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Summary. A multidimensional model yields an alternative strategy for the nu-
merical simulation of frequency-modulated signals. Thus the differential algebraic
equations (DAEs), which describe an electric circuit, change into warped multi-
rate partial differential algebraic equations (MPDAEs). Houben [6] introduced an
approach for solving efficiently initial-boundary value problems of such MPDAE
systems. Thereby, envelope-modulated solutions of the DAEs are reproduced. In
this paper, the technique is analysed for obtaining quasiperiodic solutions of the
DAEs. The crucial question is if biperiodic solutions of the MPDAEs are generated
automatically by Houben’s approach provided that the initial values of a biperiodic
solution are applied.

1 Introduction

In radio-frequency applications, electric circuits often produce oscillatory sig-
nals with widely-separated time scales. For example, the amplitude as well as
the frequency of a high-frequency oscillation may change relatively slowly. A
numerical simulation of the circuit demands to solve the corresponding time-
dependent system of differential algebraic equations (DAEs), see [4]. Thus
the simulation becomes inefficient, since fast oscillations limit the step size in
time, whereas the slow time scale determines the total time interval.

A multivariate signal model yields an alternative strategy, where each
separate time scale is given an own variable. Brachtendorf et al. [1] intro-
duced the corresponding system of multirate partial differential algebraic
equations (MPDAEs), which yields an efficient simulation of purely amplitude-
modulated signals. Narayan and Roychowdhury [7] generalised the approach
for signals, which are amplitude-modulated (AM) as well as frequency-
modulated (FM). Accordingly, a system of warped MPDAEs arises, where
the determination of an appropriate local frequency function is crucial for the
efficiency of the multidimensional model. Rough choices produce unnecessary
oscillations in the multivariate solutions of the system.
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Houben [5, 6] introduced a minimisation criterion with respect to partial
derivatives, which shall reduce oscillatory behaviour in the solutions of the
MPDAE system. This strategy yields a formula for the unknown local fre-
quency function depending on the multivariate solution. The approach can be
used to solve initial-boundary value problems of MPDAEs, which reproduce
envelope-modulated solutions of the DAEs.

The direct determination of quasiperiodic solutions of the DAEs demands
to solve biperiodic boundary value problems of corresponding MPDAEs,
see [10]. A method of characteristics can be used to compute biperiodic solu-
tions of an MPDAE system efficiently, see [8]. This technique becomes inap-
propriate in case of initial-boundary value problems.

We investigate the performance of Houben’s strategy when initial values
from a biperiodic solution are given. If the resulting solution is biperiodic, too,
then a method for biperiodic boundary value problems can be constructed
based on the original strategy. Although the method of characteristics still
seems to be superior for biperiodic problems, the results give more insight in
the properties of Houben’s method.

2 Multidimensional Model

The mathematical model of electric circuits yields a system of DAEs, see [4].
We consider a system of the form

dq(x)
dt

= f(b(t),x(t)), x : R→ Rk, q : Rk → Rk,
b : R→ Rl, f : Rl ×Rk → Rk,

(1)

where x denotes unknown node voltages and branch currents. We assume
that the predetermined input signals b vary relatively slowly. In contrast,
the solution x shall include high-frequency oscillations, whose amplitude as
well as frequency are changed slowly by the input signals. Thus the signals x
include widely-separated time scales. Hence solving the DAEs (1) demands a
huge number of time steps and a transient analysis becomes inefficient.

Brachtendorf et al. [1] introduced a multivariate signal model for purely
AM signals, where each time scale is assigned an own variable. Narayan and
Roychowdhury [7] generalised this model for signals including AM as well as
FM. In case of two time scales, a multivariate function (MVF) x̂ : R2 → Rk

and a local frequency amplification function ν : R → R of the signal x are
introduced. Thus an efficient model is achieved by decoupling the time scales.

Consequently, the system of DAEs (1) is transformed into the system of
warped MPDAEs

∂q(x̂)
∂t1

+ ν(t1)
∂q(x̂)
∂t2

= f(b(t1), x̂(t1, t2)),
x̂ : R2 → Rk,
ν : R→ R.

(2)

We assume q, x̂ ∈ C1 and b, f , ν ∈ C0. The local frequency amplification ν
is a priori unknown, too. The input signals vary just slowly and thus do not



Simulation of Quasiperiodic Signals 3

require a multivariate description. An arbitrary solution of the MPDAEs (2)
yields a solution of the DAEs (1) using the reconstruction

x(t) = x̂
(
t,

∫ t

0
ν(σ)dσ

)
, (3)

i.e., the MVF includes the original signal. In this general case, ν represents a
local frequency amplification and thus ν is physically dimensionless.

This model is suitable only if the fast time scale is periodic, since we want
to resolve many oscillations in a bounded and relatively small multidimen-
sional domain. Hence two types of problems arise. Firstly, initial-boundary
value problems of the system (2) read

x̂(0, t2) = h(t2), x̂(t1, t2) = x̂(t1, t2 + 1) for all t1 ≥ 0, t2 ∈ R (4)

with a predetermined periodic function h : R→ Rk. The period is standard-
ised to 1 and thus the second argument t2 of the MVF becomes dimensionless.
Hence ν in (3) includes the magnitude of the fast time scale and exhibits the
physical dimension of a frequency now. The problems (4) are solved in a
domain [0, T ] × [0, 1] for some T > 0. Secondly, biperiodic boundary value
problems exhibit the conditions

x̂(t1, t2) = x̂(t1 + T1, t2) = x̂(t1, t2 + 1) for all t1, t2 ∈ R, (5)

which correspond to the domain [0, T1]× [0, 1]. In this case, the input signals
as well as the local frequency function have to be T1-periodic. Note that we
require a smooth solution of (2) to fulfil the biperiodicity condition (5).

Applying (3), solutions satisfying (4) reproduce envelope-modulated sig-
nals, whereas solutions fulfilling (5) yield quasiperiodic signals. Note that both
envelope-modulated and quasiperiodic signals include FM here.

For appropriate choices of the local frequency functions, the corresponding
MVF exhibits a simple structure in [0, T ] × [0, 1]. Thus we can compute the
solution of the MPDAEs (2) using a relatively low number of grid points and
achieve an efficient numerical simulation. The desired solution of the DAEs (1)
is reconstructed via (3).

Solutions of the MPDAEs (2) corresponding to different local frequency
functions are interconnected by a transformation, see [9]. If x̂ is a MVF sat-
isfying the system for the local frequency ν, then the transformed MVF

ŷ(t1, t2) := x̂
(
t1, t2 +

∫ t1
0

ν(σ)− µ(σ) dσ
)

(6)

represents a solution of the system with local frequency µ. The initial val-
ues at t1 = 0 are invariant in this transformation. Thus, for solving initial-
boundary value problems (4), the local frequencies are completely free pa-
rameters, which can be used to achieve an efficient representation. In case of
biperiodic problems (5), an additional requirement is necessary to preserve
the periodicity in the slow time scale, namely

∫ T1

0
µ(σ) dσ =

∫ T1

0
ν(σ) dσ, (7)

which means that the average frequency coincides.
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3 Houben’s Method

A suitable local frequency function for representing the signals efficiently is
unknown a priori. Inappropriate selections cause undesired oscillations in the
MVFs, see [9]. Houben [5, 6] formulated the minimisation problem

s(t1) :=
∫ 1

0
‖∂q(x̂)

∂t1
(t1, u)‖2 du −→ min. for each t1 ≥ 0 (8)

using the Euclidean norm ‖ ·‖. Thus oscillatory behaviour is reduced via min-
imising the impact of the partial derivative with respect to the slow time scale.
For example, a method of lines can be employed to solve the initial-boundary
value problem (2),(4). Hence a corresponding optimal solution allows for using
relatively large step sizes in the numerical simulation.

The demand (8) implies a necessary condition for an optimal solution:

ν(t1) =

∫ 1

0
〈f(b(t1), x̂(t1, u)), ∂q(x̂)

∂t2
(t1, u)〉 du

∫ 1

0
‖∂q(x̂)

∂t2
(t1, u)‖2 du

for all t1 ≥ 0 (9)

with the Euclidean inner product 〈·, ·〉. This formula can be used to eliminate
the unknown local frequency function. Thus initial-boundary value problems
can be solved by proceeding in the slow time scale. Furthermore, the condi-
tion (9) is equivalent to the orthogonality relation

∫ 1

0
〈∂q(x̂)

∂t1
(t1, u), ∂q(x̂)

∂t2
(t1, u)〉 du = 0 for all t1 ≥ 0. (10)

In the following, we assume the existence of a smooth biperiodic solution ẑ
corresponding to the periodic local frequency κ. Let h := ẑ(0, ·) be its initial
values. We investigate the results from the initial-boundary value problem (4)
applying Houben’s technique. In [3], the case of ordinary differential equations
(q(x) ≡ x) has already been considered.

An arbitrary solution x̂, ν of the MPDAEs (2) with the same initial val-
ues h can be obtained from the biperiodic solution ẑ via the transforma-
tion (6). We define the quantity

c :=
∫ T1

0
ν(σ)− κ(σ) dσ. (11)

Using the transformation (6), it follows

x̂(T1, t2) = ẑ(T1, t2 + c) = ẑ(0, t2 + c) = x̂(0, t2 + c) for all t2 ∈ R. (12)

We have achieved the following result.

Theorem 1. If x̂, ν is an arbitrary solution of the system (2) with initial
values from a biperiodic solution, then it holds x̂(T1, t2) = x̂(0, t2 + c) for
all t2, i.e., the end values represent a time shift of the initial values.
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In Houben’s approach, the question is if this time shift is equal to zero or not.
In the formula (9) for the corresponding local frequency function, the arising
integrals are invariant with respect to a shift in the fast time scale t2. Thus
the following theorem holds.

Theorem 2. If x̂, ν is a solution of the system (2) with initial values from a
biperiodic solution and satisfying (9), then it holds ν(0) = ν(T1) and thus the
local frequency function is periodic.

Note that this theorem does not imply that the corresponding MVF is biperi-
odic. Nevertheless, the local frequency becomes periodic and thus a biperiodic
solution may result from Houben’s approach. However, a proof is still missing.

On the other hand, a minimisation demand for biperiodic solutions has
been introduced in [9]. Similar to this approach, we consider the formulation

γ :=
∫ T1

0

∫ 1

0
‖∂q(x̂)

∂t1
(v, u)‖2 du dv −→ min. (13)

here. A variational calculus yields the necessary condition
∫ 1

0
〈∂2q(x̂)

∂t12 (t1, u), ∂q(x̂)
∂t2

(t1, u)〉 du = 0 for all t1 ≥ 0, (14)

which an optimal solution has to satisfy. Thereby, the periodicity of the solu-
tion in t1 is crucial to obtain this requirement. A biperiodic solution, which
minimises (8), also represents a minimum of (13). This fact yields the following
statement.

Theorem 3. Given a biperiodic solution x̂, ν of the system (2), which is min-
imal with respect to Houben’s criterion (8), then the MVF x̂ satisfies the
orthogonality property (10) as well as (14).

This result indicates that a solution obtained by Houben’s approach is not
biperiodic in general. If it is biperiodic, then two orthogonality properties are
satisfied, which do not seem to be equivalent. Likewise, we consider an optimal
biperiodic solution with respect to (13). This solution may become better by
a transformation (6) to the optimal local frequency (9). Consequently, we may
loose the periodicity as the price to be paid for the further reduction of the
impact of partial derivatives.

4 Illustrative Example

As test example, we consider a voltage controlled oscillator, which is illustrated
in Fig. 1 (left). The mathematical model of this circuit can be written as a
system of ordinary differential equations (ODEs). We apply this formulation,
since the examinations on the periodicity do not differ significantly if ODEs
instead of DAEs are considered. The system reads

u̇ = (−ıR(u)− ı) /(Cb(t)), ı̇ = u/L (15)
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Fig. 1. Circuit diagram of voltage controlled oscillator (left) and current-voltage
relation ı = ıR(u) of nonlinear resistor (right).

with the node voltage u and the branch current ı. For the input signal, we
choose the slowly varying oscillation

b(t) = 1 + 0.8 cos
(

2π
T1

t
)

with T1 = 1 ms (f := T1
−1 = 1 kHz). (16)

The current-voltage relation of the nonlinear resistor is given by

ıR(u) = (G0 −G∞)Uk tanh (u/Uk) + G∞u. (17)

The used parameters are C = 1 nF, L = 1 µH, Uk = 1 V, G0 = −0.1 A/V,
G∞ = 0.25 A/V. Fig. 1 (right) shows the corresponding relation (17).

For constant input b ≡ 1, the system (15) exhibits a periodic limit cycle
with a frequency of about 4 MHz. The input signal (16) changes the capaci-
tance and thus introduces a frequency modulation. Since the input is periodic,
a quasiperiodic signal arises. Consequently, we transform the ODEs (15) into
a system (2) of partial differential equations (PDEs). We compute a biperiodic
solution of the system via the method presented in [9]. Its initial values are
used to apply Houben’s strategy now.

To solve the initial-boundary value problem (4), we use a method of lines.
The integrals in (9) are replaced by finite sums evaluated on the lines. The
derivatives with respect to t2 are substituted by BDF2-formulae, see [2], which
are applied in the PDEs (2) as well as in the local frequencies (9). The arising
system of ODEs is solved by trapezoidal rule in the interval [0, T1], where a
relatively high accuracy is demanded in the step size control.

Firstly, we apply m = 100 lines in the semidiscretisation to demonstrate
the optimal solution. Fig. 2 shows the resulting optimal local frequency, which
is periodic in view of our discussions. The local frequency is physically rea-
sonable, since it becomes low for high capacitances and vice versa. The cor-
responding optimal MVFs are illustrated in Fig. 3. On the one hand, we
recognise that û is nearly constant in the slow time scale, which is caused by
the minimisation. On the other hand, ı̂ exhibits a slight change in the slow
time scale, which describes an AM signal and thus can not be reduced further.
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Secondly, we compare the initial values at t1 = 0 with the end values
at t1 = T1 for several numerical simulations using different numbers of lines,
namely m = 25, 50, 100. Table 1 demonstrates the maximum of the differ-
ences obtained from the discrete values on the lines. We recognise that the
differences become smaller for an increasing accuracy in the method. This
behaviour indicates that the exact solution is biperiodic or nearly (except
for small differences) biperiodic. In [3], other numerical simulations, where a
Van-der-Pol-oscillator is used, indicate that it can not be excluded that the
resulting solution is biperiodic, too.
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Fig. 2. Capacitance Cb [nF] (left) and optimal local frequency ν [MHz] (right).
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Fig. 3. Optimal MVFs û [V] (left) and ı̂ [A] (right).

Table 1. Maximum differences between initial and end values.

number of lines m = 25 m = 50 m = 100

max |û(0, ·)− û(T1, ·)| 8 · 10−2 2 · 10−2 4 · 10−5

max |̂ı(0, ·)− ı̂(T1, ·)| 3 · 10−3 8 · 10−4 1 · 10−6
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5 Conclusions

The approach of Houben permits to solve initial-boundary value problems
of warped MPDAEs efficiently, which yields envelope-modulated signals. We
consider initial values of a biperiodic solution to investigate the determination
of quasiperiodic signals. It follows that the resulting local frequency function
becomes periodic in this case. However, it is still an open question if the
corresponding MVF is always biperiodic. We performed numerical simulations
with Houben’s strategy via a method of lines. The results illustrate that it
can not be excluded that the arising solution is automatically biperiodic. In
practice, the resulting MVFs seem to be biperiodic or at least nearly (except
for a small difference) biperiodic. If the solution is exactly biperiodic, then
a method for computing biperiodic solutions of the warped MPDAEs can be
constructed based on Houben’s technique. For example, the initial conditions
in the method of lines are just replaced by periodic boundary conditions.
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