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Abstract

The mathematical model of electric circuits yields systems of differential-
algebraic equations (DAEs). In radio frequency applications, a multi-
variate model of oscillatory signals transforms the DAEs into a system of
multirate partial differential-algebraic equations (MPDAEs). Consider-
ing quasiperiodic signals, an approach based on a method of characteris-
tics yields efficient numerical schemes for the MPDAEs in time domain.
If additionally digital signal structures arise, an adaptive grid is required
to achieve the efficiency of the technique. We present a strategy ap-
plying a wavelet transformation to construct a mesh for resolving steep
gradients in respective signals. Consequently, we employ finite differ-
ence methods to determine an approximative solution of characteristic
systems in according grid points. Numerical simulations demonstrate
the performance of the adaptive grid generation, where radio frequency
signals with digital structures are resolved.

1 Introduction

In the field of telecommunication electronics, we have to deal with oscillatory
signals composed of multiple frequencies. For instance, some pieces of information
are represented by a slowly varying amplitude of a high frequency carrier signal.
Thus we have signals which exhibit largely differing time scales. To sample these
waveforms in time domain, we need to resolve the fast carrier, which determines
the step size of an integration scheme, whereas the slowly varying component
fixes our simulation horizon (the time interval, for which we want to compute the
waveforms of the network). The introduction of multiple time variables for the
occurring scales enables a more adequate formulation, where the waveforms are
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represented by multivariate functions. For quasiperiodic waveforms, which arise
in radio frequency (RF) applications, this representation is much more suited for
an efficient sampling.

The numerical simulation of electrical circuits is based on a network approach,
which typically yields systems of differential-algebraic equations (DAEs) [5]. By
introducing the multivariate signal representations, partial differential-algebraic
equations are deduced [2], which we further transform and then solve more effi-
ciently. The network model and its multivariate transformation are presented in
Section 2. Then, in Section 3, we discuss a method of characteristics, which is
used to solve these systems [11]. In this work, the corresponding technique will
be based on a finite difference method (FDM).

In addition, we have to cope with digital-like (or pulsed) signals. For instance,
steep gradients are often observed in clock signals or by the extraction of digital
components using thresholds. Thus heterogeneous waveforms arise in the DAE
network equation. To extract efficiently the locations of steep gradients, we
apply a wavelet transformation for a simple representation (analysis) of digital-
like signals in Section 4. Consequently, we develop a strategy to generate an
adaptive grid for applying the method of characteristics.

For numerical tests, we use this adaptive method to a circuit, the so-called
Schmitt trigger, which implements a modulation of a pulse width, and discuss
the numerical results in Section 5.

2 MPDAE Model

To demonstrate the multivariate model, we consider the multitone signal

v(t) :=

[
1 + α sin

(
2π

T1

t

)]
sin2

(
π

T2

t

)
(1)

with time scales T1 > T2. The parameter α ∈ (0, 1) controls the size of an
amplitude modulation for a high-frequency oscillation. Fig. 1 (left) illustrates the
arising signal in case of α = 0.2, T1 = 1, T2 = 0.05. In RF applications, it holds
T1 À T2 and thus a huge number of oscillations occurs in the time interval [0, T1].
Hence we require many time points to resolve the signal sufficiently accurate by
a mesh in time domain.

On the contrary, we introduce an own variable for each separate time scale, which
yields the multivariate function (MVF)

v̂(t1, t2) :=

[
1 + α sin

(
2π

T1

t1

)]
sin2

(
π

T2

t2

)
(2)
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Figure 1: Amplitude modulated signal (left) and corresponding MVF (right).

of the multitone signal (1). The MVF is biperiodic and thus just determined by
its values in the rectangle [0, T1[×[0, T2[, see Fig. 1 (right). Since the MVF (2) ex-
hibits an elementary behavior in this rectangle, we can resolve this representation
sufficiently accurate using a relatively low number of mesh points. Nevertheless,
we reconstruct the original signal (1) completely via

v(t) = v̂(t, t), (3)

i.e., the signal is located inside the MVF (2) along the diagonal t1 = t2. There-
fore we achieve an efficient model of the multitone signal, since the separate
time scales are decoupled in the multivariate representation. In other words, the
representation (2) is independent of the ratio T1/T2.

More general, the multivariate model can be applied for m-tone quasiperiodic
functions x : R→ R of the form

x(t) =
+∞∑

j1,...,jm=−∞
Xj1,...,jm exp

(
i2π

(
j1
T1

+ · · ·+ jm
Tm

)
t

)
(4)

with coefficients Xj1,...,jm ∈ C. The corresponding MVF x̂ : Rm → R reads

x̂(t1, . . . , tm) =
+∞∑

j1,...,jm=−∞
Xj1,...,jm exp

(
i2π

(
j1t1
T1

+ · · ·+ jmtm
Tm

))
, (5)

which is periodic in each time scale. Furthermore, efficient representations exist
for envelope modulated signals using MVFs, too, where the slowest time scale is
aperiodic, see [14]. The reconstruction of the signal (4) applies

x(t) = x̂(t, . . . , t)
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Figure 2: Digital signal (left) and corresponding MVF (right).

and the efficiency follows from the periodicities of the MVF (5).

We focus on the computation of quasiperiodic signals (4) with digital structures.
Thereby, we restrict to the most frequent case of two-tone signals (m = 2),
since generalizations to several time scales are straightforward. For an according
example, let s : R→ R be a smooth time-dependent signal. Consequently,

w(t) :=

{
1, for s(t) > η
0, for s(t) ≤ η

(6)

is a corresponding digital version, where we apply some threshold value η ∈ R.
Considering signal (1) for s and η := 0.7, we obtain the function (6) shown in
Fig. 2 (left). Here, the amplitude modulation in (1) causes a modulation of the
pulse width in (6). The corresponding MVF is presented in Fig. 2 (right). We
recognize that discontinuities arise in the multitone signal as well as in the MVF.
If such an MVF is computed numerically using a grid in the domain of depen-
dence, the mesh has to be refined to obtain a sufficiently accurate approxima-
tion. Thereby, the refinement is necessary only near the discontinuities, whereas
a coarse grid is adequate elsewhere. The same problem occurs for smooth signals
with extremely steep gradients localized at certain time points. However, the effi-
ciency of the multivariate model can still be achieved via appropriate generation
of meshes.

Now we consider the corresponding model of electric circuits. Typically, the
mathematical description of circuits results from a network approach, where sev-
eral variants exist differing mainly in the set of involved unknowns. Thereby,
the transient behavior of (nearly all) node voltages, branch currents and possi-
bly other quantities like charges and fluxes are analyzed. In general, systems of
differential-algebraic equations arise in each variant of the network approach. For
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example, a common charge-oriented version, see [5], yields the following system

AC
d
dt
q̃ + ARr(A>Ru(t), t) + ALL(t) + AV V (t) + AIı(t) = 0,

d
dt
Φ̃− A>Lu(t) = 0,

A>V u(t)− v(t) = 0,

q̃− qC(A>Cu(t), t) = 0,

Φ̃−ΦL(L(t), t) = 0.

(7)

The incidence matrices AC , AR, AL and AV , AI belong to capacitive, resistive,
inductive parts of the network and to branches with independent voltage and cur-
rent sources, respectively. Furthermore, we obtain the function r for resistances,
ı for current sources and v for voltage sources. The state variables q̃, Φ̃,u, L, V

represent charges, fluxes, node potentials and currents through inductances and
voltage sources.

Using the notation

x := (q̃, Φ̃,u, L, V )>, q(x) := (ACq̃, Φ̃,0,0,0)>,

we write system (7) in the compact form

dq(x)

dt
= f(b(t),x(t)) (8)

with unknown function x : R→ Rk, the function q : Rk → Rk and general right-
hand side f : Rl × Rk → Rk. The function b : R → Rl includes independent
input signals. Initial value problems of (8) require a consistent starting value
x(t0) = x0 and are solved over some time interval t ∈ [t0, t1]. However, the
task is often to determine the steady state response of an electric circuit, which
corresponds to periodic or quasiperiodic solutions, for example. Hence two-point
or multi-point boundary value problems of (8) arise, respectively.

Alternative mathematical models of electric circuits often result in systems of
type (8), too. An advantage of the approach (7) consists in the conservation of
charges. Furthermore, the left-hand side of (8) does not depend explicitly on
time in that case. However, the Jacobian matrix of q is usually singular in each
network approach, which leads to differential-algebraic equations.

We assume that the input b consists of two-tone quasiperiodic signals (4). The
output x often inherits this time behavior and thus is considered as quasiperiodic,
too. In RF applications, the corresponding time rates T1, T2 are widely separated.
A numerical integration scheme for solving the DAEs (8) involves a huge compu-
tational effort, since the fast oscillations restrict the step sizes in time, whereas
the slow part determines the total time interval of the simulation. The compu-
tation of a circuit’s steady state response, i.e., a quasiperiodic solution of (8),
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implies analog difficulties. Consequently, we apply biperiodic MVFs b̂ and x̂ of
type (5) with m = 2 for the signals b and x. Brachtendorf et al. [2] transformed
the system of DAEs (8) into a system of multirate partial differential-algebraic
equations (MPDAEs)

∂q(x̂)

∂t1
+
∂q(x̂)

∂t2
= f(b̂(t1, t2), x̂(t1, t2)). (9)

If x̂ is an arbitrary solution of this system, then the restriction x(t) := x̂(t, t)
following (3) satisfies the DAE (8). For electric networks using model (7), the
MPDAE inherits properties of the original DAE like the index concepts, see [9].

The quasiperiodicity implies periodicity conditions of the MVFs in multidimen-
sional time domain

x̂(t1, t2) = x̂(t1 + T1, t2) = x̂(t1, t2 + T2), for all t1, t2 ∈ R, (10)

where the time scales T1, T2 are known from the input signals. Consequently, we
solve the MPDAE system numerically in a bounded domain like the rectangle
[0, T1]× [0, T2], for example, instead of performing a transient integration of the
corresponding DAE system. For envelope modulated signals, initial-boundary
value problems of the system (9) arise in the domain R+ × [0, T2], cf. [14].

The MPDAE model (9) for DAEs (8) can be used for other problems, too, where
quasiperiodic or envelope-modulated signals arise. However, simulation of RF
circuits represents the most common application area.

3 Method of Characteristics

To solve the MPDAE (9) with periodicity conditions (10), frequency domain
methods have been successfully used in [2]. However, time domain methods
exhibit a better performance for strongly nonlinear problems or digital signal
structures, see [14]. The system (9) is of hyperbolic structure with characteristic
curves, see [11]. The corresponding characteristic system reads

d

dτ
t1(τ) = 1,

d

dτ
t2(τ) = 1,

d

dτ
q(x̄(τ)) = f(b̂(t1(τ), t2(τ)), x̄(τ)), (11)

where the variables t1, t2 as well as the solution x̄ depend on a parameter τ .
Solutions of this system are called characteristic curves. The equations for the
variables t1, t2 can be solved explicitly and yield parallel characteristic projections
in diagonal direction. Inserting the result in the last part of (11), we obtain

d

dτ
q(x̄(τ)) = f(b̂(τ + c1, τ + c2), x̄(τ)) (12)
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with arbitrary constants c1, c2 ∈ R and x̄(τ) = x̂(τ + c1, τ + c2). This system
represents a family of DAEs, which describes the transport of information in the
MPDAE system completely.

In view of the periodicity conditions (10), we consider the corresponding rectan-
gle [0, T1] × [0, T2] in the domain of dependence. Without loss of generality, we
assume T1 > T2. Choosing equidistant initial points on the line t2 = 0 results in
the discretization

x̄j1(τ) := x̂(τ + (j1 − 1)h1, τ), for j1 = 1, . . . , n1 (13)

using some step size h1 = T1/n1. Fig. 3 illustrates the involved characteristic
projections with the respective transport of information indicated by arrows as
well as the diagonal t1 ≡ t2 mod T2 (dotted line). In the figure, the case of
T1 À T2 is sketched qualitatively (not quantitatively). The projections according
to (13) do not necessarily coincide with the diagonal line. However, this fact does
not result in significant disadvantages. The equations corresponding to (13) from
the family (12) are

d

dτ
q(x̄j1(τ)) = f(b̂(τ + (j1 − 1)h1, τ), x̄j1(τ)), for j1 = 1, . . . , n1 (14)

and we consider τ ∈ [0, T2]. The periodicity in the fast time scale, see (10), does
not yield a periodic boundary condition for the solution of (14), since the progress
in diagonal direction causes a displacement. Nevertheless, applying an interpo-
lation scheme on the line t2 = T2 generates approximative boundary conditions
for the functions (13), see [11], which read

(x̄0(0)>, . . . , x̄n1(0)>)> = B(x̄0(T2)
>, . . . , x̄n1(T2)

>)>. (15)

The entries of the constant matrix B ∈ Rn1k×n1k depend only on the ratio T1/T2,
the step size h1 and the used interpolation formula. In case of T1 À T2, which
usually implies h1 > T2, linear interpolation reads

x̄j1(0) =

(
1− n1

T2

T1

)
x̄j1(T2) +

(
n1
T2

T1

)
x̄j1−1(T2), for j1 = 1, . . . , n1, (16)

where the periodicity in the slow rate is applied to identify x̄0 = x̄n1 . With
T1 À T2, the idealization T2/T1

.
= 0 seems advantageous, since (16) would change

into periodic boundary conditions. However, using this strategy, an insufficient
accuracy has been observed at the boundaries, which indicates that the small
displacement T2/T1 can not be neglected.

If digital signal structures arise, we assume that corresponding steep gradients
are not situated on the boundary line t2 = T2, where the interpolation takes
place (see Fig. 3). Thus a relatively small number n1 of characteristic curves is
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Figure 3: Characteristic projections in domain of dependence for rates T1 À T2.

sufficient. This requirement is satisfied by the example presented in the previous
section. If the quasiperiodic solution of (8) exhibits steep gradients at t2 = T2,
then considering a shifted domain [0, T1]× [c, c+T2] for some c ∈ (0, T2) with the
analog boundary value problem often avoids this difficulty.

Hence the method of characteristics leads to a boundary value problem of DAEs
(14-15), which can be solved by finite difference methods or shooting methods,
for example. The functions (13) yield an approximation of the MPDAE solution
in the corresponding rectangle, depicted in Fig. 3, and thus everywhere in view
of the periodicities.

In the boundary value problem, the DAE subsystems in (14) of dimension k are
separate and coupled only by the boundary condition (15). On the contrary, a
finite difference method applied directly to the MPDAE (9) performs an unnec-
essary coupling in both coordinate directions. Therefore methods based on the
problem (14-15) achieve more efficiency in comparison to standard time domain
methods for the system (9), see [11, 12].

In [12], finite difference methods reproduce successfully the solution of boundary
value problems (14-15). Thereby, an equidistant mesh is considered, which is
sufficient for computing elementary MVFs. In contrast, digital structures cause
inaccurate results on coarse grids due to steep gradients. However, the multidi-
mensional strategy is only adequate, if a relatively low number of mesh points
is sufficient. Thus we need an adaptive grid for the approach (14-15) in case of
numerical methods employing the time domain.
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4 Wavelet-based Adaptive Grid Generation

We aim at the detection of steep gradients in the solution for the generation of an
adaptive grid. Due to the pulsed waveforms in the circuits we are considering, it is
fruitful to employ ansatz functions of low order. Furthermore, the use of wavelets
allows us both time and frequency localization (whereas Fourier transforms are
designed for frequency extraction, only): With the so-called ’mother-wavelet’ ψ,
the wavelet-transform T of a signal s reads

(
Ts

)
(a, b) = |a|−1/2

∫

R

s(t)ψ
(

t−b
a

)
dt,

with dilation parameter a 6= 0 for the frequency range and translation parameter
b for time centering (localization). For our purpose, the common hat-functions1

are an adequate choice, which we use as wavelets from now on.

Next, we employ these ansatz functions for the discretization of the character-
istic system (14) along one characteristic projection (with τ ∈ [0, T2]). To con-
struct a multiresolution analysis of L2([0, T2]), we restrict the basis functions to a
bounded domain [0, L] by ’folding’ the hat-functions at the interval boundaries,
see [4]. The parameter L ∈ N defines the number of dilated basis functions on
the bounded domain, which is then of course transformed to the desired interval
[0, T2]. Without loss of generality, we demand suppψ ⊆ [0, L].

For our numerical approximation, we use a subspace V
[0,L]
J ⊂ L2([0, L]) of finite

dimension, which is composed by a direct sum of a central space V
[0,L]
0 (spanned

by integer translates of the scaling function2) and hat-wavelet spaces W
[0,L]
j with

according frequency localizations:

V
[0,L]
J = V

[0,L]
0 ⊕

J−1⊕
j=0

W
[0,L]
j .

Due to the bounded domain, the number of translations k ∈ Ij ⊂ N spanning

the spaces W
[0,L]
j is finite:

W
[0,L]
j = span

{
ψj,k |ψj,k(τ) := 2 j/2ψ(2jτ − k), k ∈ Ij

}
,

for j = 0, . . . , J − 1.

Notice, in contrast to frequently used orthonormal bases, this wavelet basis is a
biorthogonal system. The main difference is that for the synthesis of a wavelet-
transformed signal the dual basis applies. So in our case, the dual wavelet basis

1The hat-functions are obtained from a so-called scaling function, which is in our case the
linear B-spline.

2The B-spline scaling functions give us the coarsest approximation.
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Figure 4: Pulse representation in V
[0,20]
0 (left), W

[0,20]
0 (middle) and W

[0,20]
1 (right).

in fact undertakes the time-frequency localization of the wavelet coefficients and
we thus do not have to set it up explicitly. For more details on biorthogonal
wavelet bases, see [3], for example.

To illustrate the capabilities of the hat-wavelets for our digital-like signals, we
approximate a pulse function p : [0, 1] → R in the subspace V

[0,20]
2 , i.e. using the

refinement of L+1 = 21 basis functions in the central space. The pulse function p
is given in Fig. 4 as dashed line. There we show in three plots the coefficients for
the corresponding spaces V

[0,20]
0 , W

[0,20]
0 and W

[0,20]
1 , respectively. The different

markers indicate the size of these coefficients versus the corresponding location
of the hat-functions’ maximal value. Thereby we obtain a dyadic grid for the
interval [0, L]: the integer values

τk = k, k = 0, . . . , L,

for V
[0,L]
0 and the refinements

τk = 2−j(k + 1/2), k = 0, . . . , 2jL,

for W
[0,L]
j , j = 0, 1.

Notice that the shape of the pulse is well represented by V
[0,20]
0 (scaling functions

are normalized to 1), only at the location of the steep gradients the refinement

levels W
[0,20]
0 , W

[0,20]
1 have contributions, but attenuate fast. Thus we can employ

this localization of the steep gradients to define an adaptive grid [1]: given a guess
of the solution, we perform a discrete wavelet-transformation (DWT) and ’simply’
inspect the size of the corresponding coefficients. Thus grid points associated with
’small’ coefficients (smaller than a given threshold) are left out and grid points
are added, where the coefficients exceed a given upper threshold. Of course, the
relative level of these coefficients (compared within the same subspace) is most
instructive.

A guess for the solution can be obtained by an ordinary DAE simulation of (8)
in normal time with initial value x0 for the relatively short interval [0, T2] (we
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are interested in the case T1 À T2). Then we compute for each component of
the solution the DWT, determine a grid, and use the common refinement (which
means adding the discretization points of all components to a single grid). In this
way, we obtain the location of the steep gradients at the starting time. If these
positions do not change (over [0, T1]):

∥∥∥∥
∂x̂

∂t2
(0, t2)

∥∥∥∥ ≈
∥∥∥∥
∂x̂

∂t2
(t1, t2)

∥∥∥∥ , for all t1 ∈ [0, T1] and t2 ∈ [0, T2],

we may use the same grid on all characteristic projections. An example for such
a circuit is the switched capacitor filter, see [1, 8]. Similar to Fig. 3, Fig. 5
(left) gives a representation of the diagonal (dotted lines) and the selection of
characteristic curves, where we are to determine the solution with identical grid
on each characteristic projection.

2

T1

t

T2

t1

2

T1

t

T2

t1

Figure 5: Adaptive characteristic grid: simple (left) and advanced (right).

Clearly, it is not sufficient to use the same grid on every characteristic projection
for a signal with pulse width modulation (like in Fig. 2) or for other signals with
instationary positions of the steep gradients in the t2-direction. More severely,
this will produce results of low accuracy if just the grid for the starting time is
used.

To enable different grids on the characteristic curves (as in Fig. 5 (right)) and to
avoid a total re-computation of the whole boundary value problem on a locally
refined grid, we need also in advance information on the solutions’ behavior along
the characteristic projections. The crucial point is, how to determine a guess
for the solution on future characteristic projections, such that we can apply the
DWT. For the class of circuits, where the external signal gives rise to the positions
of the steep gradients, we just solve the DAEs (14) for this future intervals by an
ordinary DAE integration scheme. As initial value for a first guess, any consistent
choice is sufficient. To this end, we simply perform a single step of the implicit
Euler and achieve an approximative consistent solution, which is used as initial
value for the respective DAE.
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Figure 6: Schmitt trigger circuit.

The efficiency of this procedure lies in the fact that we only need the time-
integration along a small number of characteristic projections, whereas a huge
number of characteristics would have to be solved in ordinary time (cf. the
diagonal in Fig. 5). Moreover, we solve initial value problems instead of boundary
value problems and it is not necessary to solve for the limit cycle, since basically
only the structure of the solution determines the adaptive grid.

Finally, with the adaptive grid at hand, we solve the boundary value problem
(14-15) using a finite difference discretization described in [12].

5 Numerical Simulation

The presented method was applied to the test example of a so-called Schmitt
trigger, which is depicted in Fig. 6. In this circuit, a sinusoidal input signal is
transformed into a digital output signal at node 5. If the input signal exceeds
the upper trigger threshold, the output signal takes the value of its upper stable
state and does not jump back to its lower limit until the input falls below a lower
trigger threshold. The fact that the output depends on two different thresholds
and on the history of the input is called hysteresis.

The model of the used Schmitt trigger can be found in [7]. For the two npn-bipolar
transistors, the current-voltage relation is given by the nonlinear function

g(∆u) := β
(
exp

(
∆u
uT

)
− 1

)

depending on the voltage drop ∆u between basis and emitter with parameters β =
10−6 A and uT = 0.026V. The circuit model can be described by a differential-
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algebraic system of index 13:

C d
dt
u = f(u) + s(t).

As special case of (8), we obtain a system with linear left-hand side and addi-
tive input signals s. The constant capacitance matrix C = (ci,j) ∈ R5×5 has the
nonzero elements c2,2 = c4,4 = C0 and c2,4 = c4,2 = −C0. The right-hand side is
given by

f(u) =




−u1/R1 − (1− α)g(u1 − u3)
−u2/R2 − (u2 − u4)/R4 − αg(u1 − u3)
−g(u1 − u3) + u3/R3 − g(u4 − u3)
−(u4 − u2)/R4 − (1− α)g(u4 − u3)

−u5/R5 − αg(u4 − u3)




and
s(t) =

(
uin(t)/R1, uop(t)/R2, 0, 0, uop(t)/R5

)>
.

As the right-hand side is smooth here, we expect also the solution to be smooth
with, however, very steep gradients. We use the parameters R1 = 200 Ω,
R2 = 1600 Ω, R3 = 100 Ω, R4 = 3200 Ω, R5 = 1600 Ω and C0 = 40 pF for the
resistances and the capacitance, respectively, α = 0.99 for the transistor model
and the operating voltage uop(t) ≡ 0.2 V.

We apply the two-tone quasiperiodic input signal

uin(t) = −5 V + 10 V ·
(
0.8 + 0.2 · sin

(
2π

T1

t

))
· sin2

(
2π

T2

t

)

with qualitatively the same structure as signal (1) in Fig. 1. To obtain an RF
application, we employ T1 = 1 s and T2 = 5 · 10−4 s. Then it holds T1 À T2 in
contrast to the moderately separated time scales in Fig. 1. The signal uin(t)
and its multivariate function ûin(t1, t2) are depicted in Fig. 7. Notice that the
structure of the MVF here is the same as for (2); it is independent from the ratio
of the time scales.

By introducing MVFs for node potentials and input signals, the network equa-
tions are transferred to the MPDAE

C

(
∂û

∂t1
+
∂û

∂t2

)
= f(û) + ŝ(t1, t2),

which is a special form of (9).

We solve the boundary value problem (14-15) on n1 = 20 characteristic curves
and apply the adaptive grid generation from the previous section with different

3Here no charge-oriented approach is applied and for the sake of simplicity, one node voltage
has already been replaced by the value uop. Thereby a more advantageous structure is achieved.
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Figure 8: Adaptive grid (left) and multivariate output signal (right).

grids for each characteristic projection. Thereby we obtain a total of 711 grid
points, i.e., we have on average less than n2 = 36 grid points for each interval
[0, T2]. For the same resolution on an equidistant grid, n2 = 120 points would
have been necessary. The adaptive grid and the multivariate solution for the
output at node 5 can be found in Fig. 8. The grid is relatively coarse except for
the locations of steep gradients, which have been detected sharply by the wavelet
basis. Within the finite difference discretization applied on the adaptive grid,
we use the formula following Dahlquist [6]. To solve the nonlinear system arising
after discretization a damped Newton method is necessary to obtain convergence.

In Fig. 9, the reconstructed DAE solution u5 is plotted on two different sections
of the whole interval [0, T1] for comparison with a standard univariate time inte-
gration based on numerical differentiation formulas (NDFs). It can be seen that
the reconstucted solution (circles) coincides very well with the reference solution
(solid line). We again observe a modulation of the pulse widths as explained for
the signal (6).
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Figure 9: Reconstructed solution (circles) and reference signal (solid line) for u5.

For the sake of completeness, the MPDAE solutions for the voltages at the nodes
1 to 4 can be found in Fig. 10. All components except the first one show steep
gradients, which have been resolved by the adaptive grid.

6 Conclusions

A multidimensional modeling yields an efficient representation of RF-signals and
the hyperbolic structure of the arising MPDAE network equations can be ex-
ploited to set up a method of characteristics. Moreover, the time-frequency
localization property of wavelet ansatz functions is used to generate adaptive
grids for the efficient solution of the arising boundary value problems along the
characteristic projections. The biorthogonal basis of hat-wavelets emerged to
sharply detect steep gradients of pulsed functions. This capability was verified
by a successful simulation of a Schmitt trigger circuit on an adaptive grid.

In this paper, amplitude modulated signals have been investigated. The addi-
tional occurrence of frequency modulation can be addressed by a so-called warped
MPDAE model as described in [10]. Having the according characteristic system
to be solved, see [13], the adaptive grid generation seems to be feasible in an
analog way. Anyway, the efficiency has to be investigated in detail.

A further application of the wavelet basis beyond the adaptive grid generation
for the MPDAE model is to keep the wavelets as ansatz functions and solve
the boundary value problems via a collocation scheme on adaptive characteristic
grids. Methods of this kind are also currently being investigated.
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Figure 10: MPDAE solutions of nodes 1 to 4.
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