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WAVELET-BASED ADAPTIVE GRIDS FOR THE SIMULATION OF

MULTIRATE PARTIAL DIFFERENTIAL-ALGEBRAIC EQUATIONS

ANDREAS BARTEL AND STEPHANIE KNORR∗

Abstract. We present an adaptive method to solve biperiodic problems in chip design with
widely separated time scales and steep gradients due to digital-like signal structures. Motivated
from the example of the switched capacitor filter, we explain the multidimensional signal model and
the transformation of network equations to the hyperbolic multirate differential-algebraic system.
Then adapted hat-wavelets are introduced to detect the steep gradients. In this way, an adaptive
grid is defined for the efficient application of a finite difference method to solve the limit cycle
problem.

Key words. Electric network, hyperbolic partial differential-algebraic equations, multiscale
systems, wavelets, multirate.

1. Introduction. To motivate the simulation method presented in this paper,
we introduce an industrial test example, the switched capacitor filter (SC-filter) shown
in Fig. 1.1 (left). This circuit comprises two major properties we want to focus
on, namely widely separated time scales and heterogeneous signal structures. Apart
from a slowly varying harmonic input signal (here a sinusoidal vin), there are two
complementary pulse functions involved (Fig. 1.1, middle), which work on a much
faster time scale than the input and cause the angular structure of the output at
node 2 (Fig. 1.1, right). After a transient behaviour such a circuit approaches a limit
cycle, which needs to be determined in circuit design and is our task in this work.
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Fig. 1.1. SC-Filter: Circuit (left), pulses (middle), output node 2 (right).

To this end, and to treat widely separated time scales efficiently, we use a mul-
tidimensional signal model described in the next section. In a numerical integration
scheme for the network equations, a very fine grid is necessary to resolve the steep
gradients arising due to the pulse functions, where it is of ultimate importance not
to skip any pulse. To gain more efficiency, we use the time-frequency localisation
property of wavelets for the generation of an adaptive grid, which will be explained in
sections 3 and 4. Simulation results for the SC-filter are then presented in section 5.

2. Multidimensional Signal Model. To compute the limit cycles for circuits
with widely separated time scales, we introduce a corresponding time variable for each
occurring scale [1]. The resulting multidimensional representation of a signal yields
then a multivariate function (MVF). We illustrate this for a 2-tone quasiperiodic
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signal x : R → R, which exhibits amplitude modulation with periodicities T1 > T2.
Its MVF x̂ : R

2 → R is derived as follows:
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, (2.1)

such that x(t) = x̂(t, t); both, the signal x and its MVF x̂ are depicted in Fig. 2.1.
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Fig. 2.1. Multitone signal x (left) and its multivariate function x̂ (right).

In this example, the MVF is periodic in each coordinate direction. Therefore x̂ is
determined completely on the rectangle of the periodicities [0, T1] × [0, T2] and the
diagonal (t, t) ∈ R has a representation in that rectangle, which leads to Fig. 2.1
(right). In this way the MVF exhibits just one oscillation in each coordinate direction
(the time scales are decoupled) and consequently the signal x̂ can be represented with
a few number of sampling points. The more the time scales differ (T1 ≫ T2), the more
efficient the multidimensional approach becomes, since the structure of the MVF is
independent from the ratio T1/T2 in contrast to the original x.

Applying the multidimensional signal model to differential-algebraic network equa-
tions [2] leads to a multirate system of partial differential-algebraic equations (MP-
DAE):

d

dt q(x(t)) = f
(

b(t),x(t)
)

 

∂q(x̂)

∂t1
+
∂q(x̂)

∂t2
= f

(

b̂(t1, t2), x̂(t1, t2)
)

(2.2)

with MVFs x̂ of the unknown node potentials and branch currents and b̂ of the input
signals; the charges and fluxes are described by q.

In analogy to the underlying ODE-theory, a structural analysis of the MPDAE
[4] revealed the characterisation as a PDE-system restricted to a manifold. The hy-
perbolic type of the inherent PDE allows us to formulate a characteristic system. We
are left with systems of differential-algebraic equations for x̄c

d

dτ q(x̄c(τ)) = f(b̂(τ + c, τ), x̄c(τ)) with x̄c(τ) = x̂c(τ + c, τ), τ ∈ [0, T2], (2.3)

which exhibit an information transport along straight lines in the direction of the
diagonal. To exploit this, we discretise the DAE (2.3) on a characteristic grid [5],
which will be described in section 4.

3. Wavelets for Adaptive Grid Generation. To detect the steep gradients
in the solution for the generation of an adaptive grid, we exploit that the wavelet
transform, in contrast to the Fourier transform, not only gives a representation of
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the frequency content of a function but also provides information concerning time-
localisation:

(

Tf
)

(a, b) = |a|−1/2

∫

R

f(t)ψ
(

t−b
a

)

dt. (3.1)

The dilation parameter a 6= 0 governs the frequency range, whereas the translation
parameter b defines the time localisation centre.

To discretise (2.3) along each characteristic curve in the interval [0, T2], we con-
struct a multiresolution analysis of L2([0, T2]). Following [3] we set up a biorthogonal
basis using hat-functions. The restriction to the bounded interval [0, T2] is reached by
“folding” the basis functions at the edges. Doing this, the biorthogonality is preserved
and a hierarchical basis for L2([0, T2]) is constructed.

Thus we approximate the solution in a subspace VJ ⊂ L2([0, T2]), which can be
decomposed by the direct sum of a central space V0 spanned by integer translations
of a scaling function ϕ and spaces Wj spanned by discrete dilations and translations
of the hat-wavelet ψ:

VJ = V0 ⊕

J−1
⊕

j=0

Wj , Wj = span{ψj,k |ψj,k(τ) := 2 j/2ψ(2jτ − k), k ∈ Ij ⊂ Z}.

To illustrate the time-frequency localisation property of our basis functions, we
decompose a pulse function p : [0, 1] → R (similar to the one occurring in our test
example) using the piecewise linear wavelets folded into the pulses domain. Fig. 3.1
shows three plots with the pulse function (dashed line) and the coefficients correspond-
ing to the spaces V0, W0 and W1, respectively. These coefficients are plotted at the
locations of the maxima of the corresponding hat-functions (wavelets/scaling func-
tions). Roughly speaking, the coefficients in the left plot (Fig. 3.1) describe coarsely
the structure of the pulse, since the maxima of the scaling functions are normalised
to 1. The other two sets of coefficients vanish except for the ones, which are needed
to resolve the steep gradients. Due to fact that the coefficients are localised in time,
we can generate an adaptive grid by ’simply’ inspecting the magnitude of the wavelet
coefficients.
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Fig. 3.1. Decomposition of a pulse with coefficients in V0 (left), W0 (middle) and W1 (right).

4. Adaptive Grid Generation. We have to determine the MPDAE-solution
over the rectangle [0, T1]×[0, T2] of the periodicities, which is depicted in Fig. 4.1 (left).
The representation of the domain’s diagonal, which contains the solution x(t) = x̂(t, t)
of the original network equations, is indicated by dotted lines; the solid lines show the
characteristic curves, along which we will solve system (2.3), only. The periodicity
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of the MPDAE-solution x̂ in t2-direction is translated to boundary conditions for the
restrictions x̄c via interpolation.

For test examples like the SC-filter, the same grid can be used for each charac-
teristic curve, since the locations of the pulses’ gradients do not vary in t2-direction.
This will clarify when we inspect the simulation results of the SC-filter in the next
section. Exploiting this fact, we solve the initial value problem

d

dτ q(x(τ)) = f(b(τ),x(τ)) with x(0) = x0 (4.1)

on the interval [0, T2], which is just system (2.3) on the first characteristic curve and, of
course, far away from the limit cycle. We use a standard algorithm for this integration
and transform each component of the obtained solution using the hat-wavelets. The
resulting wavelet-coefficients determine an adaptive grid for the respective node on
the first characteristic curve, as explained in the previous section. The common grid
(suited for all components) is then used on the whole rectangle [0, T1] × [0, T2] and
could possibly look like the one depicted in Fig. 4.1 (right).
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Fig. 4.1. Characteristic curves (left) and adaptive grid (right).

The efficiency of this procedure lies in the fact that we only need the time-
integration along the first characteristic curve and we do not have to solve for the
limit cycle, as we only need the basic structure of the solution to determine an adap-
tive grid.

Equipped with a grid tailored to the special structure of the solution, we finally
solve the DAEs (2.3) using a finite difference discretisation described in [5]. As the
equations are only coupled via the interpolation for the boundary conditions, the aris-
ing linear system in the Newton iteration is very sparse and can be solved efficiently.

5. Simulation Results. The presented method is now applied to simulate the
SC-Filter introduced in section 1. This circuit can be described by a set of ordi-
nary differential equations (ODEs); thus the multidimensional signal model leads to
multirate partial differential equations (MPDEs).

In this example node 1 “dominates” the grid generation as it is influenced by
both pulse functions. The solutions on [0, T2] for both components and the adaptive
grid can be seen in Fig. 5.1 (left) and Fig. 5.2 (left), respectively. The MPDE-
solutions (Fig. 5.1 and Fig. 5.2, middle) explain that the same grid can be used for
each characteristic curve, as the pulses do not “move” in t2-direction. Last, Fig. 5.1
and Fig. 5.2 show the reconstructed ODE-solutions (right). Comparing the solution
for the output node 2 with the exact solution depicted in Fig. 1.1 (right) reveals a
very good agreement.

6. Conclusions. We presented a method for the adaptive simulation of DAE
network equations, which are characterised by widely separated time scales and het-
erogeneous signal structures. The simulation results are shown for an ODE-example,
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Fig. 5.1. Node 1: grid generation (left), MPDE-solution (middle), ODE-solution (right).
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Fig. 5.2. Node 2: grid generation (left), MPDE-solution (middle), ODE-solution (right).

as the SC-filter solutions are very well suited to retrace the adaptive grid generation.
However, the method works as well for the index-1 case. The next step is to allow a
varying grid on different characteristic curves. Furthermore, a full collocation method
is aimed at for this class of boundary value problems.
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