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Abstract

In financial mathematics, the fair price of options can be achieved by
solutions of parabolic differential equations. The volatility usually enters
the model as a constant parameter. However, since this constant has to
be estimated with respect to the underlying market, it makes sense to
replace the volatility by an according random variable. Consequently,
a differential equation with stochastic input arises, whose solution de-
termines the fair price in the refined model. Corresponding expected
values and variances can be computed approximately via a Monte Carlo
method. Alternatively, the generalised polynomial chaos yields an effi-
cient approach for calculating the required data. Based on a parabolic
equation modelling the fair price of Asian options, the technique is de-
veloped and corresponding numerical simulations are presented.

1 Introduction

Mathematics have been becoming an important tool in investment banking for
the last decades. The major breakthrough can be connected to the work of
Fisher Black and Myron Scholes [2] and independently Robert C. Merton [8]
in 1973. They presented a framework for modelling share prices which allowed
for a closed form solution of the fair pricing problem for European plain vanilla
options. Hereby, a price is fair if it excludes arbitrage, i.e., it averts instantaneous
risk-less profit. Although there have been various developments since that time,
the so called Black-Scholes model is still a cornerstone in quantitative finance.
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The Black-Scholes equation represents a parabolic partial differential equation.
A corresponding end-boundary value problem yields the fair price of European
options in the mathematical model. Likewise, parabolic operators arise for mod-
elling the fair price of American options, Asian options and others. The volatility
specifies the amount of changes in the underlying time-dependent share prices. In
general, the volatility represents a constant parameter in the parabolic equation.

The exact volatility is not known and thus has to be estimated for achieving an
approximation of the fair option price. Alternatively, we consider the volatility
as a random variable, which exhibits an adequate distribution like uniform type,
Gaussian type or others. Hence the deterministic parabolic equation changes
into a parabolic equation with stochastic input, where the solution represents
a random field. Again end-boundary value problems have to be solved. The
expected value of the random field yields the fair price in the refined model.

On the one hand, the expected value as well as corresponding variances can be
obtained approximately by a Monte Carlo simulation. However, a huge number
of realisations is often necessary to achieve a sufficiently accurate result. On the
other hand, the generalised polynomial chaos allows for an expansion of the ran-
dom field using orthogonal polynomials. Wiener [10] introduced the homogeneous
polynomial chaos for stochastic inputs with Gaussian distributions. This result
was extended by Cameron and Martin [3] for arbitrary random fields of second
order. Moreover, the generalised polynomial chaos yields an expansion in case of
stochastic inputs with other distributions, see [1, 12]. Applying the generalised
polynomial chaos, a system of parabolic equations has to be solved only once to
obtain the desired numerical approximations.

Since the Black-Scholes equation can be solved explicitly, we consider a more
complex model of an arithmetic-average-strike-call, which represents an Asian
option, see [4]. Corresponding end-boundary value problems of a parabolic equa-
tion have to be solved numerically in a Monte Carlo simulation. We apply a
method of lines and thus we obtain a stiff system of ordinary differential equa-
tions, cf. [5, 6]. Likewise, a method of lines also yields a numerical solution of
the system resulting from the generalised polynomial chaos.

Well-posedness of the arising differential equations with random input or con-
vergence analysis of corresponding numerical methods are not within the scope
of this paper. According to the above descriptions, the paper is organised as
follows. In Sect. 2, we introduce the idea to consider the volatility as a stochastic
parameter. Consequently, a differential equation with random input is arranged.
In Sect. 3, the Monte Carlo method, which allows for solving the problem numer-
ically, is sketched. We demonstrate the application of the generalised polynomial
chaos to the problem in detail. Finally, numerical results are presented in Sect. 4,
where the two techniques are compared with respect to efficiency aspects.
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2 Problem Definition

Black, Scholes and Merton [2, 8] proposed a geometric Brownian motion for
modelling the dynamics of stock prices S : [0,∞) × Ω → R through time with
respect to some probability space (Ω,A, P ). A stochastic differential equation
arises in the sense of Itô, see for example Øksendal [9],

dSt = rSt dt + σSt dWt, (1)

where the initial value S0 = s0, the interest rate r > 0 and the volatility σ > 0
are predefined constants and W : [0,∞) × Ω → R is a Brownian motion. Note
that St remains positive.

Based on this model, it is possible to determine the fair value of options V (S, t)
on the underlying S. By the virtue of Feynman-Kac, see [9] Thm. 8.2.1, the
option price V can be expressed as the solution of a partial differential equation
(PDE), namely the Black-Scholes equation

∂V

∂t
(S, t) + 1

2
σ2S2∂2V

∂S2
(S, t) + rS

∂V

∂S
(S, t)− rV (S, t) = 0. (2)

Certain assumptions are necessary to derive this result:

• There is no arbitrage.

• The interest rate r is fixed, positive and identical for borrowing and lending.

• The market is liquid, continuous and frictionless.

• There are no dividend payments on S.

For a discussion of these assumptions, see for example [11]. Nevertheless, the
model can be generalised to other premises like the occurrence of dividend pay-
ments, which yields nonlinear PDEs.

In case of a European call, V depends on S, maturity T > 0 and strike K > 0.
The European call guarantees a payment of

(ST −K)+ := max(ST −K, 0), (3)

which yields an end condition at time T . The problem has to be solved backwards
in time to obtain the essential information at time t = 0. The pay-off function (3)
in combination with (1) determines the boundary conditions, which eventually
allow for a closed form solution. As this is not topic of the paper at hand, we
refer the interested reader to [4].
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Although the Black-Scholes model is appealing from a theoretical point of view,
there is one major drawback. The model does not lead to option prices matching
market prices. The phenomenon of implied volatility skew makes that particularly
apparent.

To improve the matching to market data, various refinements of the Black-Scholes
model have been introduced, for example adding jumps or making σ and/or r
stochastic processes themselves. Hereby, it is crucial that the modified model still
allows for fast and accurate computation of options prices. In the following, we
perform a refinement, which can easily be combined with others to improve the
matching to market.

Looking at the Black-Scholes equation (2), one observes that it depends on the
parameters r and σ. The initial value s0 determines the interesting point in
the corresponding solution. The market data enables to set r and s0 easily. In
contrast, σ is not directly observable but has to be estimated from market prices.
That makes a model assumption necessary, which tells us how σ and market
prices are linked. It is in the nature of assumptions that there is a particular
degree of uncertainty. To reflect this uncertainty, we suggest to change σ into a
random variable.

In contrast to (2), we consider a mathematical model, which does not exhibit
solutions in closed form. Thus we choose an option type as example, which is
more complex than the European option mentioned above: an Asian option.
More specifically, we deal with an arithmetic-average-strike-call involving the
pay-off function

(ST − IT /T )+ with It :=

∫ t

0

Sτ dτ. (4)

Thus the value of the option depends on the stock price at the final time as well
as on the average of the stock prices in time.

Again it is possible to identify the fair value of this option with a parabolic PDE.
Under the usual assumptions in the Black-Scholes framework and the additional
condition that I and S are stochastically independent, one can derive the follow-
ing parabolic equation for the option value V (S, I, t)

∂V

∂t
+ 1

2
σ2S2∂2V

∂S2
+ rS

∂V

∂S
+ S

∂V

∂I
− rV = 0, (5)

where S, I > 0 and 0 < t < T . The end condition with respect to time reads

V (S, I, T ) = (S − I/T )+ for S, I ≥ 0. (6)

In addition, appropriate boundary conditions have to be specified. See again [4]
for a thorough derivation. The PDE (5) is not analytically solvable and thus
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numerical methods are required. Furthermore, we transform (5) into a more
tractable form from a numerical point of view. Setting u : R+ × [0, T ] → R such
that

V (S, I, t) = Su(I/S, t) (7)

holds, a straightforward calculation shows that

∂u

∂t
+ (1− rx)

∂u

∂x
+ 1

2
σ2x2∂2u

∂x2
= 0 (8)

with x = I/S > 0 represents an equivalent equation to (5). Accordingly, the
type of this equation is still parabolic. In the limit case x = 0, the PDE (8)
degenerates into a hyperbolic equation. A behaviour of hyperbolic type arises for
relatively small volatilities, too.

The pay-off function (6) implies the corresponding end condition

u(x, T ) = (1− x/T )+ for x > 0. (9)

Considering the meaning of the involved variables, the boundary conditions result
in

∂u

∂t
(0, t) +

∂u

∂x
(0, t) = 0 for t ∈ [0, T ] (10)

and
lim

x→∞
u(x, t) = 0 for t ∈ [0, T ]. (11)

The boundary condition (11) has to be approximated on a finite domain using

u(L, t) = 0 for t ∈ [0, T ] (12)

with some constant L > 0. Often the choice L := 1 already yields sufficiently
accurate approximations of the original formulation. An according asymptotical
analysis can verify the quality of this approximation.

Thus we obtain an end-boundary value problem of the parabolic PDE (8). Since
the PDE is linear, a corresponding solution u ∈ C2([0, L]×[0, T ]) exists. However,
the dependence of the solution u on the parameter σ as well as σ2 is nonlinear.

Now we assume that the volatility represents a random variable σ : Ω → R
corresponding to some probability space (Ω,A, P ). More precisely, we demand

σ(ω) = g(ξ(ω)) with g : R→ R, (13)

where the random variable ξ : Ω → R exhibits a standard distribution of Gaussian
type, beta-type, etc. For example, a reasonable choice is

σ(ω) = a + bξ(ω) (14)
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with ξ uniformly distributed in [−1, 1] and constants a > b > 0. Hence it holds
E(σ) = a and Var(σ) = b2/3.

Consequently, the solution of the PDEs (5) and (8) become random fields

V : R+ ×R+ × [0, T ]× Ω → R

and for the infinite or bounded case, respectively,

u : R+ × [0, T ]× Ω → R or u : [0, L]× [0, T ]× Ω → R.

Each realisation of σ implies a corresponding fair price of the option. Thus we
obtain a refined fair price by the expected value of the random fields at time t = 0.
Furthermore, the variance of the random field yields essential information about
the stochastic variables. Due to the structure of the transformation (7), it holds

E(V (S, I, t, ·)) = S E(u(I/S, t, ·))
Var(V (S, I, t, ·)) = S2 Var(u(I/S, t, ·)). (15)

Hence we can apply the simplified equation (8) to determine the crucial data of
the problem. Now efficient methods are necessary to answer the problem with
stochastic input.

3 Numerical Techniques

We consider the end-boundary value problem (8),(9),(10),(12). Let the involved
volatility σ be a random variable of the form (13) depending on a variable ξ with
some standard distribution. The solution u becomes a random field due to the
stochastic parameter. Consequently, we are interested in the expected value and
the variance of this random field.

A well-known approach to obtain an approximation of corresponding expected
values and variances consists in a Monte Carlo method. In our case, a finite
number of realisations σ1, . . . , σn for the volatility are produced according to the
underlying distribution. Each realisation σk yields a corresponding determinis-
tic solution uk of the end-boundary value problem. Given the set of solutions
u1, . . . , un, the expected value is approximated by the mean value

E(u(x, t, ·)) .
=

1

n

n∑

k=1

uk(x, t) (16)

and the variance is substituted by the sample variance

Var(u(x, t, ·)) .
=

1

n− 1

n∑

l=1

(
ul(x, t)− 1

n

n∑

k=1

uk(x, t)

)2

. (17)
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Following [4], each deterministic end-boundary value problem can be solved nu-
merically via a method of lines, for example. Consequently, the solution is discre-
tised with respect to the lines xj = jh using h = L/N for j = 0, 1, . . . , N , which
yields the functions uj(t) = u(xj, t). The corresponding partial derivatives in (8)
are replaced by difference formulae

∂u

∂x
(xj, t) =

1

2h
[uj+1(t)− uj−1(t)] +O(h2) (18)

and
∂2u

∂x2
(xj, t) =

1

h2
[uj+1(t)− 2uj(t) + uj−1(t)] +O(h2) (19)

for j = 1, . . . , N − 1. The derivative appearing in boundary condition (10) is
substituted via a backward difference formula

∂u

∂x
(x0, t) =

1

2h
[−3u0(t) + 4u1(t)− u2(t)] +O(h2). (20)

Thus the discretisation schemes are consistent of order 2. The boundary condi-
tion (12) implies directly uN ≡ 0. Furthermore, condition (9) yields final values

uj(T ) = (1− xj/T )+ for all j. (21)

Using the abbreviation y := (u0, u1, . . . , uN−1), we obtain an end value problem
of ordinary differential equations (ODEs)

ẏ(t) = Ay(t), t ∈ [0, T ]. (22)

The system is linear, since a matrix A ∈ RN×N arises. However, the matrix
depends nonlinearly on σ. We consider the decomposition

A = A1 + A2 + A3,

where A1, A2 correspond to the discretisations (18) and (19), respectively, and
A3 follows from the minor part (20). Furthermore, the matrices A1, A2 exhibit
a band structure, see [4]. Hence an LU -decomposition of the matrix A causes a
computational work of O(N2). We can apply ODE solvers for stiff systems to
achieve a numerical solution of the discretised problem as described in [6]. Thus
the method of lines represents the crucial step in the Monte Carlo simulation.

Alternatively, a polynomial expansion of random fields yields another approach to
obtain approximations of expected values and variances. Wiener [10] introduced
the homogenous polynomial chaos based on expansions using Hermite polynomi-
als in case of Gaussian random variables. Cameron and Martin [3] proved that
the corresponding expansion is convergent for an arbitrary functional, which is
quadratically integrable with respect to the underlying probability space. In case

7



of other distributions, expansions using respective orthogonal polynomials yield
according convergence results, which implies the theory of generalised polynomial
chaos, see [1, 12].

To apply the generalised polynomial chaos, we assume that the random process u
corresponding to (8) exhibits finite second moments, i.e.,

∫

ω∈Ω

(u(x, t, ω))2 dP (ω) < ∞

for each x ∈ [0, L] and t ∈ [0, T ]. It follows that the random process exhibits an
expansion of the form

u(x, t, ω) =
∞∑
i=0

vi(x, t)Φi(ξ(ω)) (23)

with (a priori unknown) coefficient functions vi : [0, L]× [0, T ] → R and orthog-
onal polynomials Φi : R→ R. Let the degree of Φi be equal to i. If the random
variable ξ exhibits a uniform distribution, for example, then the Legendre poly-
nomials represent the optimal choice with respect to the speed of convergence
in general. Nevertheless, other classical distributions imply corresponding basis
polynomials, see [12].

The series (23) converges pointwise. The coefficient functions satisfy

vi(x, t) =

∫

ω∈Ω

u(x, t, ω)Φi(ξ(ω)) dP (ω) for i = 0, 1, 2, . . . (24)

given (without loss of generality) orthonormal polynomials. The integrals (24)
depend on the parameters x and t. Thus the smoothness of the coefficient func-
tions vi follows from the smoothness of the solutions of (8) for each σ(ω) in (13)
applying elementary theorems for parameter-dependent integrals.

To obtain a numerical approximation, the series (23) has to be truncated. Thus
we perform a stochastic discretisation using the finite sum

ũ(x, t, ω) =
M∑
i=0

vi(x, t)Φi(ξ(ω)). (25)

To determine the involved coefficient functions, we apply a Galerkin approach.
Inserting the approximation (25) in the linear PDE (8) yields the residual

r(x, t, ω) =
M∑
i=0

∂vi

∂t
(x, t)Φi(ξ(ω)) + (1− rx)

M∑
i=0

∂vi

∂x
(x, t)Φi(ξ(ω))

+
x2

2

M∑
i=0

∂2vi

∂x2
(x, t)g(ξ(ω))2Φi(ξ(ω)),
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which represents a random field. We demand that the residual is orthogonal with
respect to the space spanned by the first M + 1 polynomials. Let 〈f(·)〉 be the
expected value of a function f : Ω → R with respect to the probability space
(Ω,A, P ). Consequently, the orthogonality relation reads

〈r(x, t, ·)Φl(ξ(·))〉 = 0 for l = 0, 1, . . . , M.

Thus we obtain a linear system of parabolic equations, namely

∂vl

∂t
+ (1− rx)

∂vl

∂x
+

x2

2

M∑
i=0

〈g2ΦiΦl〉
〈Φ2

l 〉
· ∂2vi

∂x2
= 0 (26)

for l = 0, 1, . . . , M . The coefficient functions satisfying this system are not the
same as in (23) but an approximation, which is optimal in some sense. The
corresponding matrix, which couples the equations, is given by

B ∈ R(M+1)×(M+1), Bli =
〈g2ΦiΦl〉
〈Φ2

l 〉
. (27)

Hence the matrix is constant and can be computed numerically for a given distri-
bution of (13). Thereby, we have to calculate the matrix only once. Furthermore,
if g is a polynomial and ξ exhibits a classical distribution like uniform distribu-
tion, Gaussian distribution, etc., then an analytical computation of this matrix
is feasible. The coupling of the parabolic equations arises just in the third term
of (26), since this part contains the random volatility.

Repeating the Galerkin approach for the first boundary condition (10) results in
the corresponding system

∂vl

∂t
(0, t) +

∂vl

∂x
(0, t) = 0 for t ∈ [0, T ] and l = 0, 1, . . . ,M, (28)

which consists of decoupled equations. Similarly, the second boundary condi-
tion (12) yields

vl(L, t) = 0 for t ∈ [0, T ] and l = 0, 1, . . . ,M. (29)

The corresponding final values from (9) are deterministic and thus we obtain

v0(x, T ) = (1− x/T )+ and vl(x, T ) = 0 for l = 1, 2, . . . , M. (30)

Hence the generalised polynomial chaos yields an end-boundary value problem of
a linear system with parabolic equations. A solution of the system generates an
approximation to the expected value by

E(u(x, t, ·)) .
= E(ũ(x, t, ·)) = v0(x, t) (31)
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and to the variance via

Var(u(x, t, ·)) .
= Var(ũ(x, t, ·)) =

M∑

l=1

vl(x, t)2〈Φ2
l 〉, (32)

where Φ0 ≡ 1 is assumed without loss of generality.

We achieve a corresponding numerical solution of the end-boundary value prob-
lem (26),(28),(29),(30) by a method of lines following the previous deterministic
case. We discretise

zi,j(t) = vi(xj, t) for j = 0, 1, . . . , N − 1 and i = 0, 1, . . . ,M

and arrange for z : [0, T ] → RN(M+1) the ordering

z := (z0,0, z1,0, . . . , zM,0, z0,1, . . . , zM,N−2, z0,N−1, z1,N−1, . . . , zM,N−1)
>.

Thus the method of lines leads to a linear system of ODEs

ż = (A1 ⊗ I + A2 ⊗B + A3 ⊗ I)z (33)

using Kronecker products and the unit matrix I ∈ R(M+1)×(M+1). The required
final values follow directly from (30). Hence the constant matrix in (33) exhibits
a block structure, where submatrices correspond to the stochastic discretisation.
This matrix inherits the band shape from A1 and A2. We may use common ODE
integrators for stiff systems to solve the according end value problem numerically.

4 Simulation Results

We solve the problem from Sect. 2 by numerical simulations in MATLAB [7]
(version 7.1.0). Thereby, we assume that the volatility is a stochastic parameter
with uniform distribution σ ∈ [0.3, 0.5]. Thus the stochastic input exhibits the
form (14) with constants a = 0.4 and b = 0.1. Furthermore, we choose the
interest rate r = 0.1 and the final time T = 0.5.

Firstly, we perform a Monte Carlo method (M.C.) as described in Sect. 3. Thus
end-boundary value problems (8),(9),(10),(12) are solved using different numbers
of realisations n = 102, 103, 104 for comparison. Marsaglia’s subtract-with-borrow
algorithm yields the pseudo random numbers for σ. Setting L = 1, we apply the
step size h = 0.005 in the method of lines. Each system of ODEs (22) exhibits
N = 200 equations. A Rosenbrock-Wanner scheme of second order, see [6], yields
a numerical solution of the end value problems (21),(22). In the ODE solver,
we perform a local error control with relative tolerance εr = 10−3 and absolute
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tolerance εa = 10−6. The approximations (16) and (17) for expected values and
variances, respectively, are evaluated at time t = 0.

We note that more sophisticated techniques for computing the expected values
and variances of the problem exist like quasi-Monte Carlo methods or techniques
achieving variance reduction, for example. However, an ordinary Monte Carlo
simulation is able to solve the considered test problem sufficiently accurate using
a moderate number of realisations here.

Secondly, we solve the end-boundary value problem (26),(28),(29),(30) corre-
sponding to the polynomial chaos (P.C.) only once. We use just M + 1 = 4
basis functions. The arising matrix (27) is computed according to (14) with
the Legendre polynomials. We arrange L = 1 and h = 0.005 in the method of
lines again. The system of ODEs (33) includes N(M + 1) = 800 equations now.
The corresponding end value problem is solved numerically by the Rosenbrock-
Wanner method with the above tolerances εr, εa. Figure 1 illustrates the resulting
coefficient functions. On the one hand, the component i = 0 determines the ex-
pected values due to (31). On the other hand, the subsequent components yield
the variances following (32). The magnitude of the coefficient functions and their
contribution to the variance is shown in the following table.

Table 1: Magnitude of coefficient functions.

i = 2 i = 3 i = 4
max |vi| 1.6 · 10−2 1.2 · 10−3 9.8 · 10−5

max |vi|2〈Φ2
i 〉 9.1 · 10−5 3.0 · 10−7 1.4 · 10−9

Thus the stochastic discretisation (25) features a fast rate of convergence and a
relatively low number of coefficient functions already yields sufficiently accurate
results.

Now we compare the approximations for expected values and variances, which are
obtained by M.C. and P.C., respectively, at the crucial time point t = 0. Table 2
shows the maximum differences between the results in an absolute sense. As
the number of realisations increases, the differences become smaller. To increase
the accuracy in each method, the step size in the method of lines as well as the
tolerances in the ODE integrator have to be refined. Furthermore, the relative
computation times of the simulations are demonstrated in relation to P.C. by
Table 2, too. The computational effort in M.C. increases linearly with the number
of realisations. On the contrary, the P.C. exhibits a constant lower computation
time.
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Figure 1: Coefficient functions from polynomial expansion.

Table 2: Comparison between results obtained by P.C. and by M.C. with different
numbers of realisations at initial time t = 0.

method M.C. n = 102 M.C. n = 103 M.C. n = 104 P.C.
diff. in exp. value 6.1 · 10−4 4.7 · 10−4 1.9 · 10−4 —
diff. in variance 8.6 · 10−6 1.6 · 10−6 1.0 · 10−6 —
rel. comp. times 2.0 20.9 185.9 1.0
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Figure 2: Expected values at t = 0 for P.C. (—) and M.C. with n = 104 (- -)
together with deterministic solution using σ = 0.4 (- · -). Left: total interval
x ∈ [0, 1], Right: zoom in x ∈ [0.2, 0.4].

For a further discussion, Figure 2 illustrates the achieved expected values at
time t = 0. We recognise that the approximations of M.C. and P.C. nearly
coincide for a large number of realisations n. Moreover, the deterministic solution
for σ = 0.4 is displayed, since this volatility corresponds to the expected value of
the stochastic input parameter (14). The difference

E(u(x, t; σ(ξ(·))))− u(x, t; E(σ(ξ(·))))

can be seen as an estimate of the nonlinearity in the problem. We observe a
significant difference in Figure 2 (right), which indicates that the refined model
introduced in Sect. 2 yields new information in comparison to the ordinary mod-
elling. Furthermore, Figure 3 shows the computed variances at time t = 0. For
a lower number of realisations n, the approximation from M.C. exhibits a large
error in a relative sense. Thus a huge number of realisations is necessary for a
sufficiently accurate approximation of the variance. In this case, P.C. represents
a more efficient technique to solve the problem, see Table 2.

The above simulations refer to the modified PDE (8), since a lower number
of independent variables is achieved in comparison to the underlying PDE (5).
Nevertheless, we obtain results corresponding to (5) directly by applying the
transformations (15).
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Figure 3: Variances at t = 0 for P.C. (—) and M.C. with n = 102 (- · -) as well
as n = 104 (- -). Left: total interval x ∈ [0, 1], Right: zoom in x ∈ [0, 0.2].

5 Conclusions

A refined model for fair prices of options has been presented, where the volatility
represents a stochastic input parameter to a parabolic partial differential equa-
tion. A Monte Carlo method produces approximations of desired expected values
and variances. However, a stochastic discretisation based on the generalised poly-
nomial chaos yields a more efficient technique. The strategy can be used for a
large class of distributions corresponding to the random volatility. Moreover, the
problem definition as well as the constructed technique applies directly to other
models involving parabolic equations. Further refined models introducing several
stochastic input parameters may be useful, too, where the multidimensional case
of the generalised polynomial chaos yields an according technique. If a financial
derivative does not allow for marked-to-market calibration, then the concept of
random volatility reflects the uncertainties in historical parameter estimation.
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