd

(eiu.x − 1)ν(dx)
)

.

With this result simulation is straight forward. As regards actual implemen-
tation Tankov Tankov (2004) makes plausible the use of Poisson arrivals
{Γ1

k} and random series truncation Xi
t =

∑
k:Γ1

k<τ U−1
i (Γi

k)1[0,t](Vk), i =
1, ..., d. with some τ > 0. We shall not dwell on implementation details
but sampling from conditional probability measure K(Γ1

i , ·), as it were the
crucial part. It is true that we know explicitly the distribution of K given
Γ1

i by formula (7) but its complexity may in some cases interfere with sim-
ple random number generation. So is the case of modular Lévy copulas in
high dimensions. One can show (which we do not here) that the conditional
distribution function results as

Fξ(x2, ..., xd) =
∑ ∂F+

∂u1
(|ξ|gc, |c2|gc, ..., |cd|gc)gc

∏

i:ci=xi

sign(ci), (14)

where the sum is taken over all c ∈ ξ×{−∞, x2}× ...×{−∞, xd}. A distri-
bution function of such form would surely handicap us in using conditional
sampling algorithms, for instance. However, our former results on jump size
and jump sign distributions find an obvious remedy.

4.1 Conditional sampling algorithms

In this paragraph we propose a conditional sampling algorithm for number
generation from conditional measure K(ξ, ·). Given a realization ξ we pick
the corner first and simulate absolute jump sizes subsequently.

All of last section’s results base a given value for the first component.
This goes along with the conditional perspective of point 2. in Theorem 4.1.
A simple conditioning argument yields

Fξ(x2, ..., xd) = Pξ(Xi ≤ xi, i = 2, ..., d) (15)
= Pξ(|Xi| ≤ |xi|, i = 2, ..., d|α) · Pξ(α) (16)

with both Pξ(|Xi| ≤ |xi|, i = 2, ..., d|α) and Pξ(α) being known from Theo-
rems 3.3 and 3.2, respectively.

Algorithm 4.1 (Simulating from conditional measure K)
Samples (x2, ..., xd) from conditional measure K(x1, ?) given a realization x1,
a Lévy copula F+ on [0,∞]d and constant joinder gα.

14



• Pick corner α according to the first conditional probability function asso-
ciated to gα

• Simulate absolute jump sizes (y2, ..., yd) from the conditional distribution
associated to F+ with conditioning argument |x1|gα

• Set xi = αiyi/gα, i = 2, ..., d

The conditional sample vector is given by (x2, ..., xd).

Of course, we can not redress simulation from a conditional distribution
associated to a Lévy copula by conditioning arguments. Yet we do produce
relief in a way that the distribution is now associated to a Lévy copula from
a spectrally positive process, which is more manageable. Algorithm 4.1 now
fits well into Tankov’s Tankov (2006) general algorithm for path generation
of multidimensional Lévy processes. We promote a slight modification of
the original algorithm in order to particularize Lévy copulas of the present
type.

Algorithm 4.2 (Simulation of multidimensional Lévy process with
cornerwise dependent components by series representation)
Generates trajectory Xt of multidimensional Lévy process by series represen-
tation. The dependence is given by a modular Lévy copula with joinder gα

and modules Fα = F+. Let a number τ be fixed depending on the required
precision and computational capacity.

• Initialize k = 0, Γ1
0 = 0

• Repeat while |Γ1
k| < τ

– Set k = k + 1

– Simulate exponential(2) Tk and set Γ1
k = −(|Γ1

k−1|+ Tk)

– Simulate (Γ2
k, ...,Γ

d
k) from distribution K(Γ1

k, ?) by algorithm 4.1

– Simulate Vk uniform on [0, 1]

The trajectory is then given by Xi
t =

∑
k:Γ1

k<τ U−1
i (Γi

k)1[0,t](Vk), i = 1, ..., d.

4.2 Numerical results

In this paragraph we present numerical results from an implementation of
algorithm 4.2. For the upcoming discussion, we take example 3.2 as our
base instance of a modular Lévy copula and suppose α-stable margins.
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Figure 3: Scatter plots of marginal jump activity of Lévy process with de-
pendence structure (10) and α-stable margins. Upper left: (1,2)-marginal
jumps. Upper right: (1,3)-marginal jumps. Lower left: (2,3)-marginal
jumps. Each using θ = 1.5. Lower right: (2,3)-marginal jumps using θ = 10.

Let us first analyze embedded algorithm 4.1 by way of plotting the actual
jumps taken by X into figure 4.2. As to Theorem 4.1 these can be computed
from the output sample by the inverse tail integral U−1

i (Γi
k). The upper left

plot shows the (1,2)-margin of jump activity. We can clearly observe that
jumps in the first and second component tend to have the same direction,
opposing jumps are still possible. This is due to the piecewise constant
but non-flat joinder. As regards the upper right and lower left plot, which
show jump activity from a (1,3)-marginal and (2,3)-marginal perspective,
the outcome is the same but with a stress towards opposing jump directions.
These parallel just as well the hierarchical structure of sign dependence.

Concerning the association between absolute jumps sizes we detect a
somewhat loose pattern which corresponds to the low value 1.5 for depen-
dence parameter θ. When multiplying the module parameter, the real-
izations become more in-line. This corresponds to stronger dependence of
absolute jump sizes. We leave as a side note that truncation of the series
appears in the plots as well.
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Figure 4: Trajectories of 3-dimensional Lévy paths (1st:blue, 2nd:green,
3rd:red) with dependence specified by modular Lévy copula (10). Upper:
hierarchical joinder, module parameter θ = 1.5. Middle: flat joinder, module
parameter θ = 1.5. Lower: flat joinder, module parameter θ = 5.

With the conditional sampling approach made plausible we now turn to
the analysis of simulated Lévy paths. We refer to figure 4 in the following.
The upper plot shows an instance of a trivariate Lévy process with α-stable
margins and dependence structure specified by our base copula with θ = 1.5.
In particular, jump sign dependence is modelled hierarchically. The latter
is evident as the first and second component proceed in a similar manner,
while the development of the third component seems to divert. For the plot
in the middle we have eased up on emphasizing certain corners by a stressed
jump sign dependence and applied a flat joinder gα = 1

4 , α ∈ {−1, 1}3. The
resulting paths thence develop in a more independent fashion. We want
to accent that it is not the location of the graphs, which is mainly due to
realized jump sizes, but the direction of jumps which speaks here in favor
of a loose sign dependence. We have provided the lower graph to clarify
things. This time we applied a flat joinder and high jump size dependence
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θ = 10. One immediately observes that the absolute height of the jumps
are almost the same, the jump directions are yet dissociated. This produces
mirror images in some intervals.

With reasons we may thus take our numerical findings to support the
analytical derivations as in the three-dimensional case. Both the hierarchical
structure for jump sign dependence and Clayton type association between
absolute jump sizes reappear in the graphical illustrations. In virtue of
algorithms 4.1 and 4.2, which are given for any modular Lévy copula in
arbitrary dimension, we expect the results found here to become evident
even in a more complex setting.

5 Conclusion

This study refined the modular Lévy copulas due to Tankov and introduced
a hierarchical joinder for module assembling. It proved correct that jump
sign dependence and jump size dependence is related naturally to the joinder
and modules, respectively.

Simulation of Lévy copulas from joined modules by series representation
was found to involve the probabilistic interpretations of both the joinder
and the modules. This feeded the derivation of a simplified algorithm for
path generation. The impact of choices for module copula as well as joining
functions on multidimensional process evolution was recognized with the aid
of graphical illustrations.

Future research includes generalization to a non-constant joinder and
extension to other parsimonious copula ingredients. The algorithmic perfor-
mance in high dimension is of true interest because appreciable savings in
numerical computations are awaited.
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