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Abstract

Electric circuits, which produce oscillations at widely separated time
scales, cause a huge computational effort in a numerical simulation of the
mathematical model based on differential-algebraic equations (DAEs).
Alternatively, a multidimensional signal model yields a description via
multirate partial differential-algebraic equations (MPDAEs). Initial-
boundary value problems of the MPDAE system reproduce solutions of
the underlying DAE system. In case of frequency modulation, an addi-
tional function arises in the MPDAE model, which represents a degree
of freedom in the multivariate description of the signals. We present two
minimisation strategies, which are able to identify the additional param-
eters such that the resulting solutions exhibit an elementary structure.
Thus numerical schemes can apply relatively coarse grids and an efficient
simulation is achieved.

1 Introduction

Mathematical modelling of electric circuits applies a network approach, which
generates systems of differential-algebraic equations (DAEs), see [3]. In many
applications, signals acting at widely separated time scales arise. For example,
fast oscillations may exhibit amplitude as well as frequency modulation, which
are caused by slowly varying parts. Thus a numerical integration of the circuit’s
DAEs becomes inefficient, since the high-frequency oscillations limit the size of
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time steps.

Alternatively, a multivariate signal model is able to decouple the time scales.
Based on multivariate functions, Brachtendorf et al. [1] transformed the DAE
system into multirate partial differential-algebraic equations (MPDAEs). Ac-
cordingly, a solution of the MPDAE system reproduces a solution of the under-
lying DAE system. Initial-boundary value problems or multiperiodic boundary
value problems of the MPDAEs are considered to obtain corresponding solutions.
The multidimensional approach has been successfully used for simulating circuits
with amplitude modulated signals, see [9].

In case of frequency modulated signals, the model has to incorporate a local fre-
quency function to achieve an efficient representation. Narayan and Roychowd-
hury [5] introduced a corresponding system of warped MPDAEs, which includes
these parameters. Thereby, the local frequency function represents a degree of
freedom in the modelling. Inappropriate choices cause many oscillations in the
multivariate model and thus the strategy becomes inefficient. Hence additional
conditions are necessary, which identify adequate local frequency functions.

An elementary approach consists in demanding continuous phase conditions,
see [5]. Such additional constraints have been used successfully in time domain,
see [6], as well as in frequency domain, see [10]. However, the phase condi-
tions operate just in one component of the solution. Thus the idea is to impose
minimisation demands, which guarantee an elementary structure in each compo-
nent of the multivariate functions. Houben [4] constructed a strategy for solving
initial-boundary value problems, where the amount of certain partial derivatives
is minimised locally. On the other hand, a global minimisation criterion for de-
termining multiperiodic solutions is introduced in [7].

In this paper, we present two strategies based on minimisation for solving initial-
boundary value problems of the MPDAE system. The first approach is a direct
generalisation of the technique given in [4], where a weighted norm is applied now.
This strategy minimises the amount of certain partial derivatives corresponding
to a charge term. Alternatively, the second technique demands a minimisation
criterion for according derivatives of the solution itself. A necessary condition for
an optimal solution results from a variational calculus with respect to transfor-
mation properties of solutions. We discuss advantages and disadvantages of both
approaches. If the circuit’s equations represent a system of ordinary differential
equations (ODEs), then the two techniques are equivalent.

The paper is organised as follows. In Sect. 2, we sketch the multivariate sig-
nal model and the resulting MPDAE model. Thereby, required transformation
properties of solutions are discussed. We derive the two minimisation criteria for
identifying adequate solutions in Sect. 3. A numerical scheme based on a method
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Figure 1: Amplitude modulated signal y (left) and corresponding MVF ŷ (right).

of lines, which allows to include the conditions arising from the minimisation
criteria, is constructed in Sect. 4. Finally, we present according numerical results
using a modification of the Van-der-Pol oscillator.

2 MPDAE Model

We start with an outline of the multidimensional signal model. Firstly, we con-
sider amplitude modulated signals. For example, the time-dependent function

y(t) :=
[
1 + α sin

(
2π
T1

t
)]

sin
(

2π
T2

t
)

(1)

with T1 À T2 represents a high-frequency oscillation, where a fixed α ∈ (0, 1)
introduces a modulation by a low-frequency oscillation, see Fig. 1 (left). Hence
we require many time steps to resolve all oscillations in case of widely separated
rates. Nevertheless, we can introduce an own variable for each time scale, which
yields the formulation

ŷ(t1, t2) :=
[
1 + α sin

(
2π
T1

t1

)]
sin

(
2π
T2

t2

)
. (2)

This representation is called the multivariate function (MVF) of the signal (1).
The MVF (2) is biperiodic and thus just determined by its values in the rect-
angle [0, T1] × [0, T2]. Fig. 1 (right) illustrates that the MVF exhibits a simple
structure. Hence a coarse grid in time domain is sufficient for resolving this repre-
sentation. We can completely reconstruct the original signal (1) via y(t) = ŷ(t, t).
Hence we achieve an efficient multidimensional model of amplitude modulated
signals.
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Figure 2: Frequency modulated signal x (left) and according MVF x̂1 using
constant time rates (right).

Secondly, we examine signals, which include amplitude modulation as well as
frequency modulation. In the signal

x(t) :=
[
1 + α sin

(
2π
T1

t
)]

sin
(

2π
T2

t + β cos
(

2π
T1

t
))

, (3)

the parameter β > 0 determines the amount of frequency modulation. Fig. 2 (left)
demonstrates the signal qualitatively. We directly obtain a MVF by introducing
separate variables for each time scale

x̂1(t1, t2) :=
[
1 + α sin

(
2π
T1

t1

)]
sin

(
2π
T2

t2 + β cos
(

2π
T1

t1

))
. (4)

However, this biperiodic MVF exhibits many oscillations in the underlying rect-
angle, see Fig. 2 (right). The number of oscillations increases the larger the
parameter β becomes. Thus the multidimensional model (4) is inefficient.

To obtain an adequate representation, Narayan and Roychowdhury [5] model just
the amplitude modulation part via MVFs, whereas the frequency modulation
part is described by an additional time-dependent function. For our signal (3),
we obtain the MVF

x̂2(t1, t2) :=
[
1 + α sin

(
2π
T1

t1

)]
sin (2πt2) , (5)

where the second period is standardised to 1. This MVF exhibits the same
elementary structure as the representation (2) illustrated in Fig. 1 (right). The
frequency modulation is given by the warping function

Ψ(t) :=
t

T2

+
β

2π
cos

(
2π
T1

t
)

. (6)
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Now we reconstruct the underlying signal (3) using x(t) = x̂2(t, Ψ(t)), i.e. the
warping function stretches the second time scale. The derivative of the warping
function

ν(t) := Ψ′(t) =
1

T2

− β

T1

sin
(

2π
T1

t
)

(7)

can be seen as a local frequency of the signal (3). Thus we obtain an efficient
model of frequency modulated signals applying MVFs and corresponding local
frequency functions. However, the representation is not unique. For example,
setting x̂3(t1, t2) := x̂1(t1, T2t2) and Φ(t) := t/T2 yields x(t) = x̂3(t, Φ(t)), too,
where x̂3 is a (T1, 1)-periodic MVF.

The above model is also applicable for signals, which are not periodic in the slow
time scale. On the other hand, we always assume that the fast time scale has a
periodic behaviour, which is necessary for the efficiency of the representation.

The mathematical model of electric circuits is based on a network approach,
which yields systems of differential-algebraic equations (DAEs) for the transient
behaviour of all node voltages and some branch currents, see [3]. We write the
systems in the form

dq(x)

dt
= f(x(t)) + b(t),

x,b : R→ Rk,
q, f : Rk → Rk,

(8)

where x represents unknown voltages and currents. The function q describes
charges as well as fluxes and f contains resistance terms. The function b includes
independent input signals. We assume that the circuit produces high-frequency
oscillations for constant input signals. Accordingly, a slowly varying input may
cause amplitude and frequency modulation in these oscillations, i.e. the solution
exhibits the time behaviour outlined above.

Thus the multidimensional signal model is applied for the function x. The tran-
sition to MVFs changes the system of DAEs into a system of multirate partial
differential-algebraic equations (MPDAEs). Following Narayan and Roychowd-
hury [5], the warped MPDAE corresponding to (8) reads

∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f(x̂(t1, t2)) + b(t1). (9)

Thereby, x̂ : R2 → Rk is the MVF of x. The input signals vary just slowly and
thus do not require a multivariate description. The local frequency ν : R → R
depends on the same variable as the input. It is straightforward to verify that
the reconstruction

x(t) := x̂

(
t,

∫ t

0

ν(u) du

)
(10)

using a solution of the MPDAE (9) yields a solution of the DAE (8).
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Figure 3: Initial-boundary value problem of the MPDAE.

To solve the MPDAE system, according boundary conditions have to be specified.
The fast time scale is assumed to be periodic. Thus we consider the initial-
boundary value problem

x̂(0, t2) = h(t2), x̂(t1, t2 + 1) = x̂(t1, t2) for all t1 ≥ 0, t2 ∈ R, (11)

where h : R → Rk is a predetermined periodic function. Fig. 3 illustrates
the problem in time domain. Using (10), a solution of the MPDAE satisfy-
ing (11) produces a solution of an initial value problem of the underlying DAE
with x(0) = h(0). Furthermore, if the slow time scale is periodic, too, then biperi-
odic boundary value problems of the MPDAE yield quasiperiodic responses of the
corresponding DAE, cf. [6].

The MPDAE system (9) exhibits certain transformation properties, see [7]. If x̂
is a solution corresponding to a local frequency function ν, then the transformed
MVF

ŷ(t1, t2) := x̂

(
t1, t2 +

∫ t1

0

ν(u)− µ(u) du

)
(12)

satisfies the MPDAE system including the local frequency function µ. Initial
conditions at t1 = 0 are invariant in this transformation. The periodicity in the
fast time scale is preserved, too. Moreover, both MVFs with their local frequency
functions reproduce the same DAE solution using (10).

Since µ in (12) can be specified arbitrarily, we obtain a family of solutions sat-
isfying the initial-boundary value problem (9),(11). Thus the local frequencies
represent free parameters in the model. We want to identify frequency func-
tions, which lead to adequate MVFs. In case of widely separated time scales,
tiny changes in the local frequency function cause huge deformations in the cor-
responding MVF. Due to this sensitivity, we can not directly apply a predeter-
mined specification of the frequency function. Alternatively, we have to impose
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criteria on the corresponding MVF, which determine the local frequency function
indirectly.

For specifying the unknown frequency function, we can try to control the phase in
the cross sections of the MVF for each t1. This approach yields phase conditions
like

x̂1(t1, 0) = η for all t1 ≥ 0 (13)

for an appropriate constant η ∈ R or

∂x̂1

∂t2
(t1, 0) = 0 for all t1 ≥ 0 (14)

in the, without loss of generality, first component of the MVF x̂ = (x̂1, . . . , x̂k)
>.

Phase conditions have been successfully used in time domain, see [5, 6], as well
as in frequency domain, see [10], to identify appropriate solutions in numerical
simulations. The resulting MVFs exhibit a simple form, i.e. they do not contain
unnecessary oscillations. However, since the phase conditions work only in a part
of the solution, this advantageous property can not be guaranteed in general.

3 Minimisation Criteria

Observing Fig. 2 (right), we recognise that an inappropriate local frequency func-
tion causes many oscillations with respect to the slow time scale. Thus the idea
is to reduce the number of oscillations by a minimisation of the amount of partial
derivatives corresponding to the first time scale. An optimal solution ensures
that we can use relatively large step sizes for solving the initial-boundary value
problem (9),(11), when we proceed in the slow time scale.

We consider weights w1, . . . , wk ≥ 0 for each component. Consequently, we define
the positive semi-definite, symmetric bilinear form

〈·, ·〉w : Rk × Rk → R, 〈x,y〉w :=
k∑

i=1

wi · xi · yi. (15)

The corresponding semi-norm reads

‖ · ‖w : Rk → R+
0 , ‖x‖w :=

√
〈x,x〉w =

(
k∑

i=1

wi · xi
2

) 1
2

. (16)

If all weights are positive, we obtain a positive definite form and an according
norm. Setting wi = 1 for all i yields the Euclidean norm. Choosing some weights
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equal to zero allows to focus on an arbitrary subset of components. Furthermore,
we can perform an appropriate scaling applying the weights, if the components
exhibit different orders of magnitudes. In the following, we assume wi > 0 for at
least one i to achieve a non-trivial form.

Considering the initial-boundary value problem (9),(11), we want to minimise
the amount of change in the slow time scale belonging to the points (t1, t2) for
each fixed t1 and all t2. Due to the periodicity in the fast time scale, we define

〈·, ·〉∗ : (L2[0, 1])k × (L2[0, 1])k → R, 〈x,y〉∗ :=

∫ 1

0

〈x(u),y(u)〉w du, (17)

which represents a positive semi-definite, symmetric bilinear form again. The
resulting semi-norm shall be denoted by ‖ · ‖∗. Following Houben [4], we demand
the minimisation criterion

s(t1) :=

∥∥∥∥
∂q(x̂)

∂t1
(t1, ·)

∥∥∥∥
2

∗
−→ min. for each t1 ≥ 0. (18)

More precisely, since the function s depends on the MVF, we want to determine
a solution x̂ satisfying (9),(11) for some local frequency, which fulfils

s(t1; x̂) =
∥∥∥∂q(x̂)

∂t1
(t1, ·)

∥∥∥
2

∗
≤

∥∥∥∂q(ŷ)
∂t1

(t1, ·)
∥∥∥

2

∗
= s(t1; ŷ) (19)

for each t1 ≥ 0 and all solutions ŷ of (9),(11) with their local frequencies. The
requirement (18) involves only the derivative with respect to the slow time scale,
since it holds ∥∥∥∂q(ŷ)

∂t2
(t1, ·)

∥∥∥
2

∗
=

∥∥∥∂q(x̂)
∂t2

(t1, ·)
∥∥∥

2

∗
, (20)

whenever ŷ and x̂ are connected by the transformation (12). We are able to
replace the derivative in (18) by the other terms in the MPDAE (9) and achieve

s(t1) =
∥∥∥f(x̂(t1, ·)) + b(t1)− ν(t1)

∂q(x̂)
∂t2

(t1, ·)
∥∥∥

2

∗

= ‖f(x̂(t1, ·)) + b(t1)‖2
∗ + ν(t1)

2
∥∥∥∂q(x̂)

∂t2
(t1, ·)

∥∥∥
2

∗

− 2ν(t1)〈f(x̂(t1, ·)) + b(t1),
∂q(x̂)
∂t2

(t1, ·)〉∗.

(21)

An elementary minimisation calculus yields a necessary condition for an optimal
local frequency function, namely

ν(t1) =
〈f(x̂(t1, ·)) + b(t1),

∂q(x̂)
∂t2

(t1, ·)〉∗∥∥∥∂q(x̂)
∂t2

(t1, ·)
∥∥∥

2

∗

for all t1 ≥ 0. (22)
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Thereby, we assume that the denominator is not equal to zero for all t1 ≥ 0,
which represents an insignificant constraint. Furthermore, the identification (22)
is equivalent to the orthogonality relation

〈∂q(x̂)
∂t1

(t1, ·), ∂q(x̂)
∂t2

(t1, ·)〉∗ = 0 for all t1 ≥ 0. (23)

In case of positive weights, we remark that the MPDAE (9) can be transformed
into an equivalent scaled system according to

∂

∂t1

√
wi qi(x̂) + ν(t1)

∂

∂t2

√
wi qi(x̂) =

√
wi (fi(x̂(t1, t2)) + bi(t1)) (24)

for i = 1, . . . , k. Thus the above strategy corresponds to choosing the Euclidean
norm in (16) for solutions of the MPDAEs (24).

A crucial advantage of this approach consists in the achievement of an explicit
formula for the local frequency function. Thus we can insert (22) into the
MPDAE (9) and obtain a well-determined system. However, the minimisa-
tion (18) is based on the charge term q(x̂) and not on the MVFs x̂ itself. In
general, the MVFs exhibit a low number of oscillations if and only if the cor-
responding charge term has the same property. Yet we can not guarantee this
property. If the underlying system (8) represents a semi-explicit system of DAEs,
then the minimisation criterion (18) involves no algebraic variable, i.e. algebraic
variables can not be controlled.

Alternatively, we construct a minimisation criterion based on the partial deriva-
tives of the MVFs itself, namely

p(t1) :=

∥∥∥∥
∂x̂

∂t1
(t1, ·)

∥∥∥∥
2

∗
−→ min. for each t1 ≥ 0. (25)

The meaning of this demand is analogue to (19). To determine a necessary
condition for an optimal solution, we perform a variational calculus using the
transformation (12). Assume that ẑ is an optimal solution with respect to (25).
Given an arbitrary smooth function Θ : R → R with Θ(0) = 0, we obtain a
family of competitive solutions due to the transformations (12)

x̂ε(t1, t2) := ẑ(t1, t2 + εΘ(t1)) for ε ∈ R. (26)

The derivatives of the competitive functions read

∂x̂ε

∂t1
(t1, t2) = ∂ẑ

∂t1
(t1, t2 + εΘ(t1)) + εΘ′(t1) ∂ẑ

∂t2
(t1, t2 + εΘ(t1)),

∂x̂ε

∂t2
(t1, t2) = ∂ẑ

∂t2
(t1, t2 + εΘ(t1)).

(27)

In the following computations, we apply that

〈x(·+ c),y(·+ c)〉∗ = 〈x(·),y(·)〉∗ (28)
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holds for all 1-periodic functions x,y : R→ Rk and an arbitrary constant c ∈ R.
Consequently, we have

p(t1; ε) =
∥∥∥∂x̂ε

∂t1
(t1, ·)

∥∥∥
2

∗
=

∥∥∥ ∂ẑ
∂t1

(t1, ·) + εΘ′(t1) ∂ẑ
∂t2

(t1, ·)
∥∥∥

2

∗

=
∥∥∥ ∂ẑ

∂t1
(t1, ·)

∥∥∥
2

∗
+ ε2Θ′(t1)2

∥∥∥ ∂ẑ
∂t2

(t1, ·)
∥∥∥

2

∗

+ 2εΘ′(t1)〈 ∂ẑ
∂t1

(t1, ·), ∂ẑ
∂t2

(t1, ·)〉∗.

(29)

Differentiation with respect to ε yields

dp

dε
(t1; ε) = 2εΘ′(t1)2

∥∥∥ ∂ẑ
∂t2

(t1, ·)
∥∥∥

2

∗
+ 2Θ′(t1)〈 ∂ẑ

∂t1
(t1, ·), ∂ẑ

∂t2
(t1, ·)〉∗. (30)

Setting ε = 0 implies the relation

Θ′(t1)〈 ∂ẑ
∂t1

(t1, ·), ∂ẑ
∂t2

(t1, ·)〉∗ = 0 for all t1 ≥ 0. (31)

Since this property has to be satisfied for arbitrary Θ ∈ C1 with Θ(0) = 0, we
may choose functions with Θ′(t1) > 0 for all t1 ≥ 0. Consequently, the necessary
condition

〈 ∂ẑ
∂t1

(t1, ·), ∂ẑ
∂t2

(t1, ·)〉∗ = 0 for all t1 ≥ 0 (32)

arises. This demand represents an orthogonality relation with respect to the
bilinear form (17). Remark that we have not used the MPDAE system (9) directly
to achieve the condition (32). We just applied the transformation formula (12),
which results from the MPDAEs.

Concerning the existence of solutions satisfying the orthogonality relation (32),
we achieve the following statement. Let ŷ be the solution of the initial-boundary
value problem (9),(11) corresponding to local frequency ν ≡ 0, which can be
obtained by solving a family of initial value problems of the DAEs (8). Hence we
define

ν(t1) :=
〈 ∂ŷ

∂t1
(t1, ·), ∂ŷ

∂t2
(t1, ·)〉∗∥∥∥ ∂ŷ

∂t2
(t1, ·)

∥∥∥
2

∗

(33)

and according to (12)

ẑ(t1, t2) := ŷ

(
t1, t2 −

∫ t1

0

ν(u) du

)
. (34)

Thus ẑ is a solution of the MPDAE (9) corresponding to the local frequency ν,
which exhibits condition (32). Consequently, if an arbitrary MPDAE solution
satisfying (11) exists, then we achieve another solution, which fulfils (32). How-
ever, we do not know a reference solution a priori. Thus we have to determine
the function ν indirectly by using the condition (32) in time domain.
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If the underlying system (8) represents an ODE, i.e. q(x) ≡ x, then the condi-
tions (23) and (32) coincide. Accordingly, we obtain the identification (22), which
we can apply to solve the initial-boundary value problem of the corresponding
partial differential equations.

4 Numerical Method

Now we construct a numerical technique to obtain approximatively solutions of
the above multidimensional approach. In [8], semidiscretisation methods are used
to solve the initial-boundary value problem (11) of the MPDAEs (9) including
phase conditions. Thereby, a method of lines as well as a technique of Rothe
type are considered. Houben [4] applies also a method of lines to realise the
minimisation via the necessary condition (22).

Likewise, we use a method of lines to include the alternative constraint (32).
Hence we restrict the MVF in the MPDAE (9) to the lines

x̃j(t1)
.
= x̂(t1, (j − 1)h2) for j = 1, . . . , m with h2 := 1

m
. (35)

Replacing the derivative of the fast time scale in (9) by a backward difference
formula of second order, see [2], and considering the discretisation (35) yields the
equations

dq(x̃j)

dt1
= f(x̃j) + b(t1)− ν(t1)

h2

[
3

2
q(x̃j)− 2q(x̃j−1) +

1

2
q(x̃j−2)

]
(36)

for j = 1, . . . , m. The periodicity condition in (11) allows for the identifications
x̃0 = x̃m and x̃−1 = x̃m−1. Thus the systems (36) represent mk DAEs for the
mk unknown approximations (35). Furthermore, we apply a discretisation of the
relation (32) according to the structure of the lines. The derivative of the fast
time scale is substituted by a difference formula of first order and the integral
is replaced by a finite sum. Numerical simulations show that a discretisation
of the additional condition (32) does not require a higher accuracy, i.e. rough
approximations are sufficient. Consequently, the relation

0 = 〈 ∂x̂
∂t1

(t1, ·), ∂x̂
∂t2

(t1, ·)〉∗ =
k∑

l=1

wl

∫ 1

0

∂x̂l

∂t1
(t1, u) · ∂x̂l

∂t2
(t1, u) du

.
=

k∑

l=1

wl

m∑
j=1

dx̃j,l

dt1
(t1) · [x̃j,l(t1)− x̃j−1,l(t1)] .

(37)

arises for x̃j = (x̃j,1, . . . , x̃j,k)
>. This condition exhibits the structure of a scalar

function depending on t1, which can be used to determine the local frequencies for

11



each t1. In the discretised form, just terms depending on the unknown approx-
imations (35) are included. Thus we add the relation (37) to the systems (36).
The required initial values for the approximative systems (36) follow from (11).
Now we can solve the total system (36),(37) by proceeding in the slow time scale.
Thereby, the derivatives with respect to the slow time scale, which arise in (36)
as well as (37), have to be discretised further.

5 Illustrative Example

To demonstrate our technique, we consider a modification of the Van-der-Pol
oscillator. The corresponding system reads

ẋ1 = x2

ẋ2 = −10(x1
2 − 1)x2 − 4π2x1 + A sin

(
2π
T

t
)

0 = x1 + x3
3 + 3,

(38)

which represents a semi-explicit DAE of index 1. In the input signal, we choose
the amplitude A = 30 and the time rate T = 1000. If A = 0 holds, then the
DAE (38) exhibits a periodic solution with frequency ν0 ≈ 1. On the other hand,
frequency modulation at widely separated time scales arises in case of A 6= 0.
Consequently, we change to the according warped MPDAE system (9), where it
holds

q(x̂) ≡ q(x1, x2, x3) ≡ (x1, x2, 0)>. (39)

Simulations of biperiodic problems for the ordinary Van-der-Pol oscillator as an
ODE system (q(x̂) ≡ x̂) are performed in [6].

We consider the initial-boundary value problem (9),(11) in the following. As
starting values, we employ a periodic solution of (38) from the case A = 0.
Firstly, we determine a solution of the MPDAEs using the phase condition (13)
with η = 0. Secondly, the necessary condition (32) is applied to obtain an optimal
solution. We choose the weights w1 = 1, w2 = 0.1, w3 = 1 due to the different
magnitudes of the components. In both simulations, we consider the systems (36)
resulting from the method of lines. Firstly, the phase condition (13) is added
directly. Secondly, we apply the discretised formulation (37). Then each initial
value problem of a DAE system is integrated using the implicit Euler scheme.

Fig. 4 illustrates the achieved local frequency functions. The difference between
the two results is relatively small (|νopt−νph| < 10−3). The corresponding MVFs

are shown in Fig. 5. We recognise that all MVFs exhibit a simple behaviour,
where a low number of oscillations arises. The second component x̂2 features a
larger amount of amplitude modulation in comparison to the first component x̂1.
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Figure 4: Local frequency function νopt (left) obtained from optimality criterion

and difference νopt− νph (right), where νph corresponds to the phase condition.

The algebraic component x̂3 is similar to x̂1. Although the differences between
the local frequency functions νopt and νph are tiny, we observe a significant

difference in the MVFs. This fact indicates the said sensitivity in case of widely
separated time scales.

To discuss the used minimisation criterion, we evaluate approximately the func-
tion (25) for both solutions. Fig. 6 demonstrates resulting approximations. In-
deed, the solution corresponding to the minimisation demand (32) exhibits a
smaller or equal amount than the solution with the phase condition (13). Hence
larger step sizes with respect to the slow time scale can be applied to compute
the optimal solution in a method of lines. Nevertheless, the amount of growth is
not seriously larger in case of the phase condition. Thus phase conditions yield
efficient solutions in this example, too.

Consequently, we reconstruct corresponding solutions of the DAEs (38) via (10)
using the solution of the MPDAEs based on the optimality criterion. For compar-
ison, we solve an initial value problem of the DAEs (38) via backward difference
formulae, see [2], where we apply the initial value x(0) := h(0) from (11). The
results belonging to the first component x1 are illustrated for two different time
intervals by Fig. 7. In the first few cycles, the two signals exhibit a good agree-
ment. In later cycles, a phase shift occurs, since small numerical errors in the
local frequency function amplify during many oscillations. Moreover, transient
integrations of the DAEs (38) produce a phase shift in comparison to the exact
solution, too. Nevertheless, the other properties of the signal agree in later cycles,
i.e. the shape, the amplitude and the frequency. Likewise, the components x2

and x3 exhibit the same behaviour. Using the MPDAE solution with the phase
condition yields nearly the same signal as for the presented reconstruction. Thus
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Figure 5: MVFs x̂1, x̂2, x̂3 resulting from phase condition (left) and from opti-
mality criterion (right).
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Figure 6: Function (25) evaluated at solution from minimisation criterion (solid
line) and at solution from phase condition (dashed line).
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Figure 7: Solution x1 of the DAE system (38) reconstructed from MPDAE so-
lution (solid line) and achieved by transient integration (dashed line) in time
intervals [0, 5] (left) and [700, 705] (right).

the MPDAE model considering initial-boundary value problems achieves a higher
accuracy in phase compared to a numerical integration of underlying DAEs. This
property is reported in [5], too.

Finally, we want to compare different weightings in the optimality criterion (25).
Hence we perform the above numerical simulation again using several choices of
weights. Unfortunately, there is no universal criterion for comparing the efficiency
of different multivariate representations. Thus we use the function p in (25) for
evaluating the computed solutions, too, with w1 = 1, w2 = 0.1, w3 = 1 in any
case now. The results yield an approximation of the mean value

p̄ :=
1

T

∫ T

0

p(u) du. (40)
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Table 1: Values of critical function for different approaches.

approach mean p̄
(i) phase condition 8.5766 · 10−4

(ii) w1 = 1, w2 = 0.1, w3 = 1 4.0914 · 10−4

(iii) w1 = 1, w2 = 1, w3 = 0 4.0917 · 10−4

(iv) w1 = 1, w2 = 0, w3 = 0 4.2228 · 10−4

(v) w1 = 0, w2 = 1, w3 = 0 4.0918 · 10−4

(vi) w1 = 0, w2 = 0, w3 = 1 4.5760 · 10−4

Table 1 demonstrates the determined mean values for different weighting tech-
niques. Case (i) corresponds to the solution satisfying the phase condition.
Case (iii) is equivalent to Houben’s approach (18) using the Euclidean norm
in (16). The best results are obtained in case (ii), since the used weights in the
optimisation (25) as well as in the following evaluation of (40) coincide.

In our example, we conclude that the representation of one component is efficient
if and only if the representation of all components is suitable. Moreover, the
values of (40) seem to be dominated by the behaviour of the second component x̂2,
because the MVF includes steep gradients. In other applications, the components
may exhibit a different behaviour from each other. Accordingly, an optimisation
using (25) based on all components, i.e. all weights are positive, achieves a
tradeoff. Remark that a minimisation with respect to the algebraic component x̂3

is not feasible, if the alternative demand (18) is used.

6 Conclusions

A multivariate signal model transforms the circuit’s DAEs into MPDAEs, where
a local frequency function represents a degree of freedom. Considering initial-
boundary value problems, two conditions to determine adequate local frequency
functions have been presented, which both follow from minimisation criteria. The
first approach yields an explicit formula for the local frequencies. The second ap-
proach imposes an additional condition on the multivariate functions, but allows
more flexibility. If the circuit’s equations represent ODEs, the two strategies are
equivalent. The MPDAEs including the minimisation procedures can be solved
approximately via a method of lines. Numerical simulations demonstrate that
both techniques identify appropriate solutions.
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