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Abstract

A model based on multirate partial differential algebraic equations yields
an efficient numerical simulation of electric circuits in radio frequency
applications. Considering frequency modulation, free parameters of the
model are determined appropriately by a minimisation strategy. We
apply the multirate approach to simulate a modified version of a Colpitts
oscillator, which exhibits frequency modulation at widely separated time
scales.

1 Introduction

Mathematical modelling of electric circuits leads to implicit systems of ordi-
nary differential equations (ODEs) or systems of differential algebraic equations
(DAEs), see [2]. A numerical integration of the systems becomes inefficient in case
of modulated radio frequency (RF) signals with widely separated time scales. A
multidimensional model enables an efficient representation of RF signals. Conse-
quently, a system of multirate partial differential algebraic equations (MPDAEs)
is introduced by Brachtendorf et al. [1]. In case of frequency modulated sig-
nals, the determination of an adequate local frequency function is crucial for the
efficiency of the multidimensional model, see Narayan and Roychowdhury [3].

Phase conditions are applied to identify the local frequency function in [4]. Alter-
natively, properties based on minimisation determine these free parameters such
that the multidimensional representation becomes efficient. In case of quasiperi-
odic signals, the minimisation strategy refers to biperiodic boundary value prob-
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lems, see [5]. In case of envelope modulated signals, a corresponding technique
for initial-boundary value problems is constructed in [6]. A variational calculus
using a transformation formula yields a necessary condition for the multivariate
representation in each case. Numerical methods have to include the additional
condition for achieving the optimal solution of the MPDAE system.

In this article, we consider a Colpitts oscillator, where one capacitance of the
circuit is controlled by a time-dependent input signal. Consequently, the output
voltages become frequency modulated signals with widely separated time scales.
We apply the multirate model following [6] to perform a numerical simulation of
this LC-oscillator.

2 Multirate Model

Implicit systems of ODEs or systems of DAEs are used to describe the transient
behaviour of electric circuits, see [2]. We refer to such a system as DAEs in the
following and apply the general form (also valid for implicit ODEs)

F
(

dx
dt

(t),x(t), t
)

= 0, (1)

where x : R → Rk and F : Rk × Rk × R → Rk. The solution x ∈ C1 includes
unknown node voltages and branch currents. The function F depends on slowly
varying input signals in its third argument. In addition, we assume that the
solution x features a fast time scale with frequency modulation. Following [3],
the DAE system (1) is transformed into the system of warped MPDAEs

F
(

∂x̂
∂t1

(t1, t2) + ν(t1)
∂x̂
∂t2

(t1, t2), x̂(t1, t2), t1

)
= 0 (2)

with x̂ : R2 → Rk and ν : R → R. The representation x̂ ∈ C1 is called the
multivariate function (MVF) of x and depends on two independent variables
assigned to the time scales (t1: slow, t2: fast). Furthermore, the frequency
modulation is described by the local frequency function ν, which is unknown a
priori. We define the warping function

Ψ(t1) :=

∫ t1

0

ν(s) ds. (3)

Given a solution of the MPDAEs (2), the reconstruction scheme

x(t) := x̂(t, Ψ(t)) (4)

yields a solution of the DAEs (1). Initial-boundary value problems of the sys-
tem (2) read

x̂(t1, t2) = x̂(t1, t2 + 1), x̂(0, t2) = h(t2) for all t1 ≥ 0 and t2 ∈ R (5)
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Figure 1: Circuit diagram of Colpitts oscillator.

with a predetermined periodic function h. To identify the free parameters ν
appropriately, an additional condition is required. Properties based on a specific
minimisation generate simple MVFs, see [5]. For problems (5), the requirement
is

p(t1; x̂) :=
k∑

l=1

wl

∫ 1

0

(
∂x̂l

∂t1
(t1, t2)

)2

dt2 → min. for each t1 ≥ 0 (6)

with the components x̂ = (x̂1, . . . , x̂k)
> using weights w1, . . . , wk ≥ 0. A varia-

tional calculus implies a necessary condition for an optimal solution, see [6]. This
constraint demands the orthogonality of ∂x̂

∂t1
and ∂x̂

∂t2
with respect to the inner

product corresponding to the integral norm applied in (6).

3 Simulation of a Colpitts Oscillator

The considered circuit of a Colpitts oscillator is illustrated in Fig. 1. The mathe-
matical model of this circuit represents an implicit system of four ODEs, see [2].
The autonomous oscillator involves an inherent fast oscillation of about 8 kHz.
In contrast, the capacitance C3 is controlled by a slow harmonic oscillation with
frequency 1 Hz (period T1 = 1 s) here, see Fig. 2 (left). We apply the multi-
rate approach according to the two time scales. A simulation of the biperiodic
problem with phase conditions corresponding to (2) is discussed for this example
in [4], where the used equations and technical parameters can also be found.

Alternatively, we simulate the initial-boundary value problem (5) of the sys-
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Figure 2: Controlled capacitance (left) and computed optimal local frequency
function (right) of Colpitts oscillator.
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Figure 3: Computed optimal MVFs of Colpitts oscillator.
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Table 1: Mean values of function p in (6) for perturbed solutions according to (7).

α −10−3 −10−4 −10−5 0 10−5 10−4 10−3

< p(·; x̂α) > 23284 296 50.5 49.3 50.7 299 23304

tem (2). A periodic solution of the autonomous oscillator yields the initial condi-
tions. To identify the local frequency function, we apply the necessary condition
following from the minimisation (6) with wl = 1 for all l. A method of lines
achieves a numerical solution of (2),(5) including the orthogonality constraint.
Fig. 2 (right) shows the resulting optimal local frequency function. The behaviour
of the local frequencies is physically reasonable with respect to an LC-oscillator.
The MVFs corresponding to the four node voltages of the circuit are illustrated
in Fig. 3. The obtained MVFs exhibit a relatively simple structure and thus,
cause an efficient representation.

To confirm the optimality of the numerical solution regarding the criterion (6),
we provide some perturbed solutions by the underlying transformation formula,
see [6]. The computed local frequency ν∗ is transformed to a new frequency
function, which represents just one example out of an infinite number of feasible
transformations. We apply the family

να(t1) := ν∗(t1) + α < ν∗ > sin
(

2π
T1

t1

)
(7)

with a parameter α ∈ R and the integral mean value

< ν∗ >:=
1

T1

∫ T1

0

ν∗(s) ds. (8)

Let x̂α be the corresponding MVF. Table 1 demonstrates the integral mean values
of the function (6) using small values α. Accordingly, the minimum is obtained
at α = 0, i.e., the above computed solution.

4 Conclusions

The concept of MPDAEs enables an alternative strategy for simulating electric
circuits in RF applications. Techniques based on minimisation are feasible for the
determination of the free modelling parameters in case of frequency modulated
signals. A corresponding version of a Colpitts oscillator has been simulated ef-
ficiently using an initial-boundary value problem of the multirate system, where
the necessary condition from a specific minimisation is included.
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