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Abstract

Lévy copulas opened as the generic concept to describe dependence
structures of multidimensional Lévy processes. In this paper we con-
tribute an inverse approach for parsimonious copula modelling. Rather
than defining a copula directly we construct the association between
components in an implicit manner by variate conditioning. This pat-
tern renders natural the simulation of multidimensional Lévy processes
by series representation. We quantify graphically the effect of such a
definition using simplified sample algorithms for path generation.

1 Introduction

Mathematical finance has witnessed the rising of multidimensional consider-
ations. Modern structures and applications require increasingly to search for
models describing multivariate events. The ancient Gaussian setting may no
longer maintain to suite modelling needs in structured finance (cf. Embrecht
et al., 2002). In static frameworks the notion of an ordinary copula was found
to formulate general dependence structures. In the scope of this work we pre-
sume knowledge of the copula concept for the coupling of random variables
(see Nelson, 2006, for an introduction). The scene of multivariate dynam-
ics yet resorts to Brownian motion and a Gaussian concept of dependence
in most financial applications. Only recently, a few authors set in place the
notion of a Lévy copula extending the non-gaussian association between vari-
ates to a dynamical framework (see Tankov, 2004, 2006; Kallsen and Tankov,

1



2004). As vehicle, Tankov et al. instantiated multidimensional Lévy models
thus settling jump processes into mathematical finance. Identifying the key
role of the Lévy measure in dependence modelling the authors constructed
copulas for this characteristic and derived algorithms for simulation from
Lévy processes with specified dependence.

In section 2 we recall the fundamental properties of a Lévy process and
state substantial formulae for describing its law. We proceed to investigate
the dependence structures of multidimensional processes in particular and
adopt the concept of Lévy copulas as introduced in Tankov (2004). We
show that Lévy copulas achieve to formulate general dependence patterns of
multivariate Lévy processes.

In section 3 we associate a conditional measure to the law of a Lévy
process. This measure gives us reasons for an implicit modelling approach
that employs bivariate Lévy copulas and multivariate ordinary copulas. We
further exhibit the use of a such conception in matters of multidimensional
process simulation by means of series representation.

2 Multivariate Lévy processes and copulas

In this section we state the essentials on Lévy processes and review the
achievements in forwarding copula models to the dynamical framework of
jump processes.

As the processes encountered in this article eventually have discontinu-
ities, let us begin with clarifying the basic notion of a cadlag function. A
function f : [0, T ] → Rd is said to be cadlag if it is right-continuous with left
limits, i.e. for each t ∈ [0, T ] the limits

f(t−) = lim
s→t,s<t

f(s) f(t+) = lim
s→t,s>t

f(s)

exist and f(t) = f(t+). In the sense of t as a time variable, cadlag then
means that the jumps of f are not predictable. The discontinuity is seen as
a sudden event (cf. Cont and Tankov, 2004).

A Lévy process is a Rd-valued cadlag stochastic process (Xt)t≥0 on a
standard probability space (Ω, F,Rd) with stationary and independent incre-
ments such that X0 = 0. In particular, jumps of the form Xt −Xt− = ∆Xt

may occur sudden and at random but countable times.
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2.1 Jump measure and characteristic triplet

In this paragraph we state representation formulae for Lévy processes and
elaborate characteristics for their laws.

To every cadlag process (Xt)t≥0 we can associate a random measure JX on
Rd×[0,∞) containing all the information about the discontinuities. Denoting
jump times Tn and jump sizes ∆XTn , measure JX tells us when the jumps
occur and how big they are (cf. Cont and Tankov, 2004):

JX(ω, ·) =
∑
n≥1

δ(Tn(ω),∆XTn(ω)) =

∆Xt 6=0∑

t∈[0,T ]

δ(t,∆Xt).

We call JX the jump measure of process (Xt)t≥0.
To every Lévy process (Xt)t≥0 in particular we moreover associate the

measure ν on Rd defined by

ν(A) = E[]{t ∈ [0, 1] : ∆Xt 6= 0, ∆Xt ∈ A}], A ∈ B(Rd).

Other than JX , ν measures the expected number, per unit time, of jumps
whose size belongs to a given Borel-set A. ν is called the Lévy measure. It
happens that JX is a Poisson random measure with intensity measure ν(dx)dt
(see Tankov, 2006, for details on Poisson random measures).

Theorem 2.1 (Lévy-Ito decomposition) Let (Xt)t≥0 be a Lévy Process
on Rd with Lévy measure ν. Then there exists a vector γ and a d-dimensional
Brownian motion (Bt)t≥0 with covariance matrix A and a measure JX on
Rd× [0,∞) with intensity measure ν(dx)dt, such that the sample paths of X
can be represented as follows:

Xt = γt + Bt + X l
t + lim

ε↓0
X̃ε

t , where (1)

X l
t =

∫

|x|≥1,s∈[0,t]

xJX(ds× dx) and

X̃ε
t =

∫

ε≤|x|≤1,s∈[0,t]

x{JX(ds× dx)− ds× ν(dx)}.

The terms in (1) are independent and the convergence in the last term is
almost sure and uniform in t on [0, T ]. Theorem 2.1 asserts that the path of
any Lévy process decomposes into a continuous Gaussian process with drift
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γt + Bt and a pure jump process defined by intensity measure ν. Given that
ν has finite variation, i.e.

∫
Rd(|x| ∧ 1)ν(dx) < ∞, the above representation

can be simplified to

Xt = bt + Bt +

∫

Rd,s∈[0,t]

xJX(ds× dx),

where b ∈ Rd is some other drift vector (see Cont and Tankov, 2004, on
different drifts of a Lévy process).

Using the Lévy-Ito decomposition and the infinite divisibility of the dis-
tribution of Xt for any t ≥ 0 one can derive in a straight forward manner the
second fundamental result:

Theorem 2.2 (Lévy Khinchine representation) Let (Xt)t≥0 be a Lévy
process on Rd with Lévy measure ν and drift γ and covariance matrix A of
the corresponding Brownian motion part. Then its characteristic function
has the following form

E[eiz.Xt ] = etψ(z), where

ψ(z) = −1

2
z.Az + iγ.z +

∫

Rd

(
eiz.x − 1− iz.x1|x|≤1

)
ν(dx). (2)

We call ψ the characteristic exponent of Lévy process (Xt)t≥0. Again, if∫
Rd(|x| ∧ 1)ν(dx) < ∞ formula (2) can be reduced to

ψ(z) = −1

2
z.Az + ib.z +

∫

Rd

(
eiz.x − 1

)
ν(dx).

These representation formulae entail that the distribution of Lévy process
(Xt)t≥0 is sufficiently described by triplet (γ, A, ν), which is hence called the
characteristic triplet.

2.2 Lévy copulas

In this paragraph we reproduce the idea of using copula methods to describe
multivariate dependence in Lévy models.

To begin with, we give a brief review on increasing functions. Denoting

the extended real line by R, let F : Rd → R be a d-place function. For
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a, b ∈ Rd
with a ≤ b and (a, b] ∈ Rd

, we here define the F-volume of (a, b] to
be

VF ((a, b]) =
∑

u∈{a1,b1}×...×{ad,bd}
(−1)N(u)F (u),

where N(u) = ]{k : uk = ak}, i.e. the sum of the signed values of F over the
vertices of (a, b]. F is called d-increasing if the volume VF ((a, b]) of any d-box

(a, b] ∈ Rd
is nonnegative. For I ∈ {1, ..., d} we further denote the I-margin

of F by

F I((ui)i∈I) =
∑

(uj)j∈Ic∈{−∞,∞}|Ic|

F (u1, ..., ud)
∏
j∈Ic

sign(uj)

with cardinality |I| and complement Ic = {1, ..., d}\I.
For the rest of this paper we assume a Lévy process (Xt)t≥0 with char-

acteristic triplet (0, 0, ν), i.e. we eclipse the Brownian motion part from
considerations. It is certainly feasible to focus on the jump component of a
Lévy process due to independence of the components.

Definition 2.1 Let (Xt)t≥0 be a Rd-valued Lévy process with Lévy measure
ν. The tail integral of ν is the function U : (R\0)d → R defined by

U(x1, ..., xd) = ν

(
d∏

j=1

I(xj)

)
d∏

j=1

sign(xj),

where

I(x) =

{
[x,∞), x ≥ 0;
(−∞, x], x < 0.

From elementary statistics it is a known fact that any probability measure
can be characterized by its distribution function. In a similar way, any Lévy
measure corresponds to the set of its marginal tail integrals. The basic con-
cept of a Lévy copula is defined in the following

Definition 2.2 A function F : Rd → R is called a Lévy copula, if

1. F (u1, ..., ud) 6= ∞ for (u1, ..., ud) 6= (∞, ..,∞)

2. F (u1, ..., ud) = 0 if ui = 0 for at least one i ∈ {1, ..., d}
3. F is d-increasing
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4. F i(u) = u for any i ∈ {1, ..., d}, u ∈ R.

One clearly recognizes groundedness on the axes, the d-increasing property
and uniformity of the margins. The fundamental result due to Tankov (2004)
relates tail integrals of a Lévy process to its margins.

Theorem 2.3 Let ν be a Lévy measure on Rd\{0}. Then there exists a Lévy
copula F such that the tail integrals of ν satisfy

U I((ui)i∈I) = F I((Ui(xi))i∈I)

for any non-empty I ⊂ {1, ..., d} and any (xi)i∈I ∈ (R\0)d. Conversely, if
F is a d-dimensional Lévy copula and ν1, ..., νd are Lévy measures on R\{0}
with tail integrals integrals U1, ..., Ud, then there exists a unique Lévy measure
(R\{0})d with one-dimensional marginal tail integrals U1, ..., Ud.

Theorem 2.3 gives us to understand that any dependence structure between
jumps of a Lévy process X with Lévy measure ν is described by a Lévy
copula. In turn it is possible to construct multidimensional Lévy models by
specifying separately jump dependence structure and one-dimensional laws
for the components.

2.3 Generic copula models

In this paragraph we overview some established copula models. Herein and
in the following we use the notation

S = {x ∈ Rd : sign(x1) = ... = sign(xd)}.

One can show that the components X1, ..., Xd of an Rd-valued Lévy
process X are independent if and only if their continuous martingale parts
are independent and the Lévy measure ν is given by

ν(B) =
d∑

i=1

viBi, for all B ∈ B(Rd \ {0}),

where for every i, νi denotes the i-th margin of ν and Bi = {x ∈ R :
(0, ..., 0, x, 0, ..., 0) ∈ B}. This finding involves that the marginal tail integrals
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U I((xi)i∈I) vanish for all I ⊂ {1, ..., d} and all (xi)i∈I ∈ (R \ {0})|I|. Then
the independence copula is given by

F⊥(u1, ..., ud) =
d∑

i=1

xi

∏

j 6=i

1∞(xj).

Jumps of a Rd-valued Lévy process X are considered completely depen-
dent if there exists a strictly ordered set D of S such that ν(Rd \ D) = 0.
Similar to the ordinary case, the complete dependence Lévy copula is given
by

F‖(x1, ..., xd) = min(|x1|, ..., |xd|)1K(x1, ..., xd)
d∏

i=1

sign(xi).

Aside from these extremes, parametric copula models that transition be-
tween complete dependence and independence in a smooth fashion are desir-
able. Exemplary for parametric copula models we echo the Archimedean con-
struction as found in Tankov (2004). Let Φ : [−1, 1] → [−∞,∞] be a strictly
increasing continuous function with Φ(1) = ∞, Φ(0) = 0, Φ(−1) = −∞,
having nonnegative derivatives of order up to d on (−1, 0) and (0, 1), and
satisfying

∂dΦ(ex)

∂xd
≥ 0,

∂dΦ(−ex)

∂xd
≤ 0.

Let Φ̃(u) = 2d−2{Φ(u)− Φ(−u)} for u ∈ [−1, 1]. Then

F (u1, ..., ud) = Φ

(
d∏

i=1

Φ̃−1(ui)

)

defines an Archimedean Lévy copula.

Example 2.1 Let Φ(x) = η(− log(|x|))−1/θ1x≥0−(1−η)(− log(|x|))−1/θ1x<0

with θ > 0 and η ∈ (0, 1). Then

Φ̃(u) = 2d−2{− log(|x|)}−1/θsign(x), and

Φ̃−1(u) = e−|2
2−du|−θ

sign(u).

This produces the two parameter Clayton family of Lévy copulas

F (u1, ..., ud) = 22−d

(
d∑

i=1

|ui|−θ

)−1/θ

(η1u1,...,ud≥0 − (1− η)1u1,...,ud<0).
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In the following we analyze the role of the parameters on the basis of the two
dimensional version

F (u, v) =
(|u|−θ + |v|−θ

)−1/θ
(η1uv≥0 − (1− η)1uv<0). (3)

To this end we plotted the density for various parameter configurations.
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Figure 1: Contour plot of Clayton Lévy density with θ = 5 and various η.
From left to right: η = 1, η = 0.5, η = 0
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Figure 2: Contour plot of Clayton Lévy density with η = 1 and various θ.
From left to right: θ = 0.1, θ = 1, θ = 5

From figure 1 it is obvious that the parameter η is responsible for sign
dependence of the jumps: if close to 1 jumps tend to have the same directions,
if approaching zero jumps tend to have opposite directions. Figure 2 shows
that the parameter θ determines the dependence of absolute values of jumps:
the higher the value the more associated the jump sizes. Remarkably, all
plots feature a symmetric jump behavior.
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3 Canonical dependence and direct simula-

tion

In this section we cover a probabilistic interpretation of the Lévy measure
and how it avails an efficient algorithm for simulating Lévy processes. We
introduce en route a new class of Lévy copulas, which is viable for the purpose
of path generation.

Apart from the trivial cases of Brownian motion or subordinated Brown-
ian motion, incremental methods for simulation of Lévy processes are not
available in the multidimensional setting (see Cont and Tankov, 2004, for
subordination). One typically resorts to compound Poisson approximations
or series representations. In the scope of this work we content ourselves with
simulation by series representation as to Tankov (2006), which has feeded
a probabilistic interpretation of the Lévy measure and which has motivated
our new copula design.

3.1 Conditional probability measure

In this paragraph we show existence of a probability measure related to the
Lévy measure. Further we propose to use ordinary copula models for its
distributional description. This formulates a new class of Lévy copulas.

Let F be a Lévy copula on Rd
that satisfies the following continuity

condition at infinity

lim
(ui)i∈I→∞

F (u1, ..., ud) = F (u1, ..., ud)|(ui)i∈I=∞ (4)

for all I ⊂ {1, ..., d}. This Lévy copula defines a positive measure µ on Rd

with Lebesgue margins such that for each a, b ∈ Rd with a ≤ b,

VF ((a, b]) = µ((a, b]).

Defining f : (u1, ..., ud) 7→ (U−1
1 (u1), ..., U

−1
d (ud)), the relation between Lévy

measure ν and measure µ is

ν(A) = µ({u ∈ Rd : f(u) ∈ A}. (5)

One can then show that there exists a family, indexed by ξ ∈ R, of positive
Radon measures K(ξ, ·) on Rd−1, such that ξ 7→ K(ξ, dx2, ..., dxd) is Borel
measurable and

µ(dx1, dx2, ..., dxd) = λ(dx1)⊗K(x1, dx2, ..., dxd). (6)
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{K(ξ, ·)}ξ∈R is called the family of conditional probability distributions asso-
ciated to the Lévy copula F . Denoting

Kξ(x2, ..., xd) = K(ξ, (−∞, x2]× ...× (−∞, xd]),

Tankov showed that there exist a nullset N such that for every ξ ∈ R \ N ,
Kξ is a probability distribution function satisfying

Kξ(x2, ..., xd) = sign(ξ)
∂

∂ξ
VF ((ξ ∧ 0, ξ ∨ 0]× (−∞, x2]× ...× (−∞, xd]) (7)

in every point (x2, ..., xd) where Kξ is continuous.
These findings now motivate the basic idea to reverse the approach to

modelling Lévy copulas: instead of designing the generic Lévy copula F
from which K can be derived, we propose to define an implicit dependence
structure by modelling conditional probability distribution Kξ in the first
place. From there the multivariate Lévy measure obtains via interrelations
(5) and (6). The crux therein is to keep the jump dependence structure
separated from the marginal process evolution, which is certainly not fulfilled
per se. The following result establishes a sufficient (and necessary) design of
qualified conditional measures.

Theorem 3.1 Let νi, i = 1, ..., d be marginal Lévy measures with correspond-
ing tail integrals Ui and f : (u1, ..., ud) 7→ (U−1

1 (u1), ..., U
−1
d (ud)). Further let

K be a conditional measure on Rd−1 such that ν = µ(f) in the sense of (5)
and (6) is a Lévy measure on Rd with margins νi. Then there exist Lévy

copulas Fi : R2 → R, i = 2, ..., d and a family, indexed by ξ ∈ R, of ordinary
copula functions Cξ : [0, 1]d−1 → [0, 1] with

Kξ(x2, ..., xd) = Cξ

({
sign(ξ)

∂

∂ξ
VFi

((0 ∧ ξ, 0 ∨ ξ]× (−∞, xi])

}d

i=2

)
(8)

Conversely, if Fi : R2 → R, i = 2, ..., d Lévy copulas, Cξ : [0, 1]d−1 →
[0, 1], ξ ∈ R ordinary copula functions and conditional measure K on Rd−1

defined as in (8), then ν = µ(f) in the sense of (5) and (6) is a Lévy measure
on Rd with margins νi.

Remark 3.1 Equation (8) involves the functions Gi
ξ(x) := sign(ξ) ∂

∂ξ
VFi

((0∧
ξ, 0∨ ξ]× (−∞, xi]), which by (7) and the arguments used therefor really are
distribution functions.
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Proof of Theorem 3.1: First part. By Sklar’s theorem there exist for all
ξ ∈ R a (d − 1)-dimensional ordinary copula Cξ and univariate marginal
distribution functions Gi

ξ(x2), i = 2, ..., d such that

Kξ(x2, ..., xd) = Cξ(G
2
ξ(x2), ..., G

d
ξ(xd)). (9)

Our goal is to represent the Gi
ξ’s as in remark 3.1. For this purpose, let i ∈

{2, ..., d} and consider the bivariate tail integral U1,i
ν , to which there exists by

theorem 2.3 a Lévy copula F i on R2 so that U1,i
ν (x1, xi) = F i(U1(x1), Ui(xi)).

Due to the construction of Lévy measure ν on the other hand, it holds for
x1 < 0, xi ≥ 0, say,

U1,i
ν (x1, xi) = −µ({u ∈ Rd : u1 ∈ (U1(x1), 0], ui ∈ (0, Ui(xi)]})

= −
∫ 0

U1(x1)

∫ Ui(xi)

0

∫

Rd−2

K(ξ, dx2, ...dxd)dξ

=

∫ U1(x1)

0

Kξ(∞, .., Ui(xi)..,∞)−Kξ(∞, .., 0, ..,∞)dξ.

By (9), remark 3.1 and uniformity at the margins of an ordinary copula the
bivariate margin can be written as

U1,i
ν (x1, xi) =

∫ U1(x1)

0

Gi
ξ(Ui(xi))−Gi

ξ(0)dx1. (10)

Equating the results gives

∫ U1(x1)

0

Gi
ξ(Ui(xi))−Gi

ξ(0)dx1 = F i(U1(x1), Ui(xi)),

where one can certainly represent the expression on the right hand side in
terms of volume functions as follows

F i(U1(x1), Ui(xi)) = −VF i((U1(x1), 0]× (−∞, Ui(xi)])

+VF i((U1(x1), 0]× (−∞, 0]).

Differentiation then yields Gi
ξ(x) := − ∂

∂ξ
VF i((ξ, 0] × (−∞, x]), whereas the

general case x1, xi ∈ R can be derived analogously.
Second part. In order to show that ν = µ(f) has margins νi, i = 1, ..., d

it suffices to consider its marginal tail integrals U i
ν , i = 1, ..., d. The goal is
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to prove equality between the input tail integrals Ui and the implicit tail
integrals U i

ν . Same as before, it holds for xi < 0, say,

U i
ν(xi) = −µ({u ∈ Rd : u1 ∈ (Ui(xi), 0]}).

Since Kξ is a probability measure on Rd−1 the first tail integral obtains as

U1
ν (x1) = −µ({u ∈ Rd : ui ∈ (U1(x1), 0)]})

=

∫ U1(x1)

0

∫

Rd−1

K(ξ, dx2, ...dxd)dξ

= U1(x1).

Using the same arguments as in the previous case one obtains for the i-th
tail, i ∈ {2, ..., d},

U i
ν(xi) = −µ({u ∈ Rd : ui ∈ (Ui(xi), 0]})

= −
∫ ∞

−∞

∫ ∞

−∞
...

∫ 0

Ui(xi)

...

∫ ∞

−∞
K(ξ, dx2, ..., dxd)dξ.

=

∫ ∞

−∞
(Kξ(∞, .., Ui(xi), ..,∞)−Kξ(∞, .., 0, ..,∞)) dξ (11)

By (9), remark 3.1 and uniformity at the margins of an ordinary copula it
results that

U i
ν(xi) =

∫ ∞

−∞
Gi

ξ(Ui(xi))−Gi
ξ(0)dξ.

Since Gi
ξ(yi) is a perfect derivative, the desired result follows from uniformity

at the margins of a Lévy copula

∫

R

(Gξ(Ui(xi))−Gξ(0))sign(x)dξ = −VFi
((−∞,∞]× (Ui(xi), 0])

= Fi(∞, Ui(xi))− Fi(−∞, Ui(xi))

= F 2
i (Ui(xi))

= Ui(xi),

whereas the general case x1, xi ∈ R can be derived analogously. It is not yet
concluded that ν defined via conditional probability measure K really is a
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Lévy measure satisfying the integrability condition
∫
Rd(|x|2 ∧ 1)ν(dx) < ∞.

But this is automatically fulfilled if its one-dimensional margins are Lévy
measures

∫

Rd

(|x|2 ∧ 1)ν(dx) ≤
∫

Rd

d∑
i=1

(x2
i ∧ 1)ν(dx) ≤

d∑
i=1

∫

R
(x2

i ∧ 1)νi(dxi) < ∞.

¤

Theorem 3.1 distinguishes the first margin, which we shall hereafter call
the canon. We announce conventionally the first variable the canon, albeit
the choice is arbitrary. It is striking that theorem 3.1 induces a dependence
structure between the marginal Lévy measures without mentioning explicitly
the Lévy copula. There still exists a corresponding Lévy copula by theorem
2.3, but it is only given implicitly through the designed measure ν. In this
paragraph and in the following we shall refer to the implicit design pattern as
canonization and to the implicit Lévy copula as the canonical Lévy copula.
The following lemma should give first reasons for our naming.

Lemma 3.1 Let Cξ, ξ ∈ R be arbitrary ordinary copulas, Fi = F‖, i = 2, ..., d
and ν as in the previous theorem. Then the marginal Lévy copulas satisfy
F i,j = F‖, ∀i, j, i.e. the bivariate margins are completely dependent.

Proof: Let Fi = F‖ = min{|x1|, |xi|}1S(x1, xi)sign(x1)sign(xi). Then

Gi
x1

(xi) = 1xi≥x1≥0 + 1x1<0 − 10>x1≥xi
. (12)

Again it suffices to consider the tail integrals. We want to show that the
implicit bivariate tail integral U i,j

ν can be represented as univariate tails Ui, Uj

coupled by complete dependence copula F‖. For this purpose, we renew the
argumentation from the proof of the second part of theorem 3.1 and obtain
in a similar manner

U i,j
ν (xi, xj) =

∫ ∞

−∞
[Fx1(∞, Ui(xi), Uj(xj),∞)− Fx1(∞, ., Ui(xi), 0, .,∞)

−Fx1(∞, ., 0, Uj(xj), .,∞) + Fx1(∞, ., 0, 0, .,∞)]dx1

Assuming x1 < 0 one gets by means of (8), (12) and the properties of ordinary
copula functions
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Fx1(∞, .., Ui(xi), .., Uj(xj), ..,∞) = C i,j({1Ui(xi)≥x1≥0 + 1x1<0 − 10>x1≥Ui(xi)}i=i,j)

= (1x1<0 − 10>x1≥Ui(xi)) · (1x1<0 − 10>x1≥Ui(xi))

= 1x1≤Ui(xi),x1≤Uj(xj)

Fx1(∞, .., Ui(xi), .., 0, ..,∞) = C i,j(1Ui(xi)≥x1≥0 + 1x1<0 − 10>x1≥Ui(xi), 1x1<0)

= (1x1<0 − 10>x1≥Ui(xi)) · 1x1<0

= 1x1≤Ui(xi)

Fx1(∞, .., 0, .., Uj(xj), ..,∞) = C i,j(1x1<0, 1Ui(xi)≥x1≥0 + 1x1<0 − 10>x1≥Ui(xi))

= 1x1<0 · (1x1<0 − 10>x1≥Uj(xj))

= 1x1≤Uj(xj)

Fx1(∞, .., 0, .., 0, ..,∞) = C i,j(1x1<0, 1x1<0)

= 1.

This yields immediately the characteristic integrand for negative values of x1

as follows

1x1≤Ui(xi),x1≤Uj(xj) − 1x1≤Ui(xi) − 1x1≤Uj(xj) + 1 = 1x1≥Ui(xi),x1≥Uj(xj).

In a similar way we obtain the integrand 1x1≤Ui(xi),x1≤Uj(xj) for positive values
of x1. With that it holds

U i,j
ν (xi, xj) =

∫ 0

−∞
1x1≥Ui(xi),x1≥Uj(xj)dx1 +

∫ ∞

0

1x1≤Ui(xi),x1≤Uj(xj)dx1

= min{|Ui(xi)|, |Uj(xj)|}1S(xi, xj).

¤
Lemma 3.1 gives us to understand that canonization confers complete de-
pendence upon any pair dependence no matter what the association between
non-canon variables may be. This is a very strong result and it assists es-
sentially the interpretation of the projected variable as the system’s rule, the
canon.

3.2 Series representation

In this paragraph we address a series representation for multidimensional
Lévy processes and we highlight the advantage of canonization.
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Series representations go back to Rosinski and others, who proved almost
sure convergence of series of random variables to Lévy processes with specified
characteristic triplets. Tankov extended their findings to jump dependence
modelling with Lévy copulas. In view of canonical Lévy copulas we somewhat
modify theorem 5.6. in Tankov (2006) to suit our distinct approach. Again,
the focus is set on the finite variational case.

Theorem 3.2 (Series representation) Let vi be marginal Lévy measures
with tail integrals Ui, i = 1, ..., d and K(x1, dx2, ..., dxd) be a conditional prob-
ability measure on Rd−1, such that ν = µ(f) with µ and f as before is a Lévy
measure preserving the margins. Further let {Vk} be a sequence of inde-
pendent r.v., uniformly distributed on [0, 1]. Introduce d random sequences
{Γ1

k}, ..., {Γd
k}, independent from {Vk} such that

1. N =
∑∞

k=1 δ{Γ1
k} is a Poisson random measure on R with intensity

measure λ

2. Conditionally on {Γ1
k}, the random vector ({Γ2

k}, ..., {Γd
k}) is indepen-

dent from {Γi
j} with j 6= k and all i and is distributed on Rd−1 with law

K(Γ1
k, dx2, ..., dxd).

Then {Xt}0≤t≤1 defined by

X i
t =

∞∑

k=1

U−1
i (Γi

k)1[0,t](Vk), i = 1, ..., d (13)

is a Lévy process on the time interval [0, 1] with characteristic function

E[eiu.Xt ] = exp

(
t

∫

Rd

(eiu.x − 1)ν(dx)

)
.

The proof is essentially the same as brought up in Tankov (2004) for the
case of a generic Lévy copula. The only difference is that the copula is given
implicitly without mention, yet it does exist by theorem 2.3 and 3.1 and
so the proof applies. One still misses reference to some Lévy copula F in
the representation formula, if anything conditional measure K is brought
up. Therefore, an implicit design via canonization (15) should better repre-
sentations in terms of simplicity. To this, we instance in turn how K may

15
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Figure 3: Scatter plot of ordinary Clayton copula samples with κ = 1 (right)
and κ = 5 (left).

arise using either the explicit or the implicit design pattern. So assume a
three-dimensional generic Lévy copula of Clayton type first

F (u1, u2, u3) =
(|u1|−θ + |u2|−θ + |u3|−θ

)−1/θ
(η1u1u2u3≥0 − (1− η)1u1u2u3<0).

By (8) the probability distribution function of measure K conditioned on ξ
then obtains as

Fξ(x2, x3) =
(
ξ−θ + x−θ

2 + x−θ
3

)−1/θ−1
ξ−θ−1η

+
(
ξ−θ + 0 + x−θ

3

)−1/θ−1
ξ−θ−1(1− η)

+
(
ξ−θ + x−θ

2 + 0
)−1/θ−1

ξ−θ−1(1− η)

+
(|ξ|−θ + 0 + 0

)−1/θ
ξ−θ−1η,

where we assumed x2, x3 > 0. It appears that the distribution function is
far from being generic itself. One can imagine that formulae become very
tedious when increasing the dimension. In contrast, let now be F the two-
dimensional Clayton Lévy copula defined by (3) and C the two-place ordinary
Clayton copula

C(u, v) = (u−θ + v−θ)1/θ, (14)

and define the conditional measure K canonically via (8) with Fi = F for
i = 2, 3. We provide figure 3 for illustration of samples from ordinary Clayton

16



copula (14). As to Tankov (2004), a straight forward computation yields

Gξ(xi) := sign(ξ)
∂

∂ξ
VF ((0 ∧ ξ, 0 ∨ ξ]× (−∞, xi])

=



(1− η) +

(
1 +

|ξ|
|xi|

θ
)−1−1/θ

(η − 1xi<0)



 1ξ≥0

+



η +

(
1 +

|ξ|
|xi|

θ
)−1−1/θ

(1xi≥0 − η)



 1ξ<0,

producing the distribution function of conditional measure K as follows

Kξ(x2, x3) = (Gξ(x2)
−θ + Gξ(x3)

−θ)1/θ. (15)

This design pattern produces true relief for the high dimensional case because
an increasing number of variables is only visible in the ordinary copula. For
example, in the d-dimensional case the exchangeable ordinary Clayton copula
C(u) = (

∑d
i=2 u−θ

i )1/θ implies a canonical Lévy copula by its conditional
distribution function

Fξ(x2, ..., xd) = (
d∑

i=2

Gξ(xi)
−θ)1/θ

3.3 Simulation from Lévy processes

In this paragraph we exhibit the use of canonical Lévy copulas for path
simulation by series representation. We take univariate Lévy measures νi, i =
1, ..., d to be given with invertible tail integrals Ui and we suppose that the
dependence structure is specified implicitly by conditional measure K as in
theorem 3.1, where we make the simplifying assumption Cξ = C.

By means of theorem 3.2 simulation of a Lévy path is straight forward.
As regards actual implementation Tankov (2004) makes plausible the use of
Poisson arrivals {Γ1

k} and random series truncation

X i
t =

∑

k:Γ1
k<τ

U−1
i (Γi

k)1[0,t](Vk), i = 1, ..., d.

with some τ > 0. We shall not dwell on implementation details but sampling
from conditional probability measure K(Γ1

i , ·), as it were the crucial part.
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With K assumed a composition of (d − 1)-dimensional ordinary copula C
and univariate distribution functions Gi

Γ1
k

sampling from it unfolds as easy

as follows:

Algorithm 3.1 (Simulating from conditional measure K)
Samples (x2, ..., xd) from conditional measure K(x1, ·) given a canon realization
x1, an ordinary copula C and Lévy copulas Fi, i = 2, ..., d.

• Generate sample (u2, ..., ud) from ordinary copula C

• Set xi = (Gi
x1

)−1(ui) for i = 2, ..., d

The conditional sample vector is given by (x2, ..., xd).

As far as sampling from ordinary copula C is concerned, we refer to the
literature (see Embrecht et al., 2002, for the standard sampling approach
and Aas et al.,2006, Whelan,2004 for sophisticated algorithms). As regards
inversion of conditional distribution function Gi

ξ associated to bivariate Lévy
copula Fi, we note that analytic solutions are available in some cases. With
Fi equal to Clayton Lévy copula (3) for example, the inverse is

G−1
ξ (u) = A(ξ, u)|ξ|

{
B(ξ, u)−

θ
θ+1 − 1

}−1/θ

with A(ξ, u) = sign(u− 1 + η)1ξ≥0 + sign(u− η)1ξ<0

and A(ξ, u) =

{
u− 1 + η

η
1u≥1−η +

1− η − u

1− η
1u<1−η

}
1ξ≥0

+

{
u− η

1− η
1u≥η +

η − u

η
1u<η

}
1ξ<0.

Lemma 3.1 has given a first analytic impression of the canonization prin-
ciple, let us now treat the subject from a numerical point of view on the
basis of canonical Lévy copula (15). To this end, we assume Poisson arrivals

{Γ1
k}N(τ)

k=1 , where N(τ) = max{k : Γ1
k < τ}, and we sample {(Γ2

k, Γ
3
k)}N(τ)

k=1 by
repeated application of algorithm 3.1. Figures 4-7 then show marginal be-
haviors with various parameter configurations for ordinary and Lévy copulas
of Clayton type, where we applied inverse tail integrals U−1

i to the Γi
k’s. We

take the impact of parametrization in the ordinary case to be known from
the literature and figure 3.
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Figure 4: Scatter plot of (1,2)-margin from canonical Clayton Lévy copula
with η = 1, θ = 1 varying κ = 1 (left) and κ = 5 (right).
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Figure 5: Scatter plot of (2,3)-margin from canonical Clayton Lévy copula
with η = 1 and θ = 1 varying κ = 1 (left) and κ = 5 (right).

From figure 4 we can see that varying dependence parameter κ of ordinary
copula C has little if any effect on the (1,2)-margin. This is feasible because
the bivariate structure of marginal dependence involving the canon variable
is totally described by Lévy copula Fi. Different choices for κ do impact the
(2,3)-margin, which can be seen from figure 5 and a narrowing of the samples
when passing over to strong ordinary dependence. Moreover it seems that tail
dependence of the ordinary Clayton copula forwards to the bivariate Lévy
margin in a way that jumps are more associated in the third quadrant than
in the first. This gives us to understand that the implicit model approach can
produce global dependence patterns which are not necessarily symmetric.
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Figure 6: Scatter plot of (1,2)-margin from canonical Clayton Lévy copula
with η = 1, κ = 1 varying θ = 1 (left) and θ = 5 (right).
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Figure 7: Scatter plot of (2,3)-margin from canonical Clayton Lévy copula
with η = 1 and κ = 1 varying θ = 1 (left) and θ = 5 (right).

We analyze the role of canon dependence parameter θ by means of figures
6 and 7. It becomes obvious that the (1,2)-margin is certainly effected by
an increase in dependence as was expected. The absolute jump sizes are
more associated when using a high value of θ. Moreover, dependence in the
(2,3)-margin seems to be modified in almost the same way. Although we
did not alter the conditional ordinary copula of the 2nd and 3rd component
explicitly, association is still more visible in these components when choosing
θ = 5. This is feasible due to the concept of canonization and parallels our
former findings on the density of the Clayton Lévy copula. It is left as a
side remark that we used perfect sign dependence η = 1 for comprehension,
one can imagine other choices with the aid of figure 1. We also note that
truncation of small jumps is visible in the plots.

Algorithm 3.1 now fits well into the general algorithm for path generation
of a multidimensional Lévy process (Xt)0≤t≤1 with specified dependence. We
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promote a slight modification of the original algorithm in order to particu-
larize Lévy copulas of the present type (cf. Tankov, 2006).

Algorithm 3.2 (Simulation of multidimensional Lévy process with
dependent components by series representation)
Generates trajectory Xt, 0 ≤ t ≤ 1 of multidimensional Lévy process by series
representation. The dependence structure is given by conditional measure K
and a number τ is fixed depending on the required precision and computational
capacity.

• Initialize k = 0, Γ1
0 = 0

• Repeat while |Γ1
k| < τ

– Set k = k + 1

– Simulate exponential(2) Tk and set Γ1
k = −(|Γ1

k−1|+ Tk)

– Simulate (Γ2
k, ..., Γ

d
k) from distribution K(Γ1

k, ·) by algorithm 3.1

– Simulate Vk uniform on [0, 1]

The trajectory is then given by X i
t =

∑i
k=1 U−1

i (Γi
k)1[0,t](Vk), i = 1, ..., d.

While the previous graphical analysis set focus on distinct jump samples,
we here test the parametric effects on multidimensional path generation by
means of figur 8. To this end, we perform algorithm 3.2 on the basis of
three dimensional Clayton Lévy copula (15) with η = 1, θ = 1 and κ = 1 as
starting configuration. We have graphed the tracejtories for each component
X i, i = 1, 2, 3 in the upper left plot. It shows that canonization is effective
to some extent as the 2nd and 3rd component, although they are nearly
conditional independent, move into a canonical direction. The upper right
plot shows that when increasing conditional dependence to κ = 5, even small
jumps become synchronous in these components while canonization is at the
same level. In the lower left plot, we increased canon dependence to θ = 5
while resetting conditional dependence κ = 1. It is visible that canonization
is decisive for process evolution as the non-canon components come up to the
canon. These observations parallel our former findings on the jump samples.
Same as before, we employed perfect jump sign dependence η = 1 in these
plots. The lower right plot now illustrates the impact of a moderate jump
sign dependence η = 0.5 on path generation, where jump size
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Figure 8: Trajectories of 3-dimensional Lévy paths with dependence specified
by canonical Clayton Lévy copula using different parametrizations. Blue line:
canon process; red line: 2nd component process; green line: 3rd component
process

dependence is kept at a high κ = 5, θ = 5. One can observe that opposing
jump directions together with nearly equal jump sizes produce mirror images
in some intervals. This parallels our former findings on the Lévy density of
the bivariate Clayton copula.

Conclusion

This study established canonical Lévy copulas for ample dependence mod-
elling in dynamical settings. It introduced the notion of a driving force
component into the Lévy world by means of canonization. As with known
Lévy copulas, structure modelling of multivariate dependence was achieved
to remain decoupled from marginal aspects.

Simulation by series representation was found to be tremendously simpli-
fied by the inverse modelling approach via the canon. Both the ease of path
generation and the decisive impact on multidimensional process evolution
was recognized with the aid of graphical illustrations.
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Future research includes application to financial derivative pricing and
extension to other parsimonious copula ingredients. Performance in high di-
mension is of true interest because this is expected advantageous with canon-
ical Lévy copulas.
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Preprint, avaiable from www.institut.math.jussieu.fr/∼tankov/.

Whelan, N. (2004), Sampling from Archimedean Copulas, Quantitative
Finance, 4(3), 339–352.

23


