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Abstract
Radio frequency (RF) applications exhibit oscillatory signals, where the
amplitude and the frequency changes slowly in time. Numerical simula-
tions can be performed by a multidimensional model involving a warped
multirate partial differential algebraic equation (MPDAE). Consequently,
a frequency modulated signal demands a representation via a function in
two variables as well as a univariate frequency function. The efficiency
of this approach depends essentially on the determination of appropriate
frequencies. However, the multidimensional representation is not speci-
fied uniquely by the corresponding RF signal. We prove that choices from
a continuum of functions are feasible, which are interconnected by a spe-
cific transformation. Existence theorems for solutions of the MPDAE
system demonstrate this degree of freedom. Furthermore, we perform
numerical simulations to verify the transformation properties, where a
voltage controlled oscillator is used.

1 Introduction

The modified nodal analysis represents a well established strategy for modelling
electric circuits, see [4]. This network approach yields systems of differential alge-
braic equations (DAEs), which describe the transient behaviour of all node volt-
ages and some branch currents. In particular, the determination of quasiperiodic
solutions is a well known problem in radio frequency (RF) applications. These
signals are characterised by a specific oscillating behaviour at several time scales,
where the respective magnitudes differ significantly. Consequently, a transient
analysis of the DAE system becomes inefficient, since the size of time steps is
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limited by the fastest oscillation, whereas the slowest time scale determines the
time interval of the simulation. Time and frequency domain methods have been
constructed for the direct computation of quasiperiodic solutions, see [2] and [11],
for example. However, drawbacks may occur in these techniques in view of widely
separated time scales or strong nonlinearities.

A multivariate model enables an alternative approach by decoupling the time
scales of such signals, which generates an efficient representation of amplitude
modulated signals. Based on this strategy, Brachtendorf et al. [1] remodelled the
DAE into a multirate partial differential algebraic equation (MPDAE). Narayan
and Roychowdhury [7] generalised the approach in view of frequency modulation
and introduced a corresponding warped MPDAE. Multiperiodic solutions of this
system reproduce quasiperiodic signals satisfying the DAE. The determination of
a suitable local frequency function arising in the model is crucial for the efficiency
of the technique.

In this paper, we analyse transformations of multivariate representations for fre-
quency modulated signals. Thereby, the emphasis is on quasiperiodic functions.
We perform investigations in the most frequent case of two time scales. Neverthe-
less, generalisations to several scales are straightforward. Firstly, a transforma-
tion of multivariate functions is examined, where all associated representations
reproduce the same signal. Secondly, we retrieve the same degree of freedom for
solutions of the warped MPDAE system, too. Moreover, a transformation to a
representation with constant local frequency is feasible. Thus solutions can be
carried over to the unwarped MPDAE system. Consequently, we apply theorems
referring to the unwarped system, which are given by Roychowdhury [10], to
obtain analogue results for the warped system.

The paper is organised as follows. In Sect. 2, we outline the multidimensional
model for signals. Consequently, we define quasiperiodic signals via correspond-
ing multivariate functions. A specific transformation of multivariate represen-
tations is constructed, which illustrates an intrinsic degree of freedom in the
model. We introduce the warped MPDAE model briefly in Sect. 3. An underly-
ing information transport along characteristic curves is described, which reflects
the transformation properties. Accordingly, we formulate theorems concerning
transformations of solutions, which represent the analogon of the results on the
level of the signals. Based on these implications, the specification of additional
boundary conditions is discussed. Finally, Sect. 4 includes numerical simulations
using the warped MPDAE system, which demonstrate the degrees of freedom in
the representations. An appendix contains the proofs of presented theorems.
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Figure 1: Amplitude modulated signal y (left) and corresponding MVF ŷ (right).

2 Signal Model

2.1 Multivariate Signal Representation

To illustrate the multidimensional signal model, we consider the purely amplitude
modulated signal

y(t) :=
[
1 + α sin

(
2π
T1

t
)]

sin
(

2π
T2

t
)

. (1)

The parameter α ∈ (0, 1) determines the amount of amplitude modulation. Fig. 1
(left) depicts this function qualitatively. Hence many time steps are required to
resolve all oscillations within the interval [0, T1] if T1 À T2 holds. Therefore we
describe each separate time scale by an own variable and obtain

ŷ(t1, t2) :=
[
1 + α sin

(
2π
T1

t1

)]
sin

(
2π
T2

t2

)
. (2)

The new representation is called the multivariate function (MVF) of the signal (1).
In the example, the MVF is biperiodic and thus already given by its values in
the rectangle [0, T1[×[0, T2[. Fig. 1 (right) shows this function. Since the time
scales are decoupled, the MVF exhibits a simple behaviour. Accordingly, we
need a relatively low number of grid points to represent the MVF sufficiently
accurate. Yet the original signal (1) can be completely reconstructed by its
MVF (2), because it is included on the diagonal, i.e.,

y(t) = ŷ(t, t). (3)

In general, straightforward constructions of MVFs for purely amplitude modu-
lated signals yield efficient representations.
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Figure 2: Frequency modulated signal x (left) and unsophisticated MVF x̂1

(right).

The situation becomes more difficult in case of frequency modulation. For exam-
ple, we examine the modified signal

x(t) :=
[
1 + α sin

(
2π
T1

t
)]

sin
(

2π
T2

t + β cos
(

2π
T1

t
))

, (4)

where the parameter β > 0 specifies the amount of frequency modulation. This
signal is illustrated in Fig. 2 (left). A direct transition to a biperiodic MVF is
also feasible in this situation and we obtain

x̂1(t1, t2) :=
[
1 + α sin

(
2π
T1

t1

)]
sin

(
2π
T2

t2 + β cos
(

2π
T1

t1

))
. (5)

However, the MVF exhibits many oscillations in the rectangle [0, T1[×[0, T2[, too,
see Fig. 2 (right). The number of oscillations depends on the amount of frequency
modulation β. Hence this multidimensional description is unsuited.

To achieve an efficient representation, Narayan and Roychowdhury [7] propose a
readjusted model. Thereby, the MVF incorporates only the amplitude modula-
tion part

x̂2(t1, t2) :=
[
1 + α sin

(
2π
T1

t1

)]
sin (2πt2) , (6)

where the second period is transformed to 1. This function has the same sim-
ple form as the MVF (2). The frequency modulation part is described by an
additional time-dependent warping function

Ψ(t) :=
t

T2

+
β

2π
cos

(
2π
T1

t
)

. (7)

We take the derivative of the warping function as a corresponding local frequency
function, i.e.,

ν(t) := Ψ′(t) =
1

T2

− β

T1

sin
(

2π
T1

t
)

, (8)
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which represents an elementary T1-periodic function in this example. Since we
assume T1 À T2, it holds ν(t) > 0 for a broad range of parameters β. The
reconstruction of the original signal (4) reads

x(t) = x̂2(t, Ψ(t)), (9)

where the warping function stretches the second time scale. Hence we obtain a
powerful model for signals, which feature amplitude as well as frequency modu-
lation with largely differing rates.

2.2 Definition of Quasiperiodic Signals

Commonly, a univariate function x : R→ C is said to be two-tone quasiperiodic,
if it can be represented by a two-dimensional Fourier series of the form

x(t) =
+∞∑

j1,j2=−∞
Xj1,j2 exp

(
i
(

2π
T1

j1 + 2π
T2

j2

)
t
)

(10)

with rates T1, T2 > 0 and coefficients Xj1,j2 ∈ C, where i :=
√−1 denotes the

imaginary unit. However, we have to specify the kind of convergence in the
arising series. The continuity of signals is guaranteed via absolute convergence,
i.e.,

+∞∑
j1,j2=−∞

|Xj1,j2| < ∞, (11)

which implies also a uniform convergence. Moreover, the series becomes well
defined with respect to permutations of the terms. In particular, an interchange
of j1 and j2 is allowed. Assuming (11), the biperiodic MVF x̂ : R2 → C of (10)

x̂(t1, t2) :=
+∞∑

j1,j2=−∞
Xj1,j2 exp

(
i
(

2π
T1

j1t1 + 2π
T2

j2t2

))
. (12)

is continuous, too. For locally integrable functions, weaker concepts of conver-
gence are feasible. However, our aim is to compute solutions of differential equa-
tions and thus smooth functions are required. Using the representation (10), just
sufficient conditions can be formulated. For example, the strong requirements

+∞∑
j1,j2=−∞

|Xj1,j2| (|j1|+ |j2|) < ∞ (13)

or
+∞∑

j1,j2=−∞
|Xj1,j2|

(|j1|2 + |j1j2|+ |j2|2
)

< ∞ (14)
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guarantee x ∈ C1 and x ∈ C2, respectively. To omit the discussion of convergence
properties, an alternative definition of quasiperiodic functions makes sense.

Definition 1 A function x : R → C is two-tone quasiperiodic with rates T1

and T2 if a (T1, T2)-periodic function x̂ : R2 → C exists satisfying x(t) = x̂(t, t).

If x̂ exhibits some smoothness, then the function x inherits the same smoothness.
For signals of the form (10), the multivariate representation is given by (12),
which implies quasiperiodicity in view of this definition, too.

Our aim is to analyse frequency modulated signals. Following the modelling in
the previous subsection, we consider functions x : R→ C of the form

x(t) =
+∞∑

j1,j2=−∞
Xj1,j2 exp

(
i
(

2π
T1

j1t + 2πj2Ψ(t)
))

, (15)

where Ψ : R → R represents a warping function. The above discussion of con-
vergence applies also to this case. Alternatively, we formulate a characterisation
according to Definition 1.

Definition 2 A function x : R→ C is frequency modulated two-tone quasiperi-
odic with rate T1 if there exists a (T1, 1)-periodic function x̂ : R2 → C and a
function Ψ : R→ R with T1-periodic derivative Ψ′ such that x(t) = x̂(t, Ψ(t)).

In this definition, it is not necessary that ν(t) := Ψ′(t) > 0 holds for all t.
However, frequency modulated signals, which arise in electric circuits, feature
fast oscillations, whose frequencies vary slowly in time. Thus the positivity of
the local frequency function ν and the demand T1 > ν(t)−1 for all t is often
required to obtain an efficient representation.

We recognise that all specifications of quasiperiodic functions imply the exis-
tence of corresponding MVFs. Hence quasiperiodic signals exhibit an inherent
multidimensional structure and the transition to the multivariate model becomes
natural.

Furthermore, the slow time scale may be aperiodic. In this case, we obtain a
Fourier expansion of the type

x(t) =
+∞∑

j2=−∞
Xj2(t) exp (i2πj2Ψ(t)) (16)

with time-dependent coefficients Xj2 : R → C, which are called the envelopes.
The envelopes introduce an amplitude modulation, whereas the warping function
again describes a frequency modulation. A formal definition is given below.
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Definition 3 A function x : R → C is called envelope modulated if a function
x̂ : R2 → C, which is periodic in the second variable with rate 1, and a function
Ψ : R→ R exist, where x(t) = x̂(t, Ψ(t)) holds.

We take ν := Ψ′ as a local frequency of the signal again. The generalisation of the
above definitions to vector-valued functions x : R → Ck consists in demanding
the conditions in each component separately.

2.3 Transformation of Signal Representations

For modelling a frequency modulated signal, the employed MVF and correspond-
ing warping function is not unique. We obtain a fundamental result already for
general signals, which do not necessarily feature periodicities in the time scales.

Theorem 1 If the signal x : R→ C is represented by the MVF x̂ : R2 → C and
the warping function Ψ : R→ R, i.e., x(t) = x̂(t, Ψ(t)), then the MVF

ŷ : R2 → C, ŷ(t1, t2) := x̂ (t1, t2 + Ψ(t1)− Φ(t1)) (17)

satisfies x(t) = ŷ(t, Φ(t)) for an arbitrary function Φ : R→ R.

Thus if a representation of a signal exists using some MVF and warping function,
then we can prescribe a new warping function and transform to another MVF,
which yields the same information as before. Hence we apply the warping function
or the associated local frequency function as free parameters to obtain an efficient
multivariate representation.

In the following, we discuss the model on the level of local frequency functions.
Considering ν := Ψ′, µ := Φ′ and Ψ(0) = Φ(0) = 0, the transformation (17) reads

ŷ : R2 → C, ŷ(t1, t2) := x̂

(
t1, t2 +

∫ t1

0

ν(s)− µ(s) ds

)
. (18)

In case of envelope modulated signals, see Definition 3, the fast time scale is
periodic, whereas the slow time scale may be aperiodic. The transformation (18)
preserves the periodicity in the second variable. Specifying an arbitrary local fre-
quency function yields a corresponding MVF in view of Theorem 1. For quasiperi-
odic signals, the slow time scale is periodic, too. Due to Definition 2, the corre-
sponding MVFs have to be biperiodic. Thus transformations are feasible only if
they preserve the periodicities. To analyse the feasibility, we define an average
frequency.
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Definition 4 If ν : R → R represents a T -periodic locally integrable frequency
function, then the average frequency is given by the integral mean

ν :=
1

T

∫ T

0

ν(s) ds. (19)

Theorem 1 implies the following result for transformations in the quasiperiodic
case.

Theorem 2 Let ν, µ : R → R be T1-periodic locally integrable functions with
the property ν = µ. If x̂ : R2 → C is a (T1, 1)-periodic function, then the
function ŷ : R2 → C defined by (18) is (T1, 1)-periodic, too. Furthermore, if
x(t) = x̂(t,

∫ t

0
ν(s) ds) holds for all t ∈ R, then it follows x(t) = ŷ(t,

∫ t

0
µ(s) ds)

for all t ∈ R.

Hence a frequency modulated quasiperiodic signal implies a continuum of repre-
sentations via MVFs and respective local frequency functions, which all exhibit
the same average frequency. We can perform the transformation (18) on the
level of the representation (15), too. The following theorem yields an according
result. However, stronger conditions on the original representation are necessary
to guarantee the absolute convergence in the transformed representation.

Theorem 3 Let x : R → C be a frequency modulated two-tone quasiperiodic
function defined by (15) with Ψ(t) :=

∫ t

0
ν(s) ds, where ν : R → R represents a

T1-periodic locally integrable function. The coefficients Xj1,j2 ∈ C shall have the
property

+∞∑
j1,j2=−∞

|Xj1,j2|
(|j1|+ |j1j2|+ |j2|2

)
< ∞. (20)

If µ : R→ R is a locally integrable T1-periodic function satisfying ν = µ, then x
owns the representation

x(t) =
+∞∑

j1,j2=−∞
X̃j1,j2 exp

(
i
(

2π
T1

j1t + 2πj2Φ(t)
))

(21)

with Φ(t) :=
∫ t

0
µ(s) ds and new coefficients X̃j1,j2 ∈ C satisfying

+∞∑
j1,j2=−∞

∣∣∣X̃j1,j2

∣∣∣ < ∞. (22)
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An important consequence of Theorem 2 is that transformations to representa-
tions with constant local frequency can be performed. Given a biperiodic MVF
and periodic local frequency function ν, the constant frequency µ ≡ ν enables
a corresponding transformation, which is feasible in view of µ = ν. Thus the
following corollary unifies the definition of quasiperiodic signals with respect to
different local frequencies.

Corollary 1 A frequency modulated quasiperiodic function characterised by Def-
inition 2 features a representation as quasiperiodic function with constant rates
according to Definition 1 and vice versa.

Hence no qualitative difference between quasiperiodic signals involving constant
and stretched time scales exists. Therefore we will just speak of quasiperiodic
functions in the following. Given a frequency modulated signal, it does not make
sense to assign a constant fast rate. However, an according interpretation as an
average rate is reasonable.

The choice of a local frequency function and according multivariate representa-
tion is important for the efficiency of the multidimensional signal model. Re-
garding quasiperiodic functions, we consider a MVF corresponding to a constant
frequency ν. Now we may transform the model to any local frequency function
of the type

µ(s) := ν + ξ(s) with ξ = 0. (23)

The function ξ is the degree of freedom in our design of multidimensional models
for quasiperiodic signals.

3 Warped MPDAE Model

3.1 Derivation of the Model

The numerical simulation of electric circuits employs a network approach, which
yields systems of differential algebraic equations (DAEs), see [3]. Thereby, the
system describes the transient behaviour of all node voltages and some branch
currents. We write such a system in the general form

dq(x)

dt
= f(x(t)) + b(t), (24)

where x : R→ Rk represents the unknown voltages and currents. The functions
q, f : Rk → Rk correspond to a charge and a resistive term, respectively. Prede-
termined input signals are included in the time-dependent function b : R→ Rk.
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We demand f ,b ∈ C0 and q ∈ C1, since smooth solutions of (24) are desired.
DAEs cause specific theoretical and numerical problems like the index concept
or the need of consistent initial values, see [6].

Given some two-tone quasiperiodic input b with rates T1 and T2, a forced oscil-
lation arises, which often leads to amplitude modulated signals. We assume that
the solution inherits the time scales, i.e., x is also quasiperiodic with same rates.
Consequently, we obtain the (T1, T2)-periodic MVFs b̂ and x̂, which represent
the corresponding quasiperiodic signals. Brachtendorf et al. [1] introduced the
according system of multirate partial differential algebraic equations (MPDAEs)

∂q(x̂)

∂t1
+

∂q(x̂)

∂t2
= f(x̂(t1, t2)) + b̂(t1, t2), (25)

which results from a transformation of the DAEs (24) with respect to multivari-
ate functions. An arbitrary solution of the system (25) yields a solution of the
system (24) via the reconstruction

x(t) = x̂(t, t). (26)

The proof is straightforward and can be found in [10], for example.

If the MVF is (T1, T2)-periodic, then the reconstructed signal is two-tone quasi-
periodic with rates T1, T2. Thus the determination of quasiperiodic signals leads
to the boundary value problem

x̂(t1, t2) = x̂(t1 + T1, t2) = x̂(t1, t2 + T2) for all t1 ∈ R, t2 ∈ R. (27)

If the slow time scale is aperiodic, then we obtain envelope modulated signals
by solutions of the MPDAE, too. Therefore a mixture of initial and boundary
conditions is considered, namely

x̂(0, t2) = h(t2), x̂(t1, t2 + T2) = x̂(t1, t2) for all t1 ≥ 0, t2 ∈ R, (28)

where h : R→ Rk represents a prescribed T2-periodic function, whose values have
to be consistent with respect to the DAEs (24). The choice of appropriate initial
values influences the efficiency of this approach. Note that the reconstructed
signal (26) depends on the value h(0) only. For further details, we refer to [10].

Now we assume that the input signals exhibit a slow time scale only. Nevertheless,
the DAE system (24) shall feature an inherent fast time scale. Consequently,
multitone signals arise, which may be amplitude modulated as well as frequency
modulated. Narayan and Roychowdhury [7] generalised the MPDAE model to
this problem. The transition to MVFs implies a system of warped multirate partial
differential algebraic equations, namely

∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f(x̂(t1, t2)) + b(t1) (29)
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with the unknown solution x̂ : R2 → Rk. Since we assume that the input b just
acts on the slow time scale, a multivariate description is not necessary here. A
local frequency function ν : R → R arises, which depends on the same variable
as b if the input causes the frequency modulation. In the following, we assume
ν ∈ C0, since smooth solutions are discussed. An appropriate choice for the local
frequencies is unknown a priori. Furthermore, the system (29) is autonomous in
the second variable t2, since the fast time scale is not forced by the input but
inherent.

Solving the warped MPDAEs (29) for some given local frequency function, we
obtain a solution of the DAEs (24) via

x(t) = x̂(t, Ψ(t)) with Ψ(t) :=

∫ t

0

ν(s) ds. (30)

The proof operates similar to the case of constant time scales. Again periodicities
are necessary to solve the system (29) in a bounded domain. We always consider
a periodic fast time scale, where the period is standardised to T2 = 1. The
magnitude of the fast rate is included in the local frequency function. Initial-
boundary value problems (28) of the system (29) determine envelope modulated
signals, which exhibit frequency modulation.

If the input signals are T1-periodic, then a (T1, 1)-periodic MVF in addition to
a T1-periodic local frequency function yield a two-tone quasiperiodic signal in
the reconstruction (30). Thus the boundary value problem (27) is considered.
However, given a biperiodic solution x̂, the shifted function

ŷ(t1, t2) := x̂(t1, t2 + c) for c ∈ R (31)

also satisfies the system including the same local frequency function. Hence a
solution of the MPDAE reproduces a continuum of signals solving the underlying
DAE. Therefore the multidimensional approach reveals a degree of freedom by
shifting, which is not directly transparent in the according DAE model (24). In
a corresponding numerical method for the problem (27),(29), a specific solution
has to be isolated from the continuum (31).

The system (29) is underdetermined, since an adequate local frequency function
is unspecified a priori. In the multidimensional model, the local frequency shall
generate a corresponding MVF of a simple form. Since the solution is unknown,
we do not have the knowledge to prescribe a local frequency function appropri-
ately. Thus alternative conditions have to be added to the system (29) in order
to fix a suitable solution. Several strategies are feasible like criteria based on
specific minimisations, cf. [5]. The use of multidimensional phase conditions for
this purpose will be discussed in Subsect. 3.4.
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Figure 3: Characteristic projections for two different choices of local frequency
functions.

3.2 Characteristic Curves

The warped MPDAE system (29) exhibits a specific transport of information,
see [9]. The corresponding characteristic system reads

d
dτ

t1(τ) = 1

d
dτ

t2(τ) = ν(t1(τ))

d
dτ

q(x̂(τ)) = f(x̂(τ)) + b(t1(τ))

(32)

with t1, t2 as well as x̂ depending on a parameter τ . Solutions of the system (32)
are called characteristic curves. For fixed local frequency function ν, we solve the
part with respect to the variables t1, t2 explicitly and obtain the characteristic
projections

t2 = Ψ(t1) + c with Ψ(t1) :=

∫ t1

0

ν(s) ds, (33)

where c ∈ R represents an arbitrary constant. Hence the characteristic projec-
tions form a continuum of parallel curves in the domain of dependence. Fig. 3
illustrates this property.

In the initial-boundary value problem (28) belonging to (29), we consider the
initial manifold

F0 := {0} × [0, 1[. (34)

The solution of this problem can be obtained via solving a collection of initial
value problems corresponding to the characteristic system (32), see Fig. 3. How-
ever, this approach is not efficient, since each initial value problem demands the
same amount of work as solving the original DAE system (24).

Likewise, the determination of biperiodic solutions can be discussed with respect
to characteristic curves. Considering an arbitrary (T1, 1)-periodic solution of (29),
its initial values in (34) reproduce the complete solution via (32). Consequently, a
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biperiodic solution of (29) is already fixed by its initial values in the manifold (34)
and the corresponding local frequency function ν. Solving the systems (32) yields
final values in

F1 := {T1} × [Ψ(T1), Ψ(T1) + 1[. (35)

The last equation in system (32) does not involve the local frequency. Using
another T1-periodic local frequency µ and identical initial state in (34) produces
the same final state in

F2 := {T1} × [Φ(T1), Φ(T1) + 1[ with Φ(t1) =

∫ t1

0

µ(s) ds. (36)

Hence the MVF corresponding to µ is biperiodic, too, if Φ(T1) = Ψ(T1) holds,
i.e., ν = µ. Note that the reconstructed signal (30) is the same for all choices
of the local frequency. This behaviour of the characteristic system motivates a
transformation of solutions, which is investigated in the next subsection.

In case of widely separated time rates T1 À ν−1, solving initial value problems
of the characteristic system (32) in the large time interval [0, T1] demands the
computation of a huge number of oscillations. Consequently, methods of charac-
teristics for solving the initial-boundary value problem (28) are inefficient. The
analysis of MPDAE solutions via the characteristic system with initial values
in F0 represents just a theoretical tool. On the other hand, initial values in

G0 := [0, T1[×{0} (37)

determine a biperiodic solution completely, too. Characteristic projections start-
ing in G0 can be used to construct an efficient numerical method to solve the
boundary value problem (27), see [8, 9]. Thereby, each arising initial value prob-
lem of the characteristic system (32) is solved only in a short time interval.

3.3 Transformation of Solutions

In Subsect. 2.3, Theorem 1 demonstrates that the local frequency of an according
signal is optional. Just the efficiency of a multivariate representation depends on
an appropriate choice. We recover this arbitrariness of local frequency functions
in the MPDAE model, too.

Theorem 4 Let x̂ : R2 → Rk and ν : R → R satisfy the warped MPDAE
system (29). Given a function µ : R → R, the MVF ŷ : R2 → Rk specified
by (18) represents a solution of the warped MPDAE system (29) corresponding
to the local frequency function µ.
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Hence we can transform a solution of the MPDAE corresponding to a specific
local frequency to another solution with arbitrary local frequency. Note that the
deformation (18) does not change the initial manifold (34). In particular, we
can transform a multivariate model to a corresponding constant local frequency
µ ≡ 1. Consequently, the left-hand sides of (25) and (29) coincide. Therefore
solutions of both PDAE models can be tranformed in each other provided that
the input signals involve just one time scale.

Corollary 2 If x̂ : R2 → Rk and ν : R → R satisfy the warped MPDAE sys-
tem (29), then the MVF given by (18) with µ ≡ 1 represents a solution of the
MPDAE system (25) including the input b̂(t1, t2) := b(t1). Vice versa, if the
MPDAE system (25) with b̂(t1, t2) := b(t1) exhibits a solution x̂ : R2 → Rk, then
using ν ≡ 1 in (18) results in a solution of the warped MPDAE system (29) for
arbitrary local frequency function µ : R→ R.

The transformation (18) changes neither the initial values at t1 = 0 nor the
periodicity in t2. Thus transforming a solution of the initial boundary value
problem (29),(28) yields another solution of the problem. In case of quasiperiodic
signals, some restrictions with regard to the used transformation arise again,
which are necessary to preserve the periodicities. Theorem 2 and Theorem 4
imply an according corollary.

Corollary 3 The following assumptions shall hold:

(i) ν : R→ R is T1-periodic, (iii) ν = µ,

(ii) µ : R→ R is T1-periodic, (iv) x̂ : R2 → Rk is (T1, 1)-periodic.

If x̂ and ν fulfil the warped MPDAE system (29), then the MVF ŷ : R2 → Rk

obtained by (18) represents a (T1, 1)-periodic solution of the warped MPDAE sys-
tem (29) including the local frequency function µ.

We note that a (T1, 1)-periodic solution of (29) for constant frequency ν can be
transformed in a (T1, T2)-periodic solution of (25) with T2 = ν−1. This connection
is caused by the standardisation of the second period in the warped system.

Moreover, these corollaries allows to apply results from the MPDAE model with
constant rates in the context of the warped MPDAE model. Especially, it is
proved that the existence of a quasiperiodic solution of the DAE system (24)
implies the existence of a corresponding biperiodic solution of the MPDAE sys-
tem (25), see [10]. Together with Corollary 2 and Corollary 3, we obtain the
following important property.
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Corollary 4 Let the system of DAEs (24) have a two-tone quasiperiodic solu-
tion x : R→ Rk with rates T1, T2. Given an arbitrary T1-periodic local frequency
function ν : R → R with ν−1 = T2 in (29), the system of warped MPDAEs fea-
tures a (T1, 1)-periodic solution x̂ : R2 → Rk, where x(t) = x̂(t,

∫ t

0
ν(s) ds) holds

for all t.

Based on Corollary 3, we can transform any multidimensional representation of a
quasiperiodic signal to a reference solution including constant frequency ν. How-
ever, the corresponding MVF yields an inefficient model for frequency modulated
signals as we have seen in Subsect. 2.1.

The degree of freedom in the transformation of biperiodic solutions is given by the
function ξ in (23) again. Now a numerical technique for solving the biperiodic
boundary value problem of the MPDAE system (29) is imaginable, where we
prescribe a periodic function ξ with ξ = 0. The average frequency ν represents
an unknown scalar. Since the MPDAE is autonomous in the second coordinate,
a scalar phase condition is necessary to isolate a specific biperiodic solution.
Examples are the conditions

x̂1(0, 0) = η or
∂x̂1

∂t2

∣∣∣∣
t1=t2=0

= η with η ∈ R (38)

in the (without loss of generality) first component of x̂ = (x̂1, . . . , x̂k)
>. The pa-

rameter η has to be chosen appropriately. We can construct a method based on
formula (23), where we specify the function ξ and determine the unknown ν via
such an additional equation. Unfortunately, this strategy does not work in case
of widely separated time scales, since the problem becomes extremely sensitive.
To understand this quality, we observe the deformation with respect to the sec-
ond time scale caused by the transformation (18). For example, we prescribe ξ
as a harmonic oscillation of relative amplitude ε. After half a period T1, the
deformation results in

∆t2 =

∫ T1/2

0

ν − ν
[
1 + ε sin

(
2π
T1

s
)]

ds =
ε

π
T1ν. (39)

Hence T1ν À 1 implies an enormous amplification of the perturbance ε. Con-
sequently, the respective MVF changes completely in the underlying domain
[0, T1] × [0, 1]. Thus we do not expect an a priori specification of the local fre-
quency to generate a suitable solution.

3.4 Continuous Phase Conditions

If the local frequency is an unidentified function in the MPDAE (29), then we need
an additional postulation to determine the complete solution. Houben [5] specifies
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T1 t1

1

Θ
t2

Figure 4: General curve Θ satisfying the continuous phase condition in domain
of dependence.

an optimisation condition, which minimises oscillatory behaviour in MVFs and
thus yields simple representations. Another possibility consists in demanding a
continuous phase condition, cf. [7]. Thereby, the phase in each cross section with
t1 = const. is controlled, which often produces elementary MVFs, too. Without
loss of generality, we choose the first component of x̂ = (x̂1, . . . , x̂k)

>. Examples
for continuous phase conditions are

x̂1(t1, 0) = η(t1) for all t1 ∈ R (40)

or
∂x̂1

∂t2

∣∣∣∣
t2=0

= η(t1) for all t1 ∈ R (41)

including a predetermined slowly varying function η : R → R. We add such a
phase condition as additional boundary condition in time domain. In general,
we do not have a priori knowledge about the specification of the function η.
Nevertheless, applying constant choices, i.e., η ≡ const., is often successful. Note
that (40),(41) represent conditions for scalar functions depending on t1, which
agrees to the structure of the unknown parameters ν(t1).

The degree of freedom in transformations of MPDAE solutions can be used to
justify the existence of solutions satisfying some phase condition. For example,
we discuss the constraint (41) setting η ≡ 0. We assume the existence of a
biperiodic solution x̂ ∈ C1 of (29). The smoothness and periodicity implies that,
for each t1 ∈ R, a corresponding Θ(t1) ∈ R exists such that

∂x̂1

∂t2

∣∣∣∣
t2=Θ(t1)

= 0 for all t1 ∈ R. (42)

For t1 = 0, we select some Θ(0) ∈ [0, 1[. Motivated by the implicit function
theorem, we postulate that a certain choice t2 = Θ(t1) with Θ ∈ C1 exists,
which forms an isolated curve in the domain of dependence. The periodicity
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of x̂ produces a T1-periodic function Θ. Fig. 4 illustrates this quality. Now we
transform the curve t2 = Θ(t1) onto the line t2 = 0, which yields the new MVF

ŷ(t1, t2) := x̂(t1, t2 + Θ(t1)) = x̂

(
t1, t2 +

∫ t1

0

Θ′(s) ds + Θ(0)

)
. (43)

The involved translation by Θ(0) is of the type (31) and thus results in a solution
again. Furthermore, the periodicity yields

Θ′ =
1

T1

∫ T1

0

Θ′(s) ds =
Θ(T1)−Θ(0)

T1

= 0. (44)

Hence Theorem 4 implies that the function (43) represents a biperiodic solution
of the MPDAE satisfying the phase condition (41) with η ≡ 0.

4 Illustrative Example

To demonstrate the application of the multidimensional strategy, we consider
the tanh-based LC oscillator in Fig. 5. This circuit is similar to an example
investigated in [7]. The node voltage u and the branch current ı := IL through the
inductance are unknown time-dependent functions. The current-voltage relation
of the nonlinear resistor reads

IR = g(u) := (G0 −G∞)U0 tanh

(
u

U0

)
+ G∞u, (45)

where the used parameters are G0 = −0.1 A/V, G∞ = 0.25 A/V and U0 = 1 V.
An independent input signal b specifies the capacitance C, which produces a
voltage controlled oscillator. We write the arising mathematical model in the
form

u̇ = (−ı− g(u))/(C0w)

ı̇ = u/L

0 = w − b(t)

(46)

with the unknown functions u, ı, w and parameters C0 = 100 nF and L = 1 µH.
Hence system (46) represents a semi-explicit DAE of index 1. For constant input,
the system exhibits a periodic oscillation of a high frequency. We choose the input
signal

b(t) = 1 + 0.9 sin
(

2π
T1

t
)

(47)

with slow rate T1 = 30 µs, which produces frequency modulated signals. Con-
sequently, we apply the respective warped MPDAE model (29) and determine a
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Figure 5: Circuit of voltage controlled LC oscillator.

biperiodic solution satisfying the phase condition (41). A finite difference method
employing centred differences on a uniform grid yields a numerical approximation.

Firstly, we select the function η ≡ 0 in phase condition (41). Fig. 6 illustrates the
results of the multidimensional model. According to the input signal, the local
frequency is high in areas, where the capacitance is low. Since this behaviour
is typical for LC oscillators, the used phase condition identifies a physically rea-
sonable frequency function. The MVFs û and ı̂ exhibit a weak and a strong
amplitude modulation, respectively. The MVF ŵ reproduces the input signal.

Now we employ the solution of the MPDAE to reconstruct a corresponding quasi-
periodic response of the DAE (46) via (30). For comparison, an initial value
problem of the DAE is solved by trapezoidal rule. Fig. 7 shows the resulting
signals. We observe a good agreement of both functions, which confirms the
relations between univariate and multivariate model.

Secondly, we perform the simulation using the same techniques but considering
η(t1) = 0.8 sin(2πt1/T1) in phase condition (41). The arising local frequency µ
is depicted in Fig. 8 (left). We recognise that the difference ∆ν := µ − ν with
respect to the previous frequency, see Fig. 8 (right), satisfies ∆ν = 0, i.e., ν = µ.
However, the function ∆ν is nontrivial in comparison to the difference between
the two choices of the function η. Fig. 9 (left) illustrates the corresponding
MVF û in the latter simulation. For comparison, a transformation of the previous
MVF û is shown in Fig. 9 (right), where we apply formula (18) with the updated
frequency µ. Both functions demonstrate a good agreement. These results clarify
that the solutions belonging to the two different phase conditions are located in
the same continuum of transformed solutions. Moreover, the simple choice η ≡ 0
in the phase condition (41) already yields a very efficient representation.

Finally, we simulate a case of widely separated time scales by setting T1 = 100 ms
in (47). The used phase condition is (41) with η ≡ 0. To validate the applica-
bility of the inherent MPDAE structure outlined in Subsect. 3.2, a method of
characteristics produces the numerical solution now. Involved DAE systems are
discretised by trapezoidal rule. Nevertheless, the finite difference method, which
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Figure 6: MPDAE solution for rate T1 = 30 µs.
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Figure 7: DAE solution for rate T1 = 30 µs reconstructed by MPDAE solution
(solid line) and computed by transient integration (dashed line).
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Figure 8: Local frequency for modified phase condition (left) and difference to
previous local frequency (right) in case of T1 = 30 µs.
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Figure 9: MVF û for second phase condition (left) and transformation of MVF û
for first phase condition (right) in case of T1 = 30 µs.

has been applied in the previous simulations, yields the same solution. Fig. 10 de-
picts the results of the MPDAE model. Local frequency as well as MVFs exhibit
the same behaviour as in the case T1 = 30 µs. Just the amplitude modulation in û
disappears. The corresponding DAE solution features about 66 000 oscillations
during the period T1 here, which can be reconstructed by these results.

5 Conclusions

Multidimensional models of a quasiperiodic signal are not unique but intercon-
nected by a transformation formula. We obtain quasiperiodic solutions of DAEs
via determining multiperiodic solutions of MPDAEs. Accordingly, the warped
MPDAE system exhibits a continuum of solutions, which reproduce the same
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Figure 10: MPDAE solution for rate T1 = 100 ms.
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quasiperiodic response of the underlying DAE system. However, the average fre-
quency of all representations coincides. Thus solutions of the warped system can
be transformed to solutions of the unwarped system, which enables the use of re-
spective theoretical results. In particular, the existence of quasiperiodic solutions
of DAEs implies the existence of corresponding multiperiodic solutions of warped
MPDAEs for a broad class of local frequency functions. Moreover, the arising
transformation formula allows for the analysis of additional conditions for the
determination of a priori unknown local frequency functions. Numerical simula-
tions based on the warped MPDAE system confirm the transformation qualities
of the multidimensional model.
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Appendix: Proofs of Theorems

Proof of Theorem 1 :

We obtain directly by the transformation formula

x(t) = x̂(t, Ψ(t))

= x̂(t, Φ(t) + Ψ(t)− Φ(t))

= ŷ(t, Φ(t))

and thus the proof is complete. ¤

Proof of Theorem 2 :

The periodicity of ŷ in the second variable t2 is clear. The periodicity in the first
variable t1 follows from

∫ t1+T1

0

ν(s)− µ(s) ds =

∫ t1

0

ν(s)− µ(s) ds +

∫ t1+T1

t1

ν(s)− µ(s) ds

=

∫ t1

0

ν(s)− µ(s) ds

+

∫ t1+T1

t1

ν(s) ds−
∫ t1+T1

t1

µ(s) ds

=

∫ t1

0

ν(s)− µ(s) ds + T1ν − T1µ

=

∫ t1

0

ν(s)− µ(s) ds.

The property

x(t) = x̂

(
t,

∫ t

0

ν(s) ds

)
= ŷ

(
t,

∫ t

0

µ(s) ds

)

is implied by Theorem 1. ¤

Proof of Theorem 3 :

Let x be of the form (15) with property (20). Thus it holds x ∈ C1. We define
the biperiodic function x̂ ∈ C1 via

x̂(t1, t2) =
+∞∑

j1,j2=−∞
Xj1,j2 exp

(
i
(

2π
T1

j1t + 2πj2t
))

.
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Due to (20), the series converges absolutely. The new representation ŷ is defined
by (18). Now the question is if ŷ owns a representation by means of an absolutely
convergent Fourier series, too.

Sufficient for this property is ŷ ∈ C1 and ∂2ŷ
∂t1∂t2

∈ C0. The partial derivatives of ŷ
read

∂ŷ

∂t1
=

∂x̂

∂t1
+ (ν(t1)− µ(t1))

∂x̂

∂t2
∂ŷ

∂t2
=

∂x̂

∂t2
∂2ŷ

∂t1∂t2
=

∂2x̂

∂t1∂t2
+ (ν(t1)− µ(t1))

∂2x̂

∂t2
2
.

Hence the properties are fulfilled if x̂ ∈ C1, ∂2x̂
∂t1∂t2

∈ C0, ∂2x̂
∂t22 ∈ C0 holds. Now it

is exactly condition (20), which guarantees these requirements. ¤

Proof of Theorem 4 :

In the following, to simplify the notation, we omit the location

(t̃1, t̃2) := (t1, t2 +
∫ t1

0
ν(s)− µ(s) ds)

of evaluations corresponding to x̂ given in (18). Now we calculate directly

∂q(ŷ)

∂t1
+ µ(t1)

∂q(ŷ)

∂t2
=

∂q(x̂)

∂t1
+ (ν(t1)− µ(t1))

∂q(x̂)

∂t2
+ µ(t1)

∂q(x̂)

∂t2

=
∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f (x̂) + b(t1)

= f(ŷ) + b(t1),

which verifies that the MVF ŷ satisfies the MPDAE (29) including the local
frequency function µ. ¤
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