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Abstract

In radio frequency applications, a multivariate model yields an efficient
representation of signals with amplitude modulation and/or frequency
modulation. Periodic boundary value problems of multirate partial dif-
ferential algebraic equations (MPDAEs) have to be solved to reproduce
the quasiperiodic signals. Typically, technical parameters appear in the
system, which may exhibit some uncertainty. Substitution by random
variables results in a corresponding stochastic model. We apply the tech-
nique of the generalised polynomial chaos to obtain according solutions.
A Galerkin approach yields larger coupled systems of MPDAEs. We
analyse the properties of the coupled systems with respect to the origi-
nal formulations. Thereby, we focus on the case of frequency modulation,
since the case of amplitude modulation alone is straightforward.
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1 Introduction

The mathematical modelling of electric circuits is based on network techniques,
see [5, 6]. The resulting systems of differential algebraic equations (DAEs) de-
scribe the transient behaviour of node voltages and branch currents or possi-
bly additional quantities. In radio frequency applications, the systems exhibit
quasiperiodic solutions, where a transient analysis demands a huge computational
effort due to the presence of widely separated time scales. A multivariate sig-
nal model decouples the time scales and thus enables an efficient representation.
Brachtendorf et al. [2] introduced corresponding multirate partial differential al-
gebraic equations (MPDAEs) in case of amplitude modulated signals. Narayan
and Roychowdhury [8] formulated warped MPDAEs for frequency modulated sig-
nals. In the latter case, the analysis as well as the numerical simulation becomes
more complicated, since an appropriate local frequency function is required.

Moreover, the underlying system of DAEs features technical parameters. Some
parameters can include uncertainties. In chip design, for example, miniaturisation
may cause undesired discrepancies between circuits, which are intended to behave
identical. The reason is that capacitive, inductive or resistive components cannot
be produced with high precision any more due to the downscaling. Hence it has
to be investigated if the circuits still exhibit an acceptable behaviour.

We replace the critical parameters of a given DAE model by random variables
to obtain an uncertainty quantification. Thus the corresponding solution of the
DAEs becomes a random process. The stochastic model can be resolved by the
strategy of the generalised polynomial chaos (gPC) according to [1, 4]. This
approach is also suitable for large stochastic perturbations, i.e., we achieve a
global sensitivity analysis. On the one hand, the included coefficient functions
can be computed approximatively by stochastic collocation, see [15, 16]. On the
other hand, a Galerkin approach yields a larger coupled system of DAEs, where
the solution represents an approximation of the coefficient functions, see [7].

Considering quasiperiodic signals, the MPDAE formulation includes the same
parameters as the underlying system of DAEs. In this article, we apply the ap-
proach of the gPC to the MPDAEs, where the Galerkin technique results in larger
coupled systems of MPDAEs. It follows that all derived systems inherit a hyper-
bolic structure from the original MPDAE formulation. In case of pure amplitude
modulation, the modelling is straightforward, i.e., the resulting coupled system
exhibits the usual form of a system of MPDAEs. However, warped MPDAEs lead
to a more sophisticated coupled system in case of frequency modulation, which
is not equivalent to a standard system of warped MPDAEs. Thus we focus on
the analysis of the latter situation. In particular, we investigate the structure of
characteristic curves in the coupled system following [9, 10].
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The article is organised as follows. A brief outline of the modelling via MPDAEs
is given in Sect. 2. We introduce the technique of the gPC in Sect. 3, where the
Galerkin method generates larger coupled systems of MPDAEs. In Sect. 4, we
analyse the coupled systems according to warped MPDAEs in detail. Finally, a
numerical simulation of a test example based on warped MPDAEs is presented.

2 Multirate Systems

In this section, we summarise the concept of multirate partial differential algebraic
equations. For a more detailed description, we refer to [12, 14]. In the following,
the required dependence on parameters is already considered in the systems.

2.1 Case of constant time rates

Mathematical modelling of electric circuits yields systems of differential algebraic
equations (DAEs), see [5, 6]. We consider DAEs of the form

A
dx

dt
= f(b(t),x(t)), (1)

where the time-dependent solution x : [t0, t1] → Rk consists of unknown node
voltages and branch currents. The right-hand side f : Rl × Rk → Rk includes
predetermined input signals b : [t0, t1] → Rl. If the constant matrix A ∈ Rk×k

is regular, then the system (1) represents implicit ordinary differential equations
(ODEs). In contrast, a singular matrix A implies DAEs.

Technical parameters (capacitances, inductances, resistances, etc.) are included
in the system (1). Assuming a tuple of parameters p = (p1, . . . , pq) ∈ Rq, the
dependence reads

A(p)
dx

dt
= f(b(t),x(t,p),p). (2)

We consider parameters p ∈ Q belonging to some relevant setQ ⊆ Rq. Typically,
a parameter pl is present in either the matrix A or the right-hand side f . The
input signals b may also involve parameters. However, the resulting structure
agrees to the form (2). We consider quasiperiodic solutions of the system (2).

Definition 1 A function x : R→ C is called m-tone quasiperiodic, if an expan-
sion of the form

x(t) =
+∞∑

j1,...,jm=−∞
Xj1,...,jm exp

(
i2π

(
j1

T1

+ · · ·+ jm

Tm

)
t

)
(3)
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exists, where Xj1,...,jm ∈ C are constant coefficients. In this representation,
m time rates T1, . . . , Tm > 0 are given, which are not necessarily incommen-
surable.

We assume an absolute convergence of the series (3). Furthermore, we restrict
to the most frequent case of two-tone quasiperiodic functions. Let the input sig-
nals b be two-tone quasiperiodic. Often the solution of (2) inherits the transient
behaviour of the input signals. Thus we assume the representation

x(t,p) =
+∞∑

j1,j2=−∞
Xj1,j2(p) exp

(
i2π

(
j1

T1

+
j2

T2

)
t

)
(4)

with coefficients Xj1,j2(p) ∈ Ck for each parameter p ∈ Q.

Typically, quasiperiodic signals represent oscillations. Let (w.l.o.g.) T1 ≥ T2. In
radio frequency applications, the time rates T1, T2 are widely separated, i.e., it
holds T1 À T2. A numerical integration of the system (2) for a fixed tuple of
parameters becomes inefficient, since the fast rate T2 restricts the step size in time,
whereas the slow rate T1 determines the total time interval of the simulation.

Alternatively, the structure of quasiperiodic signals (3) implies a natural repre-
sentation by assigning an own variable for each separate time scale. The corre-
sponding multivariate function (MVF) reads

x̂(t1, . . . , tm) =
+∞∑

j1,...,jm=−∞
Xj1,...,jm exp

(
i2π

(
j1t1
T1

+ · · ·+ jmtm
Tm

))
, (5)

which is periodic in each independent variable with the periods T1, . . . , Tm. The
original signal (3) can be reconstructed completely from its MVF (5) via

x(t) = x̂(t, . . . , t). (6)

Accordingly, the solution (4) exhibits the biperiodic representation

x̂(t1, t2,p) =
+∞∑

j1,j2=−∞
Xj1,j2(p) exp

(
i2π

(
j1t1
T1

+
j2t2
T2

))
(7)

for each tuple p ∈ Q. The periodicities allow for sampling the MVFs in the rect-
angular domain [0, T1] × [0, T2]. Typically, the MVFs feature a simple structure
in this rectangle. Hence the MVFs can be resolved on a relatively coarse grid in
time domain.

Now the idea is to compute the MVFs (7) instead of the original signals (4), since
the reconstruction (6) yields the desired information. Replacing the input signals
as well as the solution of (2) by MVFs changes the DAE model into multirate
partial differential algebraic equations introduced by Brachtendorf et al. [2].
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Definition 2 The multirate partial differential algebraic equations (MPDAEs)
corresponding to the system of DAEs (2) read

A(p)

(
∂x̂

∂t1
+

∂x̂

∂t2

)
= f(b̂(t1, t2), x̂(t1, t2,p),p), (8)

where b̂ : R2 → Rk and x̂ : R2 ×Q → Rk are MVFs.

It is straightforward to verify that a biperiodic solution of the MPDAEs (8) yields
a two-tone quasiperiodic solution of the DAEs (2) in the reconstruction (6).

2.2 Case of frequency modulation

We assume the presence of two separated time scales in the system of DAEs (2)
again. However, the input signals b are just periodic with slow time rate T1 now.
The solution x inherits this forced oscillation. In addition, let the solution exhibit
a fast autonomous oscillation. The frequency of the fast oscillation is modulated
slowly in time by the input signals. The resulting signals are quasiperiodic and
show a representation

x(t,p) =
+∞∑

j1,j2=−∞
Xj1,j2(p) exp

(
i2π

(
j1

T1

+
j2

T2(p)

)
t

)
. (9)

Remark that the fast rate T2 depends on the parameters in (2) now. A biperiodic
MVF (7) of the signal (9) exists again. However, this representation is inefficient
in general, since many oscillations occur in the domain [0, T1]× [0, T2]. Narayan
and Roychowdhury [8] introduced an alternative modelling via a (T1, 1)-periodic
MVF x̂ : R2 → Rk and a local frequency function ν : R→ R. The corresponding
reconstruction of the signal reads

x(t,p) = x̂(t, Ψ(t,p),p) with Ψ(t,p) =

∫ t

0

ν(s,p) ds, (10)

where ν represents a local frequency. The function ν includes the magnitude of
the fast time scale and thus depends on the parameters. The warping function Ψ
stretches the second time scale in the MVF. An appropriate local frequency func-
tion is unknown a priori. Again the introduction of MVFs yields a corresponding
MPDAE model, see [8].

Definition 3 The system of warped multirate partial differential algebraic equa-
tions (wMPDAEs) corresponding to the system of DAEs (2) is given by

A(p)

(
∂x̂

∂t1
+ ν(t1,p)

∂x̂

∂t2

)
= f(b(t1), x̂(t1, t2,p),p) (11)

with MVF x̂ : R2 ×Q → Rk and local frequency function ν : R×Q → R.
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We do not need a MVF for the input signals b due to the presence of the slow
time scale only. The local frequency function depends on the variable t1, since
the frequency modulation is caused by the input signals. It can be shown that
a pair x̂, ν satisfying the wMPDAE (11) yields a quasiperiodic solution of the
DAEs (2) via the reconstruction (10).

An appropriate local frequency function is unknown a priori, i.e., the system (11)
is underdetermined. According to [13], the existence of a representation (9)
implies that each continuous T1-periodic function ν is feasible, which satisfies

1

T1

∫ T1

0

ν(s,p) ds =
1

T2(p)
. (12)

Nevertheless, the corresponding pairs x̂, ν reproduce the same solution of the
DAEs (2) in the reconstruction (10).

We require an additional condition to determine an appropriate local frequency
function. Continuous phase conditions are able to identify efficient representa-
tions in general, see [8, 11]. For example, the property

x̂1(t1, 0) = η(t1) for all t1 ∈ R (13)

is imposed on the (w.l.o.g.) first component of the MVF x̂ = (x̂1, . . . , x̂k)
>, where

a predetermined slowly varying function η : R → R is used. Often a constant
choice η(t1) ≡ η0 is adequate. Likewise, the condition

∂x̂1

∂t2
(t1, 0) = 0 for all t1 ∈ R (14)

can be applied. These continuous phase conditions represent additional boundary
conditions in time domain. The system (11) is autonomous in the variable t2.
Thus a family of translated solutions exists for each local frequency function.
Phase conditions like (13) or (14) are able to isolate a particular solution.

3 Application of Polynomial Chaos

In the system (2), we assume that the selected parameters exhibit some uncer-
tainty. We replace the parameters by random variables. The resulting multirate
systems with stochastic parameters can be resolved by quasi Monte-Carlo meth-
ods, for example. Alternatively, we apply the approach of the generalised polyno-
mial chaos (gPC), which represents a spectral method, see [4], and thus utilises
more structure of the random solution. The gPC approach also yields a possi-
bility to verify results obtained by standard techniques like quasi Monte-Carlo
methods, multidimensional quadrature or others.
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3.1 Preliminaries

We assume (w.l.o.g.) that the tuples p ∈ Q ⊆ Rq include just the parameters
to be analysed with respect to uncertainties. We substitute the parameters by
random variables

ξ : Ω → Q, ξ = (ξ1, . . . , ξq)
>

corresponding to some probability space (Ω,A, P ). Let each random variable ξi

exhibit a classical distribution (uniform, beta, Gaussian, etc.). Given a measur-
able function f : Rq → R depending on the random variables, the expected value
reads (if exists)

〈f〉 :=

∫

Ω

f(ξ(ω)) dP (ω) =

∫

Rq

f(ξ)ρ(ξ) dξ, (15)

where ρ : Rq → R represents the density function of the random parameters. We
assume that the expected value exists for all polynomials. Accordingly, the inner
product of two functions f, g : Rq → R implies the formula (if exists)

〈fg〉 :=

∫

Ω

f(ξ(ω))g(ξ(ω)) dP (ω) =

∫

Rq

f(ξ)g(ξ)ρ(ξ) dξ. (16)

We apply the expected value also to vector-valued as well as matrix-valued func-
tions by components.

Substitution of the parameters by random variables changes the deterministic
solution of the DAEs (2) into a random process

y : [t0, t1]× Ω → Rk, y(t, ω) = x(t, ξ(ω)).

We are interested in key data of the process like the expected value and the
variance, for example. Nevertheless, more complicated information can be con-
sidered.

Observing a solution of the DAEs (2), differential components have to be smooth
in time, whereas algebraic components are just required to be continuous. For
simplicity, we assume that all components are smooth with respect to time, i.e.,

x(·, ξ(ω)) ∈ C1([t0, t1]) for almost all ω ∈ Ω.

Furthermore, we demand finite second moments of the stochastic process

〈xj(t, ξ)2〉 < ∞ for each t ∈ [t0, t1] (17)

and all j = 1, . . . , k with x = (x1, . . . , xk)
>. It follows that the stochastic process

exhibits the expansion

x(t, ξ(ω)) =
∞∑
i=0

vi(t)Φi(ξ1(ω), . . . , ξq(ω)), (18)
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where the functions (Φi)i∈N, Φi : Rq → R represent a complete basis of polyno-
mials. We apply an orthonormal system in the following, i.e., 〈ΦiΦj〉 = δij holds
with the Kronecker-delta. The coefficient functions vi : [t0, t1] → Rk satisfy the
relation

vi(t) = 〈Φi(ξ)x(t, ξ)〉. (19)

The convergence of the series (18) proceeds in L2(Ω), i.e.,

lim
n→∞

〈(
xj(t, ξ)−

n∑
i=0

vi,j(t)Φi(ξ)

)2〉
= 0 for each t (20)

and all components j = 1, . . . , k, where vi = (vi,1, . . . , vi,k)
>.

If the random variables ξ are Gaussian, then the orthonormal basis consists of the
Hermite polynomials. The corresponding approach is called the (homogeneous)
polynomial chaos. If some random variable is non-Gaussian, then we obtain the
technique of the generalised polynomial chaos (gPC). For more details on the
approach of gPC, we refer to [1, 4, 7].

Due to the definition of the inner product (16), the coefficient functions are
specified by parameter-dependent integrals (19), where the time represents the
parameter. Given a density function ρ with compact support, it follows directly
that the functions vi are smooth provided that x is smooth in time and all
involved functions are piecewise continuous with respect to the parameters p. If
the support of the density function is not bounded or if significant discontinuities
are present, then an integrable function dominating the derivatives of x is required
to ensure the smoothness of the coefficient functions. The latter case appears for
random variables ξ with Gaussian distributions, for example.

Considering the DAEs (2) with stochastic parameters, the coefficient functions vi

of the stochastic process (18) are unknown a priori. The integrals (19) can be
evaluated approximately via stochastic collocation, see [15, 16]. Thereby, mul-
tidimensional Gaussian quadrature can be used based on the tensor product of
the one-dimensional formula. In higher dimensions, Monte-Carlo methods, quasi-
Monte-Carlo methods or sparse grids are more adequate. Each evaluation of the
integrand in (19) for a particular value ξ demands a numerical simulation of the
system of DAEs (2).

Alternatively, we construct a numerical method based on a Galerkin approach
following [7]. We truncate the expansion (18) at the mth term

x(m)(t, ξ(ω)) =
m∑

i=0

vi(t)Φi(ξ1(ω), . . . , ξq(ω)). (21)
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Corresponding approximations of the expected value and the variance are deter-
mined via

〈x(t, ξ)〉 .
= 〈x(m)(t, ξ)〉 = v0(t),

Var(xj(t, ξ))
.
= Var(x

(m)
j (t, ξ)) =

m∑
i=1

vi,j(t)
2 (22)

in each time point t ∈ [t0, t1]. Nevertheless, other quantities may be required,
which can often be reconstructed from the coefficient functions.

Inserting the approximation (21) into the system (2) yields the residual

r(t, ξ) = A(ξ)

(
d

dt

m∑
i=0

vi(t)Φi(ξ)

)
− f

(
b(t),

m∑
i=0

vi(t)Φi(ξ), ξ

)
.

To determine the unknown coefficient functions, we apply the Galerkin method,
i.e., we demand

〈Φl(ξ)r(t, ξ)〉 = 0 for each t ∈ [t0, t1] and l = 0, 1, . . . , m.

Accordingly, we achieve a larger coupled system of DAEs.

Definition 4 The gPC system of DAEs corresponding to (2) obtained by a Galer-
kin approach reads

m∑
i=0

〈Φl(ξ)Φi(ξ)A(ξ)〉dvi

dt
=

〈
Φl(ξ)f

(
b(t),

m∑
i=0

vi(t)Φi(ξ), ξ

)〉
(23)

for l = 0, 1, . . . , m.

Although the coefficients satisfying the system (23) are not identical to the func-
tions in (18), we employ the same symbol for convenience. If the matrix A does
not depend on the parameters, then the system (23) simplifies to

A
dvl

dt
=

〈
Φl(ξ)f

(
b(t),

m∑
i=0

vi(t)Φi(ξ), ξ

)〉

for l = 0, 1, . . . , m in view of the orthonormal basis polynomials.

We comment shortly on the case of large numbers q of random parameters. The
basis polynomials depend on q independent variables. Thus the number of poly-
nomials up to a certain degree d increases rapidly due to m + 1 = (q + d)!/(q!d!).
Further techniques have to be applied for reducing the problem size of the large
coupled systems in case of many parameters, which corresponds to a model order
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reduction. Methods based on ANOVA (analysis of variance) expansions enable a
promising strategy, see for example [3]. If the input for the DAEs (1) is a time-
dependent random process, then it can be represented by a Karhunen-Loève ex-
pansion, see [4]. Truncating this expansion yields a finite set of random variables
and the above approach becomes feasible, cf. [7]. The number of required vari-
ables for a sufficiently accurate approximation depends on the correlation length
of the random process.

3.2 Case of constant time rates

Now we assume that a two-tone quasiperiodic solution of the DAE system (2)
exists for each tuple of parameters, where the widely separated time rates T1, T2

are forced by the input signals. Thus we consider the MPDAE (8) with stochastic
parameters. The according biperiodic solution becomes a random field

ŷ : [0, T1]× [0, T2]× Ω → Rk, ŷ(t1, t2, ω) = x̂(t1, t2, ξ(ω)).

We assume finite second moments

〈x̂j(t1, t2, ξ)2〉 < ∞ for each t1, t2 (24)

and all j = 1, . . . , k with x̂ = (x̂1, . . . , x̂k)
>. The condition (24) of the MPDAE

solution implies finite second moments (17) of the reconstructed DAE solution.

Consequently, the MVF seen as a random field owns the representation

x̂(t1, t2, ξ(ω)) =
∞∑
i=0

v̂i(t1, t2)Φi(ξ1(ω), . . . , ξq(ω)) (25)

with convergence in L2(Ω) for each t1, t2 analogue to (20). The basis polyno-
mials (Φi)i∈N are identical to the functions in (18). The coefficient functions
v̂i : [0, T1]× [0, T2] → Rk are specified by the relation

v̂i(t1, t2) = 〈Φi(ξ)x̂(t1, t2, ξ)〉. (26)

Accordingly, smoothness of the coefficient functions follows from the properties
of the involved functions, cf. (19).

We apply a finite number of terms in (25) again, which results in the residual
corresponding to (8)

r(t1, t2, ξ) = A(ξ)

(
∂

∂t1
+

∂

∂t2

) m∑
i=0

v̂i(t1, t2)Φi(ξ)

− f

(
b̂(t1, t2),

m∑
i=0

v̂i(t1, t2)Φi(ξ), ξ

)
.

Now the Galerkin method yields a larger coupled system of MPDAEs.
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Definition 5 The gPC system of MPDAEs corresponding to (8), which is con-
structed by a Galerkin method, is given by

m∑
i=0

〈Φl(ξ)Φi(ξ)A(ξ)〉
(

∂v̂i

∂t1
+

∂v̂i

∂t2

)

=

〈
Φl(ξ)f

(
b̂(t1, t2),

m∑
i=0

v̂i(t1, t2)Φi(ξ), ξ

)〉 (27)

for l = 0, 1, . . . , m.

The dimension of the system (27) is k(m + 1). The system has the form of a
larger MPDAE (8) with particular matrix and right-hand side. The coefficient
functions v̂i inherit the periodicities of the random field x̂ due to (26). Thus a
method of characteristics solves the biperiodic boundary value problem efficiently,
see [9].

Alternatively, we consider the gPC system of DAEs (23). The involved coefficients
inherit the time behaviour of the solutions of the original system (2) in view
of (19). Hence the coefficient functions vi are two-tone quasiperiodic with rates
T1, T2 forced by the input signals. We apply the concept of MVFs and derive the
system of MPDAEs corresponding to the DAEs (23). Thereby, we obtain exactly
the system (27).

The mathematical modelling is illustrated in Fig. 1. Two options yield the same
system of coupled MPDAEs (27), namely by performing the steps (a),(b) or the
steps (c),(d). We recognise that the steps (b) and (c) correspond to an approxi-
mation in the stochastic model, where the random parameters are eliminated by
integration.

Furthermore, we remark one particular advantage in solving biperiodic problems
of the larger systems (27) in comparison to computing the coefficients (26) by
stochastic collocation. On the one hand, each evaluation of the integrand in (26)
demands the solution of a biperiodic problem of the MPDAE system (8). New-
ton iterations yield numerical solutions for these boundary value problems. To
be efficient, previously computed solutions have to be used as starting values for
neighbouring problems. Thus we require a sophisticated ordering of the involved
parameter values. Furthermore, a failure of convergence is possible due to insuffi-
cient starting values. We have to apply continuation methods with respect to the
parameters in case of failure. The implementation of corresponding algorithms
becomes extensive for two or more random parameters. On the other hand, the
biperiodic problem of the coupled MPDAEs (27) implies just one large nonlinear
system in a numerical method. Hence we have to control the convergence of just
a single Newton iteration. Note that the approach via stochastic collocation can
still be efficient provided that sophisticated algorithms are implemented.
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t , t1 2time variable t
dimension k(m+1)

coupled MPDAEscoupled DAEs

DAE MPDAE

ξξ

Galerkin method Galerkin method
gPC approximation,gPC approximation,

Figure 1: Interaction between MPDAE approach and Polynomial Chaos.

3.3 Case of frequency modulation

The modelling becomes more complex for frequency modulated signals. In the
previous case, the input signals force the time rates T1, T2. Hence all two-tone
quasiperiodic solutions exhibit identical time rates. In contrast, the input sig-
nals imply just the slow rate T1 now. The solutions of (2) are quasiperiodic
functions (9), where the time rate T2 depends on the stochastic parameters. It
follows that the option (d) in Fig. 1 is not feasible, since the signal model applies
a particular local frequency function for all components of the solution. However,
the relation (12) shows that each local frequency function is associated with a fast
time rate T2. A single local frequency is feasible if the fast rates are identical for
all parameters, which is not given in general. Numerical simulations confirm this
fact, since corresponding Newton iterations do not converge in finite difference
methods used successfully in [13].

Consequently, we apply the system of wMPDAEs (11), which is achieved by
step (a) in Fig. 1. We assume that the solutions exhibit the expansion (25)
guaranteed by finite second moments (24). The time domain is standardised
to [0, T1] × [0, 1]. Since the local frequency function depends on the stochastic
parameters, we consider pointwise finite second moments and apply

ν(t1, ξ(ω)) =
∞∑
i=0

wi(t1)Φi(ξ1(ω), . . . , ξq(ω)) (28)

with T1-periodic coefficients wi : R → R and the same basis polynomials as
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in (25). Inserting the finite approximations of (25) as well as (28) in the system
of wMPDAEs (11), we obtain the residual

r(t1, t2, ξ) = A(ξ)

(
∂

∂t1
+

(
m′∑
j=0

wj(t1)Φj(ξ)

)
∂

∂t2

)
m∑

i=0

v̂i(t1, t2)Φi(ξ)

− f

(
b(t1),

m∑
i=0

v̂i(t1, t2)Φi(ξ), ξ

)
.

Again the Galerkin technique provides us a coupled system of MPDAEs subject
to the condition m = m′.

Definition 6 The gPC system of wMPDAEs corresponding to (11) achieved by
a Galerkin approach reads

m∑
i=0

[
〈Φl(ξ)Φi(ξ)A(ξ)〉∂v̂i

∂t1
+

m∑
j=0

〈Φl(ξ)Φi(ξ)Φj(ξ)A(ξ)〉wj(t1)
∂v̂i

∂t2

]

=

〈
Φl(ξ)f

(
b(t1),

m∑
i=0

v̂i(t1, t2)Φi(ξ), ξ

)〉 (29)

for l = 0, 1, . . . , m.

We recognise that the left-hand side of (29) becomes more complicated in com-
parison to (11) or (27). Moreover, we encounter m + 1 unknown coefficient func-
tions wj in the system (29). Again the phase conditions provide us additional
information to solve the complete system. According to (13), we demand

x̂1(t1, 0, ξ) = η(t1, ξ) for all t1 and each ξ

using a predetermined function η. A corresponding Galerkin projection yields
the conditions

v̂i,1(t1, 0) = 〈η(t1, ξ)Φi(ξ)〉 for all t1 and i = 0, 1, . . . , m.

A constant choice η(t1, ξ) ≡ η0 is often feasible, where the requirements simplify
to

v̂0,1(t1, 0) = η0 and v̂i,1(t1, 0) = 0 for i = 1, . . . , m (30)

including all t1. Likewise, the condition (14) implies

∂v̂i,1

∂t2
(t1, 0) = 0 for all t1 and i = 0, 1, . . . ,m.

The additional relations are used to achieve as many equations as unknowns in
a suitable numerical method.
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We note that the reconstruction of solutions of the DAEs (2) by a solution of the
gPC system of wMPDAEs (29) becomes more involved than in the original case.
According to (10), the reconstruction reads

x(t, ξ)
.
=

m∑
i=0

v̂i

(
t,

m∑
j=0

Φj(ξ)

∫ t

0

wj(s) ds

)
Φi(ξ).

Thus the computation of expected value and variance is not straightforward.
Nevertheless, a cheap sampling in random space is feasible provided that the
coefficient functions have already been calculated. Moreover, properties of the
quasiperiodic DAE solutions can often be illustrated by an investigation of the
MPDAE solutions alone.

4 Analysis of Warped Systems

In this section, we analyse the system (29) of the gPC for wMPDAEs further.
For the sake of shortness, we consider a constant matrix A. The following results
are also valid, if the matrix A is block diagonal and all random parameters belong
to invertible minors. The system (29) simplifies to

A

[
∂v̂l

∂t1
+

m∑
i,j=0

〈Φl(ξ)Φi(ξ)Φj(ξ)〉wj(t1)
∂v̂i

∂t2

]
= Fl(b(t1), v̂(t1, t2)) (31)

for l = 0, 1, . . . ,m, where an abbreviation is used for the right-hand side and
v̂ := (v̂>0 , . . . , v̂>m)>. Using Kronecker products, we write the complete system as

(Im+1 ⊗ A)
∂v̂

∂t1
+ (B(t1)⊗ A)

∂v̂

∂t2
= F(b(t1), v̂(t1, t2)) (32)

with the identity matrix Im+1 ∈ R(m+1)×(m+1) and the matrix

B(t1) :=
m∑

j=0

wj(t1)Mj ∈ R(m+1)×(m+1), (33)

which includes the functions with respect to the local frequencies. The constant
matrices

Ml := (µlij) ∈ R(m+1)×(m+1), µlij := 〈ΦlΦiΦj〉 for l = 0, 1, . . . , m

consist of expected values. Thereby, the coefficients µlij are symmetric in all
indices. The basis polynomial Φ0 ≡ 1 causes M0 = Im+1 due to 〈ΦiΦj〉 = δij.
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The matrices (33) are symmetric for each t1, since the matrices Ml are symmetric.
Thus a transformation to a diagonal matrix

B(t1) = S(t1)
>Λ(t1)S(t1) (34)

exists using orthogonal matrices S(t1) ∈ R(m+1)×(m+1). It is obvious to ask for the
definiteness of the matrices (33). In the model (11), negative local frequencies are
feasible. However, the presence of widely separated time scales implies a strictly
positive local frequency function. Accordingly, characteristic curves of (11) ex-
hibit a certain direction, see [10]. The deterministic case (11) corresponds to the
choice wj(t1) ≡ 0 for j > 0, where B(t1) ≡ w0(t1)Im+1 holds and thus the matrix
is positive definite for w0(t1) > 0. Assuming small stochastic perturbations, we
achieve the following generalisation.

Theorem 1 Given T1-periodic functions wj for j = 0, 1, . . . ,m, let w0(t1) > 0
for all t1. If

(m + 1)

(
max

0≤i≤m

√
〈Φ4

i 〉
) m∑

j=1

|wj(t1)| < w0(t1)

holds for all t1, then the symmetric matrices B(t1) ∈ R(m+1)×(m+1) in (33) are
positive definite.

Proof:

Let λ ∈ R be an arbitrary eigenvalue of the matrix B(t1). We apply the structure

B(t1) = w0(t1)Im+1 +
m∑

j=1

wj(t1)Mj,

where the latter sum represents a perturbation of the diagonal matrix w0Im+1.
The Bauer-Fike theorem implies

|λ− w0(t1)| ≤
∥∥∥∥∥

m∑
j=1

wj(t1)Mj

∥∥∥∥∥
p

≤
m∑

j=1

|wj(t1)| · ‖Mj‖p

≤
(

max
1≤l≤m

‖Ml‖p

) m∑
j=1

|wj(t1)|

in an arbitrary p-norm. The Cauchy-Schwarz inequality for the inner product (16)
yields together with 〈Φ2

l 〉 = 1

‖Ml‖∞ = max
0≤i≤m

m∑
j=0

|〈ΦlΦiΦj〉| ≤ (m + 1) max
0≤i,j≤m

|〈ΦlΦiΦj〉|

≤ (m + 1) max
0≤i,j≤m

√
〈Φ2

l 〉〈Φ2
i Φ

2
j〉 ≤ (m + 1) max

0≤i,j≤m

4

√
〈Φ4

i 〉〈Φ4
j〉,
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where the estimate is independent of the number l. The assumed property implies
|λ− w0(t1)| < w0(t1) and thus it holds λ > 0. ¤

Hence the matrices (33) inherit the positive definiteness of the matrix in the
deterministic case provided that the variances are sufficiently small.

Solutions of the wMPDAE system (11) exhibit a degree of freedom by transfor-
mations, see [13]. In case of the gPC system (31), the following transformation
is feasible.

Theorem 2 Let v̂0, . . . , v̂m be a (T1, 1)-periodic solution of the system (31) in-
cluding the T1-periodic functions w0, . . . , wm. Applying a T1-periodic function
w̄0 : R→ R, we define the MVFs

v̄l(t1, t2) := v̂l

(
t1, t2 +

∫ t1

0

w0(s)− w̄0(s) ds

)
(35)

for l = 0, 1, . . . , m. It follows that the MVFs v̄0, . . . , v̄m solve the system (31)
with the functions w̄0, w1, . . . , wm. If the condition

∫ T1

0

w0(s) ds =

∫ T1

0

w̄0(s) ds (36)

holds for the average, then the MVFs v̄0, . . . , v̄m are (T1, 1)-periodic.

Proof:

Let w̄j := wj for j = 1, . . . , m and t̄2 := t2 +
∫ t1
0

w0(s) − w̄0(s) ds. Using the
chain rule of differentiation, we obtain with (35) and µli0 = δli

A

[
∂v̄l

∂t1
(t1, t2) +

m∑
i,j=0

µlijw̄j(t1)
∂v̄i

∂t2
(t1, t2)

]

= A

[
∂v̂l

∂t1
(t1, t̄2) + (w0(t1)− w̄0(t1))

∂v̂l

∂t2
(t1, t̄2) +

m∑
i,j=0

µlijw̄j(t1)
∂v̂i

∂t2
(t1, t̄2)

]

= A

[
∂v̂l

∂t1
(t1, t̄2) +

m∑
i,j=0

µlijwj(t1)
∂v̂i

∂t2
(t1, t̄2)

]

= Fl(b(t1), v̂(t1, t̄2)) = Fl(b(t1), v̄(t1, t2))

for l = 0, 1, . . . ,m. It is straightforward to show that the periodicity of w0, w̄0

and the condition (36) imply that the MVFs v̄l inherit the periodicities of the
original MVFs v̂l. ¤
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Theorem 2 demonstrates that the biperiodic solution of (31) can be transformed
to another biperiodic solution involving a different periodic expected value of
the local frequency function, where the average coincides. In contrast, the func-
tions w1, . . . , wm, which determine the variances of the problem, cannot be mod-
ified.

A more precise analysis becomes feasible, if the transformation matrix S in (34)
is independent of the slow time scale.

Theorem 3 If the matrices (33) can be diagonalised via

B(t1) = S>Λ(t1)S (37)

with a constant orthogonal matrix S ∈ R(m+1)×(m+1) and a diagonal matrix
Λ(t1) = diag(λ0(t1), . . . , λm(t1)), then the gPC wMPDAE system (32) is equiva-
lent to the system

(Im+1 ⊗ A)
∂ṽ

∂t1
+ (Λ(t1)⊗ A)

∂ṽ

∂t2
= (S ⊗ Ik)F(b(t1), (S

> ⊗ Ik)ṽ) (38)

with ṽ := (S ⊗ Ik)v̂.

Proof:

Multiplying (32) by S ⊗ Ik yields

(S ⊗ Ik)(Im+1 ⊗ A)
∂v̂

∂t1
+ (S ⊗ Ik)(B(t1)⊗ A)

∂v̂

∂t2
= (S ⊗ Ik)F(b(t1), v̂).

Using the rule (A⊗B)(C ⊗D) = (AC)⊗ (BD) several times, we obtain

(Im+1 ⊗ A)(S ⊗ Ik)
∂v̂

∂t1
+ ((SB(t1))⊗ A)

∂v̂

∂t2
= (S ⊗ Ik)F(b(t1), v̂)

and

(Im+1 ⊗ A)(S ⊗ Ik)
∂v̂

∂t1
+ ((SB(t1)S

>)⊗ A)(S ⊗ Ik)
∂v̂

∂t2
= (S ⊗ Ik)F(b(t1), v̂)

It holds SB(t1)S
> = Λ(t1). Finally, the substitution ṽ = (S ⊗ Ik)v̂ or, equiva-

lently, v̂ = (S> ⊗ Ik)ṽ yields the formula (38). ¤

A decoupling has been achieved in the left-hand side of (38). Using the partition
ṽ = (ṽ>0 , . . . , ṽ>m)>, we investigate the structure of the novel system. The set of
equations consists of m + 1 subsystems

A

(
∂ṽi

∂t1
+ λi(t1)

∂ṽi

∂t2

)
= Gi(b(t1), ṽ) for i = 0, 1, . . . , m. (39)
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In the ith subsystem, the left-hand side includes information from the compo-
nents ṽi only. Moreover, we recognise that the left-hand side agrees with the
original wMPDAE formulation (11). Hence m+1 families of characteristic curves
exist defined by the functions λi for i = 0, 1, . . . , m. The characteristic projections
of the ith subsystem (39) read, cf. [10],

t2(t1) =

∫ t1

0

λi(s) ds + c for each c ∈ R. (40)

For fixed i, the characteristic projections represent a family of parallel curves in
the domain of dependence. Accordingly, the system (31) or (32), equivalently,
exhibits the structure of a hyperbolic partial differential equation. In case of non-
constant transformation matrices S, the type is still hyperbolic, since a decoupling
of the left-hand side exists locally due to (34).

An efficient method of characteristics for solving biperiodic problems of the sys-
tem of wMPDAEs (11) has been constructed in [10]. However, a technique based
on the characteristic projections (40) of the system (31) from the gPC is un-
favourable in view of the following reasons:

1. Several families of characteristic projections exist in contrast to just one
family belonging to the original system (11).

2. The functions w0, . . . , wm are unknowns of the problem (31). On the one
hand, eigenvalue problems have to be solved for the determination of the
characteristic projections (40). On the other hand, the characteristic projec-
tions of the underlying system (11) follow directly from the local frequency
function ν.

3. The transformation (34) involves matrices S(t1) depending on the vari-
able t1 in general. Thus the system (31) can be decoupled just locally.

4. In case of constant transformation matrices S, the equivalent system (38)
is decoupled in the left-hand side only, whereas the right-hand side still
includes all components of the solution. The same holds for a locally used
transformation (34) in case of non-constant matrices S(t1).

The above reasons indicate that solving initial value problems of the system (31)
by a method of characteristics becomes complicated. Moreover, we consider
biperiodic boundary value problems. Hence finite difference methods on axipar-
allel grids have to be preferred for the numerical solution of a biperiodic problem
of a system (31) in time domain. Obviously, a method of characteristics is also
unfavourable in case of the more sophisticated system (29) with random matrix A.
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5 Illustrative Example

As test example, we apply the electric circuit of a voltage controlled oscillator
(VCO) shown in Fig. 2. The circuit consists of a capacitance, an inductance and
a nonlinear resistance. The capacitance is controlled by an independent input
signal. Mathematical modelling based on a network approach yields the system

u̇ = ıC/(C0b(t))

ı̇L = u/L0

0 = ıR − g(u)

0 = ıR + ıL + ıC .

(41)

The unknowns are the node voltage and the currents through capacitance, in-
ductance and resistance, respectively. The system (41) represents a semi-explicit
system of DAEs with differential index 1. The current-voltage relation of the
nonlinear resistance reads

g(u) = (G0 −G∞)U0 tanh

(
u

U0

)
+ G∞u.

We set the technical parameters to

C0 = 1 nF, L0 = 1 µH, U0 = 1 V, G0 = −0.1 A/V, G∞ = 0.25 A/V.

Using a constant input b ≡ 1, the VCO (41) exhibits periodic solutions with rate
T2 ≈ 270 ns. We arrange the slowly varying input signal

b(t) = 1 + 0.8 cos

(
2π

T1

t

)
with T1 = 1 ms.

Now the system (41) exhibits quasiperiodic solutions involving frequency mod-
ulation. We apply the corresponding system of wMPDAEs (11) with biperiodic
boundary conditions. Numerical simulations of the wMPDAEs (11) using this
VCO with a slightly different mathematical modelling are presented in [13].

We assume an uncertainty in the inductance and define the random parameter

L(ξ) = L0(1 + 0.2ξ) (42)

with uniformly distributed random variable ξ ∈ [−1, 1]. Thus we employ rela-
tively large perturbations of 20% for demonstration. The according gPC represen-
tation (25) of the random field involves the Legendre polynomials as orthonormal
basis. We truncate the series at the term m = 3, i.e., univariate polynomials up
to degree 3 are used. The coupled system (29) of wMPDAEs consists of 16 equa-
tions. We use four additional conditions (30) with η0 = 0 to determine the
unknown coefficient functions of the local frequency function.

19



u

L C(t)ıLıR ıC

Figure 2: Circuit of voltage controlled oscillator.

A finite difference method yields a numerical solution of the biperiodic boundary
value problem for (29) on a uniform grid in the domain [0, T1] × [0, 1]. Par-
tial derivatives are discretised by asymmetric difference formulas of second order
(BDF2). Required evaluations of the right-hand side in (29) are computed by
Gauss-Legendre quadrature with q = 10 nodes. We apply a grid of 50×50 points,
which results in a nonlinear system with 40.000 equations. A Newton iteration
converges to the numerical solution, where a deterministic solution of (11) yields
the starting values.

We discuss briefly the general computational effort of the finite difference method.
Let n1, n2 be the number of grid points in each coordinate direction. A nonlinear
system H = 0 appears with dimension n1n2(m + 1)k. Assume that expected
values (15) are approximated by Gaussian quadrature using q nodes. Each com-
putation of H and its Jacobian matrix DH demands n1n2q evaluations of f ∈ Rk

from (11) and Df ∈ Rk×k, respectively. In the Newton method, the matrices
of the linear systems exhibit a band structure except for external blocks due
to the periodicity. Assuming n1 = n2 = n, the computational work of an LU-
decomposition is about O(n4m3k3), whereas a dense matrix implies O(n6m3k3).
The gPC strategy becomes efficient if a small m is sufficient, say m ≤ 5. The aim
of the MPDAE approach is to achieve good approximations on relatively coarse
grids in time domain, say n ≤ 100. In contrast, the size k of the underlying DAE
model (2) depends on the given application.

Fig. 3 illustrates the resulting coefficient functions of the local frequencies accord-
ing to (28) as well as the corresponding standard deviation calculated analogue
to (22). The expected values of the MVFs are shown in Fig. 4. These expected
values are similar to the deterministic solution of the underlying wMPDAEs (11).
Furthermore, Fig. 5 demonstrates the other coefficient functions of the node volt-
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Figure 3: Coefficient functions wi (left) for i = 0 (—), i = 1 (- - -), i = 2 (- · -),
i = 3 (· · · ) and standard deviation (right) of local frequency function.

Table 1: Maximum values of the coefficient functions from gPC wMPDAE.

i = 0 i = 1 i = 2 i = 3

ν 5.7 · 106 5.1 · 105 5.0 · 104 4.7 · 103

û 1.4 · 100 4.7 · 10−2 3.4 · 10−3 2.7 · 10−4

ı̂L 7.2 · 10−2 2.7 · 10−3 2.3 · 10−4 2.1 · 10−5

ı̂C 1.1 · 10−1 7.2 · 10−3 5.7 · 10−4 4.8 · 10−5

ı̂R 4.1 · 10−2 5.4 · 10−3 4.5 · 10−4 3.9 · 10−5

age in the expansion (25). Thereby, we recognise the applied additional boundary
conditions (30). Finally, approximations of the standard deviations of the MVFs
are computed following (22) and displayed in Fig. 6.

Using the computed approximations in the grid points, we show the maximum
value of each coefficient function for each component of the solution of (29) in
Table 1. The coefficient functions decrease about one order of magnitude for
increasing degree, which indicates a relatively fast convergence of the applied
gPC expansions. Although the stochastic perturbation (42) of the parameter L0

is relatively large, the matrices (33) remain positive definite in each grid point,
cf. Theorem 1. Nevertheless, indefinite matrices do not cause problems in the
used finite difference method.

For comparison, we determine the coefficient functions of the local frequency via
stochastic collocation, see [15, 16]. Thereby, we apply Gauss-Legendre quadrature
of different orders. For each node, a biperiodic boundary value problem of (11)
has to be solved for a specific parameter (42). We use a finite difference method
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Figure 4: Expected values of the MVFs determined by gPC wMPDAE.
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Figure 5: Coefficient functions corresponding to MVF û in physical unit [V].
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Figure 6: Standard deviations of the MVFs obtained by gPC wMPDAE.
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Table 2: Maximum relative differences between numerical solutions of the local
frequency obtained by Galerkin gPC system in comparison to stochastic colloca-
tion using Gauss-Legendre-quadrature with q nodes.

w0 w1 w2 w3

q = 2 8 · 10−5 9 · 10−3 1 · 100 1 · 102

q = 4 2 · 10−8 9 · 10−7 9 · 10−5 1 · 10−2

q = 10 2 · 10−8 1 · 10−7 2 · 10−5 2 · 10−3

on a 50 × 50 grid again, where nonlinear systems including 10.000 equations
result. Table 2 illustrates the differences of the resulting coefficient functions in
comparison to the previously computed solution of (29). The values represent
relative differences, where the maximum difference is divided by the maximum
value of each component. The relative differences decrease for higher orders of
the used quadrature. The coefficient functions of the MVFs exhibit the same
behaviour. The decreasing differences indicate that we have computed a correct
solution of the wMPDAEs (29) from the gPC approach.

For an additional verification, we arrange a classical Monte-Carlo simulation of
the stochastic model. We determine s samples of the random variable (42) using
pseudo random numbers for ξ ∈ [−1, 1]. The biperiodic boundary value problem
of the wMPDAEs (11) is solved by the finite difference method on a 50 × 50
grid again. Thus s independent nonlinear systems appear in this Monte-Carlo
simulation. We calculate the mean values and the sample variances to achieve
approximations of the expected values and the standard deviations in case of
s = 100 as well as s = 1000. The previously computed solution of the gPC
wMPDAEs (29), which results from the Galerkin approach, yields alternative
approximations via (22). We determine the maximum absolute differences on the
grid for each component separately, see Table 3. We recognise that the differences
decrease for larger numbers of samples. Since the discrepancies become also small
in a relative sense, the correctness of the solution from the gPC approach is
confirmed.

For the sake of shortness, we omit the reconstruction of data corresponding to
solutions of the DAEs (2) via the computed solution of the gPC wMPDAEs (29).
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Table 3: Maximum absolute differences in expected values and standard devia-
tions between the solution from gPC and solutions from a Monte-Carlo simulation
using s samples. Results are given for each component separately.

expected values standard deviations
s = 100 s = 1000 s = 100 s = 1000

ν 4.7 · 104 2.1 · 103 3.1 · 104 2.0 · 103

û 4.1 · 10−3 1.7 · 10−4 2.3 · 10−3 1.7 · 10−4

ı̂L 2.5 · 10−4 1.1 · 10−5 1.5 · 10−4 1.0 · 10−5

ı̂C 6.3 · 10−4 2.7 · 10−5 3.6 · 10−4 2.6 · 10−5

ı̂R 4.7 · 10−4 2.0 · 10−5 2.7 · 10−4 2.0 · 10−5

6 Conclusions

The concept of MPDAEs provides an alternative simulation of DAEs including
quasiperiodic solutions. Assuming random parameters, we applied the strategy
of the generalised polynomial chaos to the systems of MPDAEs. Thereby, a
Galerkin approach yields larger coupled systems of MPDAEs, which inherit a
hyperbolic structure. Coupled systems of MPDAEs reproducing amplitude mod-
ulated signals exhibit the form of the underlying multirate system. Hence a
method of characteristics can be used efficiently. In contrast, coupled systems
resulting from warped MPDAEs, which describe the case of frequency modu-
lated signals, become more involved. We analysed the structure of characteristic
curves of these coupled systems. It follows that a method of characteristics is
unfavourable due to several reasons, although a corresponding algorithm may
be feasible. Nevertheless, finite difference methods solve the coupled systems of
MPDAEs appropriately on uniform grids in time domain.
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