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Abstract

Technical applications often imply mathematical models based on differ-
ential algebraic equations (DAEs). The systems of DAEs may include
parameters, which exhibit some uncertainty. We arrange a stochastic
model to determine the sensitivity of a solution with respect to the pa-
rameters in case of linear systems. The strategy of generalised polynomial
chaos yields a larger linear system of DAEs, which describes the problem.
We prove sufficient conditions such that the alternative DAE model in-
herits the index of the original DAE system. Furthermore, the choice of
consistent initial values is discussed. We present numerical simulations
of the stochastic model using the polynomial chaos.

Keywords: consistent initial values; differential algebraic equations;
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1 Introduction

Mathematical modelling of large dynamical systems often yields differential al-
gebraic equations (DAEs) like in simulation of electric circuits, see [4, 6], or in
multibody dynamics, see [3], for example. Typically, many technical parameters
are present in the system of DAEs. Some parameters may be crucial for the
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behaviour of the corresponding solution. Thus information about the sensitivity,
i.e., the dependence of the solution on the parameters, is required. Partial deriva-
tives with respect to the parameters yield a local analysis of the dependence.

In contrast, we apply a stochastic model to determine global information about
the sensitivity. Thereby, we assume that the crucial parameters exhibit some
uncertainties, which are described by random distributions. Modelling the pa-
rameters as random variables changes the solutions of the DAEs into stochastic
processes. For uncertainty quantification, key data like expected value and vari-
ance can be computed by Monte-Carlo simulations or more sophisticated variants
like quasi Monte-Carlo methods. Often a huge number of simulations is required
for a sufficiently accurate approximation.

We use an alternative strategy to solve the stochastic model, which is based on a
polynomial expansion of stochastic processes. Wiener [11] formulated the homo-
geneous polynomial chaos for stochastic parameters with Gaussian distributions.
Cameron and Martin [2] upgraded this approach to arbitrary random fields of
second order. The generalised polynomial chaos applies an expansion in case
of stochastic parameters with optional distributions, see [1, 7]. Each approach
results in a larger coupled system, which has to be solved only once to achieve
numerical approximations of the stochastic model.

We consider linear systems of DAEs in this paper. Due to the linear structure,
the strategy of polynomial chaos is significantly more efficient than methods of
Monte-Carlo type. The aim of the paper is to analyse the index of the constructed
systems with respect to the index of the original systems. We specify sufficient
conditions to guarantee that the DAEs of the polynomial chaos inherit the index
of the underlying DAEs. The choice of consistent initial values for the larger
systems is investigated. Moreover, we perform numerical simulations of a system
of DAEs reflecting the theoretical examinations.

The paper is organised as follows. We formulate the stochastic model of DAEs
for three types of dependence on parameters in Sect. 2. The strategy of the
generalised polynomial chaos is outlined. We analyse the index for each case in
Sect. 3, where corresponding statements are proved. Consistency of initial values
is addressed. Sect. 4 includes numerical simulations of an illustrative example.

2 Problem Definition

We consider a linear system of DAEs written in the form

Aẋ + Bx = s(t) (1)
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with unknown solution x : [t0, t1] → Rn, constant matrices A,B ∈ Rn×n and
time-dependent input signals s : [t0, t1] → Rn. It holds det(A) = 0. Consis-
tent initial values x(t0) = x0 are predetermined. The solution x is smooth in
differential components and at least continuous in algebraic components. We as-
sume a regular matrix pencil (det(A + λB) 6≡ 0), which agrees to existence and
uniqueness of a solution.

2.1 Parameter-dependent system

We assume that the system (1) includes q parameters p = (p1, . . . , pq) ⊆ P within
some set P ⊂ Rq of relevant values. Hence the solution becomes parameter-
dependent: x(t) = x(p; t). We will examine the sensitivity of the solution with
respect to the parameters.

We observe three cases:

1. The input signals include the parameters, i.e., the system reads

Aẋ + Bx = s(p; t). (2)

Each choice of the parameters implies a different right-hand side.

2. The matrix A is parameter-dependent and thus it holds

A(p)ẋ + Bx = s(t). (3)

In the following, we assume the structure

A(p) = A0 +

q∑
j=1

ηj(pj)Aj (4)

with constant matrices A0, A1, . . . , Aq ∈ Rn×n and continuous functions
ηj : R→ R. The choice ηj(pj) ≡ pj is often feasible. Let det(A(p)) = 0 for
all p ∈ P , i.e., the system represents a DAE for all parameters. Without
loss of generality, we consider the parameters as a perturbation of some
mean values, i.e., p → p̄ + p. Consequently, the matrix A0 includes the
constant part p̄, whereas the matrices Aj for j > 0 describe perturbations
with respect to p. The matrices Aj exhibit non-zero entries just in positions,
where A0 owns non-zero values. However, the matrices Aj for j > 0 are
sparser than A0 in general.

3. The parameters influence the matrix B, i.e.,

Aẋ + B(p)x = s(t). (5)
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Analogue to the second case, we consider the pattern

B(p) = B0 +

q∑
j=1

ηj(pj)Bj (6)

with constant matrices B0, B1, . . . , Bq ∈ Rn×n and scalar functions ηj. Let
the matrices Bj for j > 0 represent perturbations of some mean values
again.

A further generalisation consists in the presence of parameters within all terms
of the DAE (1) simultaneously.

2.2 Stochastic modelling

Now we assume some uncertainty within the parameters. Hence we model the
parameters as random variables on a probability space (Ω,A, P ). Given a random
variable f : Ω → R with f ∈ L1(Ω), the expected value of f reads

E(f) := 〈f〉 :=

∫

Ω

f(ω) dP (ω).

For random variables f, g ∈ L2(Ω), the corresponding inner product is defined by

〈fg〉 :=

∫

Ω

f(ω)g(ω) dP (ω). (7)

Concerning vector-valued random variables f ,g : Ω → Rn, the integrals are
considered component-wise.

The parameters p ∈ P exhibit the form

pj = ξj(ω) for j = 1, . . . , q

with random variables ξ = (ξ1, . . . , ξq). We assume some classical distribution
of the random variables like uniform type or Gaussian type, for example. Given
functions f, g depending on the random variables, the inner product (7) can be
calculated by multidimensional real integration

〈fg〉 =

∫

Rq

f(ξ)g(ξ)ρ(ξ) dξ (8)

using the density function ρ of the distribution. According to the assumptions in
the previous section, we suppose 〈ηj(ξj)〉 = 0 for all j, since non-zero expected
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values can be shifted to the constant part of the matrices A,B in (1). For example,
the sum (4) exhibits the form

A(ξ) = A0 +

q∑
j=1

ηj(ξj)Aj

now, where the matrix A0 includes the expected values. Imposing a standard-
isation like Var(ηj(ξj)) = 〈ηj(ξj)

2〉 = 1 for all j implies that the matrices Aj

for j > 0 determine the magnitude of the stochastic perturbation.

Applying this stochastic modelling, the solution of the linear system (1) becomes
a random process:

X : Ω× [t0, t1] → Rn, (ω, t) 7→ X(ω, t) = X(ξ(ω), t).

We are interested in the expected value and the variance of this process, for
example, to quantify the uncertainty with respect to the parameters.

2.3 Generalised polynomial chaos

Let (Φi)i∈N0 with Φi : Rq → R be a complete system of orthogonal polynomials
with respect to the inner product (8), i.e., it holds 〈ΦiΦj〉 = 〈Φ2

i 〉δij using the
Kronecker symbol δ. For example, uniform and Gaussian distribution imply the
Legendre and the Hermite polynomials, respectively. We assume Φ0 ≡ 1 and
Φi ≡ ξi for i = 1, . . . , q. The technique of generalised polynomial chaos, see [7],
applies the expansion

X(ξ(ω), t) =
∞∑
i=0

vi(t)Φi(ξ(ω)) (9)

for the random process including the coefficient functions v : [t0, t1] → Rn.
Considering the paths X(ω, ·) as solution of (1), it is required that differential
components are smooth and algebraic components are continuous with respect
to time. For simplicity, we demand smoothness in all components. We apply the
concept of Sobolev spaces, see for example [9], to define a norm component-wise
by

‖X‖2 :=
〈
‖X‖2

H1([t0,t1])

〉
=

〈
‖X‖2

L2([t0,t1]) + ‖Ẋ‖2
L2([t0,t1])

〉
. (10)

The series (9) converges with respect to the norm (10) in each component if
‖Xj‖ < ∞ holds for each j = 1, . . . , n (X = (X1, . . . , Xn)>).

To obtain a numerical approximation, the expansion (9) has to be truncated, i.e.,

X(ξ(ω), t)
.
=

m∑
i=0

vi(t)Φi(ξ(ω)) (11)
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for some sufficiently large m ∈ N. Given a numerical solution, approximations
for expected value and variance are achieved via

E(X(·, t)) .
= v0(t), Var(X(·, t)) .

=
m∑

i=1

〈Φ2
i 〉(vi(t))

2, (12)

where the squares are computed in each component separately.

Inserting the representation (11) in the linear DAE (1) yields

m∑
i=0

Φi(ξ)Av̇i(t) +
m∑

i=0

Φi(ξ)Bvi(t) = s(t)

for the cases A = A(ξ), B = B(ξ) or s(t) = s(ξ; t).

To determine the unknown coefficient functions vi, we perform a Galerkin ap-
proach, i.e., the residual has to be orthogonal to the space of applied polynomials
with respect to the inner product (8). Thereby, the orthogonality of the basis
polynomials yields a decoupling to some extend. According to the three types of
dependence on parameters introduced in Sect. 2.1, we obtain three cases. Corre-
sponding to the system (2), it follows

〈Φ2
l 〉Av̇l(t) + 〈Φ2

l 〉Bvl(t) = 〈Φls(ξ; t)〉
and thus

Av̇l(t) + Bvl(t) =
1

〈Φ2
l 〉
〈Φls(ξ; t)〉 (13)

for l = 0, 1, . . . , m. The system (3) with (4) implies

〈Φ2
l 〉A0v̇l(t) +

(
m∑

i=0

q∑
j=1

〈ηj(ξj)ΦiΦl〉Ajv̇i(t)

)
+ 〈Φ2

l 〉Bvl(t) = 〈Φls(t)〉

or, equivalently, using 〈Φ2
0〉 = 1

A0v̇l(t) +

(
m∑

i=0

q∑
j=1

〈ηj(ξj)ΦiΦl〉
〈Φ2

l 〉
Ajv̇i(t)

)
+ Bvl(t) = δ0ls(t) (14)

for l = 0, 1, . . . , m. Likewise, the third case (5) with (6) leads to

〈Φ2
l 〉Av̇l(t) + 〈Φ2

l 〉B0vl +

(
m∑

i=0

q∑
j=1

〈ηj(ξj)ΦiΦl〉Bjvi(t)

)
= 〈Φls(t)〉,

which results in

Av̇l(t) + B0vl +

(
m∑

i=0

q∑
j=1

〈ηj(ξj)ΦiΦl〉
〈Φ2

l 〉
Bjvi(t)

)
= δ0ls(t) (15)
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for l = 0, 1, . . . , m. The systems include (m+1)n equations for (m+1)n unknown
coefficient functions in each case.

For the original system (1), we assume a consistent initial value x(t0) = x0. In
the polynomial chaos approach, we like to perform the simple choice

v0(t0) = x0, vi(t0) = 0 for all i > 0 (16)

due to the meaning of the coefficient functions. However, these initial values are
not consistent in general, since the parameters influence the algebraic relations.
Likewise, the initial value x0 is not always consistent in a Monte-Carlo simulation
of the stochastic model, since the realisations of the parameters imply different
consistency conditions.

3 Index Analysis

In this section, we analyse the structure of the linear systems of DAEs from the
polynomial chaos in comparison to the original systems. Although different index
concepts exist, see for example [5], the definitions of the index coincide in the
linear case. Furthermore, the possibility to impose the initial conditions (16) is
investigated.

3.1 Parameters in right-hand side

We discuss the DAE system (13), which consists of separate subsystems for the
coefficient functions. The assumption of a regular matrix pencil for A,B yields
nonsingular transformation matrices P,Q ∈ Rn×n with

PAQ =

(
In1 0
0 N

)
, PBQ =

(
C 0
0 In2

)
, (17)

where C ∈ Rn1×n1 is regular and N ∈ Rn2×n2 is a nilpotent matrix, see [5].
Let k > 0 be the nilpotency index, i.e., it holds Nk−1 6= 0, Nk = 0. Remark that
the nilpotency index of (2) does not depend on the structure of the right-hand
side. Applying the transformation (17) to (13) yields

PAQẇl(t) + PBQwl(t) =
1

〈Φ2
l 〉

P 〈Φls(ξ; t)〉

for l = 0, 1, . . . , m with wl := Q−1vl. Let d := (m + 1)n and

v := (v0,v1, . . . ,vm) ∈ Rd, w := (w0,w1, . . . ,wm) ∈ Rd.
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Accordingly, we write the complete system as

(Im+1 ⊗ PAQ)ẇ(t) + (Im+1 ⊗ PBQ)w(t) = s̃(t) (18)

employing the notation of Kronecker products. The transformed right-hand side
s̃ : [t0, t1] → Rd can be non-zero in all components, since the same holds for the
original right-hand side in (13). Using a specific permutation matrix P̂ ∈ Rd×d,
we construct the matrices

P̂ (Im+1 ⊗ PAQ)P̂> =

(
I(m+1)n1 0

0 Im+1 ⊗N

)

and

P̂ (Im+1 ⊗ PBQ)P̂> =

(
Im+1 ⊗ C 0

0 I(m+1)n2

)
.

Since Im+1⊗C is regular and Im+1⊗N is nilpotent with index k, we achieve the
following result.

Theorem 1 If the linear DAE system (2) exhibits index k, then the correspond-
ing linear DAE system (13) obtained by the generalised polynomial chaos is also
of index k independent from the choice of the right-hand side in (2).

We see that the DAEs of the polynomial chaos inherit the index of the original
system for arbitrary right-hand side in this case. However, the right-hand side
influences the conditions for consistent initial values. The following discussion
is based on the system (18). Recall that the matrices exhibit block diagonal
structure, i.e., the subsystems are decoupled.

Without loss of generality, we assume the partitioning

s(ξ; t) ≡ s0(t) + s1(ξ; t)

with 〈Φ0s1(ξ; t)〉 = 0. Let x(t0) = x0 ∈ Rn be a consistent initial value corre-
sponding to the DAE (1) with input signal s0. Then the choice v0(t0) = x0 is fea-
sible. Since 〈Φls1(ξ; t)〉 6= 0 may occur for each l > 0, the initial values vl(t0) = 0
are not consistent in general. However, we can make the choice (16) consistent
by modelling the right-hand side as

s(ξ; t) ≡ s0(t) +

(
3

ε2
(t− t0)

2 − 2

ε3
(t− t0)

3

)
s1(ξ; t) (19)

with a small ε > 0, i.e., a smooth transition is achieved in [t0, t0 + ε]. If the
influence of the parameters is not significant within a small time interval at the
beginning, this modification is reasonable.
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3.2 Parameters in first matrix

Now we consider the linear DAE system (14) corresponding to the underlying sys-
tem (3). We assume det B 6= 0 in the analysis, which guarantees the uniqueness
of steady state solutions with respect to autonomous systems (3). The analysis
follows an approach applied in [10]. Using the assumption, the system (14) is
equivalent to

B−1A0v̇l(t) +

(
m∑

i=0

q∑
j=1

〈ηj(ξj)ΦiΦl〉
〈Φ2

l 〉
B−1Ajv̇i(t)

)
+ vl(t) = δ0lB

−1s(t) (20)

for l = 0, 1, . . . , m. The complete system can be written in the form

(Im+1 ⊗B−1A0 + E)v̇(t) + v(t) = s̃(t)

with a constant matrix

E :=

q∑
j=1

Sj ⊗B−1Aj, (21)

where

Sj = (σj
li) ∈ R(m+1)×(m+1), σj

li :=
〈ηj(ξj)ΦiΦl〉

〈Φ2
l 〉

(22)

for l, i = 0, 1, . . . , m and j = 1, . . . , q. The matrix E includes the stochastic
perturbations. Using the constant

C := max

{ |〈ηj(ξj)ΦiΦl〉|
〈Φ2

l 〉
: i, l = 0, 1, . . . , m; j = 1, . . . , n

}
, (23)

the magnitude of E can be estimated in a matrix norm

‖E‖∞ ≤
q∑

j=1

‖Sj ⊗B−1Aj‖∞ ≤ (m + 1) · q · C · ‖B−1‖∞ · max
j=1,...,q

‖Aj‖∞.

Thus the norm of E can be bounded by choosing sufficiently small entries in the
matrices Aj.

The next theorem demonstrates a sufficient condition to preserve the index of
the original DAE system.

Theorem 2 Given the linear DAE system (3) with det B 6= 0, let k be the index
of this system for A(p) = A0. If

kern((B−1A0)
k) ⊆ kern(Aj) for all j = 1, . . . , q. (24)

is fulfilled, then the corresponding linear DAE system (14) of the polynomial chaos
exhibits index k for sufficiently small ‖E‖ from (21).

9



Proof:

The Jordan form of the matrix B−1A0 reads

B−1A0 = TJT−1, J =

(
R 0
0 N

)
(25)

with regular matrix R ∈ Rn1×n1 and nilpotent matrix N ∈ Rn2×n2 of index k.

Let u1, . . . ,un ∈ Rn be the column vectors of the transformation matrix T in (25).
Thus uj for j = n1 + 1, . . . , n correspond to the generalised eigenspace of the
eigenvalue zero. It follows (B−1A0)

kuj = 0 for j = n1 + 1, . . . , n. We construct
the set of vectors

ei ⊗ uj ∈ Rd for i = 1, . . . , m + 1 and j = 1, . . . , n (26)

using the canonical unit vectors ei ∈ Rm+1. Due to the structure of the ma-
trix (21), the condition (24) implies

E(ei ⊗ uj) =

q∑

l=1

(Slej)⊗ (B−1(Aluj)) = 0

for j = n1 + 1, . . . , n and thus

(Im+1 ⊗B−1A0 + E)(ei ⊗ uj) = ei ⊗B−1A0uj

for j = n1 + 1, . . . , n. Successively, it follows

(Im+1 ⊗B−1A0 + E)r(ei ⊗ uj) = ei ⊗ (B−1A0)
ruj

for r = 1, . . . , k. Consequently, the structure of the generalised eigenspace (for
λ = 0) of the enlarged system is just a multiple reproduction with respect to
the original system. It follows that a transformation matrix T̂ ∈ Rd (including a
permutation) exists with

T̂−1(Im+1 ⊗B−1A0 + E)T̂ =

(
R̂ 0
H2 Im+1 ⊗N

)
,

where the matrix R̂ ∈ R(m+1)n1×(m+1)n1 exhibits the structure

R̂ = Im+1 ⊗R + H1.

The matrices H1, H2 depend on E and thus their norms can be bounded by
a constant times ‖E‖. It follows that the matrix R̂ is regular for sufficiently
small ‖E‖.
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If H2 = 0 holds, we immediately conclude the nilpotency index k. For H2 6= 0,
the block structure implies that we can solve the first part of dimension (m+1)n1

separately. The result is inserted in the second part of dimension (m + 1)n2. It
follows that the DAE (14) exhibits the differential index k provided that the
solution of the first part and the right-hand side are sufficiently smooth. Since
the differential index is equal to the nilpotency index in the linear case, the proof
is completed. ¤

The result of Theorem 2 can also be achieved for singular matrix B but regular
matrix pencil in case of index k = 1. The corresponding analysis applies the
transformation (17).

The condition (24) is sufficient and not necessary. It implies that the structure of
the generalised eigenspaces (for λ = 0) coincide for the discussed DAE systems.
Furthermore, examples exist, where the requirement (24) is violated but the index
remains the same. However, the structure of the generalised eigenspace changes,
since rank(Im+1 ⊗B−1A0 + E) > (m + 1)rank(B−1A0) is given in the example.

The sufficient condition (24) becomes harder to satisfy the higher the index k
is. However, mathematical modelling aims at achieving systems with low index.
For example, models of electric circuits exhibit an index k ≤ 2 in general. In the
special case of index k = 1, the condition (24) is equivalent to

kern(A0) ⊆ kern(Aj) for all j = 1, . . . , q. (27)

The structure of the matrices Aj with respect to A0 often fulfil this constraint,
since most entries of the matrices Aj are equal to zero.

Now we address the choice of consistent initial values. In comparison to the
previous case in Sect. 3.1, more detailed results can be achieved, since most parts
of the right-hand side in (14) are equal to zero. Concerning the specification (16),
the following sufficient condition holds.

Theorem 3 Let the system (3) with matrix A(p) = A0 and det(B) 6= 0 be of
index k and x(t0) = x0 a consistent initial value. The initial values (16) are
consistent with respect to the system (14) provided that (24) and

kern((B−1A0)
>)k) ⊆ kern((B−1Aj)

>) for all j = 1, . . . , q (28)

holds.

Proof:

Considering the Jordan form (25) of B−1A0, the system (20), which is equivalent
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to (14), can be transformed to

T−1B−1A0T ẇl(t) +

(
m∑

i=0

q∑
j=1

σj
liT

−1B−1AjT ẇi(t)

)
+ wl(t) = δ0ls̃(t) (29)

for l = 0, 1, . . . , m with wl := T−1vl and s̃ := T−1B−1s. The inspected initial
values (16) imply w0(t0) = T−1x0 and wl(t0) = 0 for l > 0. The conditions (28)
and (24) correspond to left and right (generalised) eigenvectors, respectively.
Both requirements yield the structure

T−1B−1AjT =

(
Dj 0
0 0

)
for j = 1, . . . , q

with matrices Dj ∈ Rn1×n1 . Thus the stochastic perturbation influences just the
regular parts (corresponding to non-zero eigenvalues) of the subsystems (29). In
the regular parts, the initial values can be chosen arbitrarily. Since the right-
hand side is equal to zero in the systems for l = 1, . . . , m, the choice wl(t0) = 0
is feasible for l > 0. The selection w0(t0) = T−1x0 is consistent due to the
consistency of the starting value x0 with respect to the original system (3). Hence
the initial values (16) represent a consistent choice. ¤

Again the sufficient condition (28) becomes strong in case of high index k. For
index k = 1, the requirement reduces to the condition

kern(A>
0 ) ⊆ kern(A>

j ) for all j = 1, . . . , q, (30)

which is often valid due to the structure of the matrices. Moreover, the rela-
tions (27) and (30) are equivalent for symmetric matrices.

3.3 Parameters in second matrix

Finally, we analyse the linear DAE system (15) corresponding to the DAEs (5).
The complete system can be written in the form

(Im+1 ⊗ A)v̇(t) + (Im+1 ⊗B0 + F )v(t) = s̃(t)

with the constant matrix

F :=

q∑
j=1

Sj ⊗Bj (31)

using the matrices Sj from (22). Accordingly, we obtain the estimate

‖F‖∞ ≤ (m + 1) · q · C · max
j=1,...,q

‖Bj‖∞,
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where the constant (23) is involved. Again the magnitude of F becomes arbitrar-
ily small for sufficiently small matrices Bj. In this case, we assume the regularity
of the matrix B0. Consequently, the matrix Im+1 ⊗ B0 + F is nonsingular for
sufficiently small ‖F‖. Thus we discuss the equivalent system

(Im+1 ⊗B0 + F )−1(Im+1 ⊗ A)v̇(t) + v(t) = r̃(t) (32)

with r̃ := (Im+1 ⊗B0 + F )−1s̃.

Theorem 4 Consider a linear DAE system (5) for B(p) = B0 and det(B0) 6= 0
with index k. If the conditions

kern((B−1
0 A)k−1) ⊆ kern(Bj) for all j = 1, . . . , q (33)

are satisfied, then the polynomial chaos approach produces a linear DAE sys-
tem (15) of the same index k provided that ‖F‖ from (31) is sufficiently small.

Proof:

Since B0 is regular, we have the relation

(Im+1 ⊗B0 + F )−1 = (Id + (Im+1 ⊗B−1
0 )F )−1(Im+1 ⊗B−1

0 ).

If ‖F‖∞ < ‖B−1
0 ‖−1

∞ ≤ ‖B0‖∞ holds, then the Neumann inverse exists, i.e.,

(Id + (Im+1 ⊗B−1
0 )F )−1 =

∞∑

l=0

(−1)l((Im+1 ⊗B−1
0 )F )l.

It follows

Ã := (Im+1 ⊗B0 + F )−1(Im+1 ⊗ A)

=
∞∑

l=0

(−1)l((Im+1 ⊗B−1
0 )F )l(Im+1 ⊗B−1

0 A)

= Im+1 ⊗B−1
0 A +

∞∑

l=1

(−1)l((Im+1 ⊗B−1
0 )F )l(Im+1 ⊗B−1

0 A).

The structure of this matrix determines the index. We observe the Jordan
form (25) with respect to the matrix B−1

0 A. Let u1, . . . ,un ∈ Rn be the col-
umn vectors of the transformation matrix T again. Thereby, we assume that uj

for j = n1 + 1, . . . , n span the generalised eigenspace corresponding to eigenvalue
zero. It follows uj ∈ kern((B−1

0 A)k) for these vectors. We use again the set of vec-
tors (26). For sufficiently small ‖F‖, we have Ã(ei⊗uj) 6= 0 for i = 1, . . . , m + 1
and j = 1, . . . , n1. Furthermore, the matrix (31) implies

F (ei ⊗ uj) =

q∑

l=1

(Sl ⊗Bl)(ei ⊗ uj) =

q∑

l=1

(Slei)⊗ (Bluj) for all i, j.

13



Remark that each summand for l > 0 in the series representing Ã exhibits the
form

(−1)l((Im+1 ⊗B−1
0 )F )l−1(Im+1 ⊗B−1

0 )F (Im+1 ⊗B−1
0 A),

where the multiplication with Im+1⊗B−1
0 A is followed by a multiplication with F .

Since B−1
0 Auj ∈ kern((B−1

0 A)k−1) holds for j = n1 + 1, . . . , n, we conclude using
the condition (33)

F (Im+1 ⊗B−1
0 A)(ei ⊗ uj) = 0

and thus
Ãr(ei ⊗ uj) = ei ⊗ (B−1

0 A)ruj

for r = 1, . . . , k. Hence the statement follows as in Theorem 2. ¤

The condition (33) is hard to satisfy for large k, since the matrices B0, Bj are
not related to the matrix A. Fortunately, this requirement is always satisfied for
index k = 1. In case of index k = 2, the condition (33) reduces to

kern(A) ⊆ kern(Bj) for all j = 1, . . . , q.

If the given sufficient conditions are not satisfied, then the actual index can be
determined for each particular system by an analysis of the generalised eigenspace
corresponding to eigenvalue zero.

The discussion of consistency conditions becomes more complicated in this case,
since the stochastic perturbation (31) is present in the inverse matrix as well as
in the right-hand side of the system (32). Nevertheless, we can make the initial
values (16) consistent again by using a construction like (19) for the matrix B(ξ)
at the beginning of the time interval.

4 Illustrative Example

In this section, we present numerical simulations of a test example corresponding
to the above discussions.

4.1 Model of test example

We consider the electric circuit of a transistor amplifier, which is illustrated in
Fig. 1. The corresponding mathematical model is introduced in [5]. A nonlinear
system of DAEs

Aẋ + f(x) = s(t) (34)
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Figure 1: Circuit of transistor amplifier.

results, where the unknowns are the five voltages x := (U1, U2, U3, U4, U5)
>. The

involved matrix reads

A =




−C1 C1

C1 −C1

−C2

−C3 C3

C3 −C3




(35)

and the predetermined functions are

f(x) =




−U1

R0−U2(
1

R1
+ 1

R2
)− 0.01g(U2 − U3)

−U3

R3
+ g(U2 − U3)

−U4

R4
− 0.99g(U2 − U3)

−U5

R5




, s(t) =




−Uin(t)
R0

−Uop

R2

0

−Uop

R4

0




.

The current-voltage relation of the bipolar transistor is described by the nonlinear
function

g(U2 − U3) = α (exp ((U2 − U3)/β)− 1) . (36)

According to [5], the technical parameters are set to R0 = 1000 Ω, Ri = 9000 Ω
for i = 1, . . . , 5, α = 10−6 V/A, β = 0.026 V, Uop = 6 V, C1 = 1 µF, C2 = 2 µF,
C3 = 3 µF.

Applying the constant input signal Uin ≡ 0, the autonomous system (34) exhibits
a steady state solution x̂ = (Û1, . . . , Û5)

>. To achieve a linear DAE system of
the form (1), we perform a linearisation of (34) around this state. Using the

15



abbreviations ĥ := exp(β−1(Û2 − Û3)) and

a := αβ−1ĥ, b := α(ĥ + β−1ĥ(Û3 − Û2)− 1),

the linearisation of the relation (36) is given by the function

ĝ(U2 − U3) := α(ĥ + β−1ĥ((U2 − Û2)− (U3 − Û3))− 1) = a(U2 − U3) + b.

Consequently, we obtain a linear system (1) with the matrix and right-hand side

B :=




− 1
R0 − 1

R1
− 1

R2
− 0.01a 0.01a

a − 1
R3
− a

−0.99a 0.99a − 1
R4 − 1

R5




,

ŝ(t) :=
(
−Uin(t)

R0
, −Uop

R2
+ 0.01b, −b, −Uop

R4
+ 0.99b, 0

)>
.

The linear and nonlinear DAE exhibit nilpotency index 1 and differential index 1,
respectively, see [5].

In the following, we use the input signal

Uin(t) = Uamp sin
(

2π
T

t
)

with Uamp = 0.4 V and T = 0.01 s, which oscillates around the previously used
state Uin ≡ 0. This input forces a periodic solution.

We construct a stochastic model by considering the three capacitances as random
variables. We apply the relation

C̃j(ξj) = Cj(1 + γjξj) for j = 1, 2, 3

with real constants γj ∈ (0, 1) and random variables, which exhibit independent
uniform distributions ξj ∈ [−1, 1]. Thus the corresponding random-dependent
matrix is partitioned via

A(ξ) = A0 + ξ1A1 + ξ2A2 + ξ3A3,

where A0 is equal to (35) and

A1 := C1γ1




−1 1
1 −1

0
0

0




, A2 := C2γ2




0
0
−1

0
0




,

16



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−3

−2

−1

0

1

2

3

4

5

6

7

t [s]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

t [s]

Figure 2: Expected values (left) and variances (right) computed by polynomial
chaos in case of stochastic parameter C2.

A3 := C3γ3




0
0

0
−1 1
1 −1




.

We use the technique of the generalised polynomial chaos based on Legendre
polynomials due to the uniform distributions. Hence we obtain a linear DAE
system (14). The orthogonality of the basis polynomials implies a tridiagonal
structure in the matrices (22).

The conditions (27) and (30) are fulfilled. Theorem 2 implies that the system (14)
inherits the index k = 1 from the original system (3) provided that the con-
stants γi are sufficiently small. Moreover, a consistent initial value of (3) yields
a consistent choice (16) for (14) by Theorem 3.

4.2 Simulation of the linear system

We perform numerical simulations of the linearised system corresponding to the
transistor amplifier. A consistent initial value x0 ∈ R5 is calculated. For different
parameters, the solution of the deterministic system reaches a periodic oscillation
after some transient phase. We consider two separate cases. Firstly, just the
parameter C2 is modelled stochastically with γ2 = 0.2 (γ1 = γ3 = 0). Secondly,
the parameter C3 is the only one replaced by a random variable with γ3 = 0.2
(γ1 = γ2 = 0). Thus uncertainties of 20% are modelled.

Using the Legendre polynomials up to degree m = 2 in (11) already yields suf-
ficiently accurate numerical solutions in both cases. We integrate the DAE sys-

17



0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−3

−2

−1

0

1

2

3

4

5

6

7

t [s]
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

t [s]

Figure 3: Expected values (left) and variances (right) determined by Monte-Carlo
simulation in case of stochastic parameter C2.
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Figure 4: Coefficient functions corresponding to basis polynomials of degree 1
(left) and degree 2 (right) in case of stochastic parameter C2.

tems (14) by trapezoidal rule. Initial values are given via (16). The formula (12)
yields the approximations for expected values and variances.

In the first case, the resulting expected values and variances are shown for all five
components in Fig. 2. Thereby, the variance of three components is nearly zero.
Thus the parameter C2 hardly influences these components. The expected value
corresponds to the coefficient functions v0. Fig. 4 illustrates the other functions
v1,v2, which also represent periodic oscillations. For comparison, the results of
a Monte-Carlo simulation with 1000 samples are given in Fig. 3. We observe a
good agreement to the results of the polynomial chaos.

For the second case, the numerical results obtained by the polynomial chaos are
depicted in Fig. 5. The expected value exhibits the same behaviour as in the
first case. Remark that the displayed time intervals are [0, 0.2] and [0, 0.4] in
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Figure 5: Expected values (left) and variances (right) determined by polynomial
chaos in case of stochastic parameter C3.

the two simulations. In contrast, the variance increases at the beginning for two
components and decreases nearly to zero later. Hence the parameter C3 affects
the solution just within the transient phase. Afterwards, the influence of this
parameter is damped out.

4.3 Simulation of the nonlinear system

As an outlook, we solve the nonlinear system (34) of the transistor amplifier with
stochastic parameters. Although the analysis considers linear systems in this
paper, the nonlinear case is often given in the applications.

We consider the same stochastic parameters as in the linear case. Using the
strategy of the generalised polynomial chaos for (34), we obtain the larger coupled
system

A0v̇l(t) +

(
m∑

i=0

q∑
j=1

σj
liAjv̇i(t)

)
+

1

〈Φ2
l 〉

〈
Φl f

(
m∑

i=0

vi(t)Φi

)〉
= δ0ls(t)

for l = 0, 1, . . . , m. The inner products (8) are evaluated numerically by Gaus-
sian quadrature. Hence the computational effort becomes significantly higher in
comparison to the linear system. If this quadrature can not be omitted, then the
approach of stochastic collocation, see [8], seems to be more efficient than the
polynomial chaos.

Again we use m = 2 in the simulations. The integration in time is done by
trapezoidal rule. Fig. 6 illustrates the expected values and variances achieved
by the polynomial chaos in case of stochastic parameter C2. The behaviour and
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Figure 6: Expected values (left) and variances (right) determined by polynomial
chaos with respect to stochastic parameter C2 in case of nonlinear system.
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Figure 7: Expected values (left) and variances (right) determined by polynomial
chaos with respect to stochastic parameter C3 in case of nonlinear system.

magnitudes of the expected values agree to the linear case. However, the shape of
the oscillations has changed due to the nonlinearity. The variances reach fastly
a periodic oscillation again, where the magnitudes and the form are different
in comparison to the linear case. Considering the stochastic parameter C3, the
results are shown in Fig. 7. Now the outcome agrees qualitatively and quanti-
tatively to the linear case except for the shape of oscillations in the expected
values.
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5 Conclusions

We constructed a stochastic model for analysing the sensitivity of solutions for
linear DAE systems. The technique of generalised polynomial chaos yields larger
coupled systems of linear DAEs. Sufficient conditions have been introduced such
that the alternative systems inherit the index of the original systems. These re-
quirements are not necessary in general. Nevertheless, the conditions are often
satisfied in the applications due to the structure of parameters within matrices.
It follows that the alternative systems exhibit the same index as the underlying
DAEs in all considered cases provided that the stochastic perturbation is suffi-
ciently small and that the repective condition on matrices is fulfilled. Further
investigations are required to analyse the index properties in case of nonlinear
systems of DAEs, where different index concepts exist.
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