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Abstract

In this article we discuss a method to complete the correlation matrix in a multi-dimensional sto-
chastic volatility model. We concentrate on the construction of a positive definite correlation matrix.
Furthermore we present a numerical integration scheme for this system of stochastic differential equa-
tions which improves the approximation quality of the standard Euler-Maruyama method with minimal
additional computational effort.

1 Introduction

In stochastic models, especially in finance, often only some part of a correlation matrix is given by measured
data. This incomplete model may easily be completed by defining the respective correlations in a reasonable
way. However, the problem is to guarantee the positive definiteness of the matrix after completion. This
paper develops and describes an efficient and feasible algorithm to accomplish this task, which is based on
combining Gaussian-elimination with arguments from graph theory.

In comparison to the results of Grone et @&.J5W84 and Barrett et al.BJL89Y our algorithm shows that

it is possible to find a symmetric positive definite completion of the correlation matrix under the additional
restriction that all matrix entries have to satisfy; ;)| < 1. Moreover we verify that our choice of the
unspecified entries leads to the unique determinant maximising completion without the necessity of solving
a sequence of optimisation problems.

The paper is organized as follows. Sectibdefines the problem of completing a correlation matrix and
introduces the model setup. The basic idea of the algorithm is motivated by inspecting asakample

in section2, and is applied to the general multi-dimensional case in the subsequent section. Finally, we
show how the completed correlation matrix can be incorporated into numerical integration schemes for
multi-dimensional volatility models.

2 Model setup

We consider the followingn-dimensional system of stochastic differential equations

1) dS; = wiSidt + fi(V;)SidW(g
(2) dv; = a;(V;)dt +b;(V;)dW (v
with 4,5 = 1,...,n and Brownian motionsV g, Wy, ;. This article focuses on the question how to

correlate then Brownian motions. Furthermore, we assume that the diffusion of the undedyiisgonly
directly coupled to one volatility;. If we concentrate on just one volatility-underlying-pair we obtain a
typical stochastic volatility model to describe the non-flat implied volatility surface in European option’ s
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prices. This problem is intensively discussed in the literature in the recent years. More details can be found
in the articles of HestorHes93, Scott-Chesney@S89 and Sclidbel-Zhu 5299.
We assume that we already know the correlation between the Wiener prodéssaadWWy,;

3) dWs,;dWy,; = n;dt
which in short-hand may be written as
(4) Wsi-Wyi=mn; .

Neglecting the stochastic volatility we also have to decide how to couple the underfingbis question
is quite common in finance and we assume that we know these correlations, too:

(5) Ws.i - Wsj = piij)-

This leads to the following structure for the correlation matrix

P oo Pam) M ?
i | PO @y ? I

6) A=alhhsij<om = | 1 ? 1 2
? Mo ? 1

with the undefined correlations marked with The problem of completing a matri4 which is only
specified on a given set of positions, the so caflattern is directly related to the structure of the graph

G = (V, E) of A. In case of completing symmetric positive definite matrices, Grone ebaE\{\V84 Thm.

7] proved that the partial matrid is completable if and only if the corresponding gra@ghs a chordal

graph and each principal submatrix is positive semidefinite. Unfortunately this theorem is not applicable in
our case as a correlation matrix has the further requirement that all entries are restrieted by 1. For

more informations on matrix completions problems we refer the readeat®fl, Joh9(.

The problem we have to deal with now is to define the yet unspecified correlations. To make this point
clear we will discuss the simplest example of two underlyings and two stochastic volatility processes in the
next section and we generalise this to the multi-dimensional case in séction

Before we start with the discussion of a two-dimensional example we have to state the following general
result which helps us to prove the positive definiteness of the correlation matrix.

Remark 2.1 A square matrixd € R"*" is positive definite if the Gaussian-algorithran be done with
diagonal pivotg; and if each pivop; is greater zero.
3 The2 x 2-dimensional example

In this section we discuss how to complete the correlation matrix in the easiest case of two underlyings and
two stochastic volatilities. We will refer to this &so-dimensionakven though, strictly speaking, it would
be more correct to call 2 x 2-dimensional. The correlation matrig)(is given by

1 paoy m ?

_| ey 1 7 m
(7) 4 mo 2 1 9
? e ? 1

We recognize that we have to specify the cross-correlations bet#ieenl, and S, ~ V1, as well as the
correlation between the different volatiliti®s andV5. This problem becomes more clear if we have a look
at the corresponding graplof the matrix {) as shown in figure . One ad-hoc and pragmatic wago

1The Gauss-algorithm we are referring to is the standard Gaussian-eliminakipfoinm as in Duff, Erisman and ReidER86
Section 3.3]

2Graph theory and sparse matrices are closely linked topics. One can represent a symmetric matrix by an undirected graph. For
more information see Golub and van Lo&y.C96 or FrommerFro03.
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Figure 1: Corresponding graph to matri®.( The nodes (sometimes also called vertices) are referref] by, V1 andV. This

is not entirely consistent with the notation used in the literature as it would be correct to fill these nodes with the diagonal entries

a(i,7) = 1. In the following we always choose the notation which provides the necessary information. The undirected edges are
given by the non-diagonal entries of the matri¥.

define the correlation betweéfi and.S; is the product of the correlation betwe€n~ Sy andS; ~ Ss
(8) a(3,2) = Wy - Wsa = (Wy1-Ws1) Wsa-Wsz2) =1 p2)-

In the same way we are able define the correlation of the volatilities as the product of the correlation between
Vi~ Sl, Sl ~ SQ andSQ ~ Vs

9) a(4,3) =Wy - Wy = Wy - Ws1) (Ws1 - Ws2) (Wsa - Wyz) =m1 - paa) - 2

On the corresponding graph we just multiply the values of the edges on the patWifitons. In the two-
dimensional example there is just one possibility for this path but in the multi-dimensional case we have to
choose the shortest one. The matrix now looks like

1 P(1,2) m m - P@1,2)
(10) A P(2,1) 1 m - pPa,2) 2
m - Pe2,1) 1 M- P(12) " 12
n2* P(2,1) 72 M- P2,1) N2 1

Figure2 shows the corresponding graph to matfig)(
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Figure 2: Corresponding graph to matrixy.

Next we have to verify that this choice of correlations leads to a positive definite matrix. In order to
show this we use the RemazkL In thekth step of the Gaussian-elimination we have to choose the diagonal

3This idea goes back to Rackel Jac0g



elementa(k, k) as the pivolp;, and we only operate on the elemeats, j) with 7, j > k. To indicate the
kth elimination step we denote the matrixas A*) with entriesa(i, j)*) which will be updated via

w _ ali, k)Pa(k, j)®

(11) a(i, /)Y = a(i, 5) ae )®

ij>k.

The first pivotisp; = a(1, 1)(1) = 1 which is indeed greater zero and the remaining matrix looks as follows

1 P(1,2) m 7(72 " P1,2)
0 1-p 0 m(l-p?
2 _ (1,2) (1,2)
(12) A 0 0 1— 0
2 2
0 n (1 - p(172)> 0 I (772p(1,2))

After the first elimination step we can exclude the first row and first column from further consideration as
they do not participate in the following calculations. Thus concentrating oadtieepart of the matrix we
recognize that in the third row and third column only the diagonal elea@8)® is not zero. Therefore

this node has lost any connection to other vertices in the corresponding graph, which means that in the
following Gaussian-elimination steps this whole row and column stays unmodified. In addjticd)(?) =

1 —n? > 0 hence we can choose this element as a positive pivot in eliminatiork step. The next pivot
isa(2,2)? =1 pf, ,) > 0and we obtain

1 P(1,2) m n2 - P(1,2)
3) 0 1- p?l’g) 0 n2 <1 - p%l,g)
(13) AY =10 0 1—n? 0
2
2 3 (1_/’?1,2))
0 0 0 1—- (772/?(1,2)) T T,
1 P(1,2) m 2 P@1,2)
(14) — 0 1- p%1,2) 0 "2 (1 N p%lﬂ))
0 0 1—n? 0
0 0 0 1-— n%

Theactivepart is now only the x 2 submatrix containing all entrieg(i, j)(?) with i, j > 2. In the last two
elimination steps we can just choose the eleme(8s3)®) = 1 —»? > 0 anda(4,4)¥ =1 -7 > 0 as
pivots p; andp, which proves that the original matriz is positive definite. In the next section we show
that the Gaussian-algorithm is quite similar in the multi-dimensional case.

4 Multi-dimensional correlation

In this section we show how it is possible to complete the correlation matrix in the multi-dimensional
setting in a very similar way as in the two-dimensional case. Moreover we verify that our choice leads
to the determinant maximising completion. To get a first impression we draw the graph of six volatility-
underlying-pairs and their corresponding correlations in fi@un&/ithin this figure we only show the fixed
correlation between the underlyings and the volatility-underlying correlation betwegh andV;. As in

the two-dimensional case we define the cross-correlation between the volataityl the underlying; by

the product of the correlation betwe&h~ S; andS; ~ S;

(15) a(i+n,j) =Wy, Ws; = Wy Wsi) Wsi - Ws i) =i pgijy-
In the same way we define the correlation between two volatilities as
(16)  a(i+mn,j+n) =Wy, Wy; = Wy, Wsi) Wsi - Ws ;) (Wsj- Wyi) = mi - pijy - nj-

This corresponds to the shortest connectionthe graph betweei; and V;. With this choice of the
undefined correlations we are able to prove the following:

4In the shortest connection we only take into consideration the predefined paths between two und&riginds; as well as
the fixed underlying-volatility correlation betweéh andV;
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Figure 3: Multi-dimensional correlation graph corresponding to mag)xw(ith n = 6 where the unspecified correlations are
interpreted as zero.

Theorem 4.1 If the correlations between the underlyings
(17) Wsi-Wsj = p)
are given such that the correlation matrix

(18) B =b(i,7) = pgy)

is positive definite and if we choose the cross-correlations dugScahd (L6) then the whole correlation
matrix

P(1,1) e P(1,n) m e n " P(1,n)
19) A=af(i, =
(19) (5 Disij<n m T P 1 TPy T
M- P(1n) - N M- Pna) M - 1

is positive definite.

Proof: In the two-dimensional setting we observed that the volatilitgiven by the diagonal entry

a(1 4 n,1+ n)®, wheren is the number of volatility-underlying-pairs, lost any connection in the corre-
sponding graph after choosirfy = a(1,1)") as the first pivot. In the multi-dimensional setting this is
equivalent to

(20) an+1,)@ =0, j=2,....n,n+2,....2n.

In general we have to show that after selecting, k)(’“) as thekth pivot the corresponding volatility entry
a(k +n, k +n)**+Y is greater zero and has no further connection in the grapti’df which means that

(21) an+k Y =0,  j=k+1,....n+k—1n+k+1,...,2n.



We will prove the positivity by showing that the following invariant holds

(a(k, k+ n)(k+1))2
a(k, k)(kﬂ)
(a(k, k+ n)(k))2

(22) a(k + n, k+n)FD —

(1). =
1 (a(k, k+n) ) o
(23) a(k+n,k+n) a(h ) = 1—n.

We show this by induction. First we verify the following invariants:

, Sy ali+n,i)Wa(i, )
(24) a(i+n,j) = LG ,

. . (k) _— a(z—l—n,z) CL(’L,]) G(] +TL,])
2) i) (i, )a(j, )P |

with i, j > k. Before we start proving these statements, we explain the origin of the invadhtsd 5).
Having a look at the corresponding graph (see fighrim the elimination ste@ and bearing in mind that
a(i+n, j +n)*) describes the correlation betweBnandV; then the equatior2) is just the product over
the values of the edges on the shortest path frpto V; divided by the values of the verticé$ = a(i, i) (k)
andS; = a(j,7)®.

Ve a(j+n,i) P )
a(i,g) \\\\/,/’/ a(i+n,j+n)
a(z’—l—n,j)/,// \‘\\\
//// \\\\ v
& N

Figure 4: Graph describing the correlation structure of the underly$hgsnd .S; as well asV; andV; in the kth step of the
Gaussian-algorithm. To simplify the notation we dropped all supersg#ptsThe nodes on the left side belong¥pandsS; which
are here filled with the corresponding diagonal entries in the matfix.

First we show by induction tha28) holds. The start of the induction is due to the constructids (

a _ ali+n, B Da(i,7)D

(26) a(i+n,j) (i) =a(i+n,1)-a(i,j) =i pay)-

Now we assume thaRg) is valid until elimination stef: and we want to verify that

a(i+n,i)FDq(s, j)kE+HD
a(@ Z’)(k+1) ’

(27) a(i 4 n, j)*EH) = foralli,j > k+1.

Due to the Gaussian-algorithm we know that

a(i+mn, k)(k)a(k,j)(k)
a(k, k)*) '

(28) ali+n, ) = a(i +n, j)® —

®In the following calculation we will not mention the indék) indicating a variable in the elimination stép



We thus calculate

a(i+n, k)(k)a(k,j)(k)

29)  ali+n, )"V = a(i+n,5)* - a(k, k)®)
_ M;m@%%M@+wﬁ—a@+MM“hﬂ>
ol G e e R O
_ M;ma%&g”<akm<zﬁ ali, k)a(k, j))
_ M;M(MkM(zﬁ—a@k)@j»
“SZ»Z;” (al “ k)

a(k, k) —a(i, k)a(
k) —a(i, k)a(i, k))
Jalk, )@@+nw “’%TU
(a( u e i;k))
a(i, J)(kH) (Z +n, ’L)(kH)
a(i, i)+

(30) =

The proof of invariant25) can be done in the same way. Next we show that equaki®rhplds. Again the
begin of the induction is valid due to constructidb). Assuming that the equation is valid up to elimination
stepl < k, we obtaif

a(k, k +n)HDa(k, k +n)HD

a(k +n,k+ n)(l'H) _ ol k)(l+1) —

e alktnDalk D) (ol Da(k,k+n) = a(k,Datk +n,0)°
(k4. ktn) all.]) o0, 1) (a(l, Da(k,K) — a(k, Da(k. 1))
2
e 71_(Mk+nJmuu»2_((lbdhk+n>—dkl“m”k““) -
(kv km) = e Tal ) o D) (@ Da(k, F) —a(k.Da(k. D))
(a(k +nk)a(k, D) alk +n, k)2 (a(, Da(k, k) — a(k, Da(k, 1))
alk k) = e (i, ) alk k)2all. 1)
a(k +n,k)Va(k 4 n, k)®
a(k’—Fn,k“Fn)(l)_ (k,k‘)()

Last we have to prove equatioRl). Choosingu(k, k:)(’f) as thekth pivot leads to

a(k+n,k)a(k,j)

A (kD) N _
(31) a(k +n,j) a(k +n,j) o) 0.
The same holds for
(32) a(k+n,j+m) D = a(k4n,j+n) — AEEMRalkj )

a(k, k)
] CL(]‘J—F?% k)a(k7])a(jaj+n)

33 = alk+n,j+n)— i —0.
> ( s a(j, j)a(k, k)

Let us summarize this proof. We know that we can choose tinederlyingS; ~ a(i, ) as the first. pivots
assuming that the coupling of the underlyings leads to a positive definite matrix. Duringtisésgs all
volatilities V; ~ a(i + n,i + n) are losing their connection in the corresponding graph and furthermore, we
verified thata(k + n, k +n)F*) =1 — 2 > 0. O

®The first step is just the calculation rule of the Gaussian-elimination and we drop again the sup@jscript



Remark 4.1 The result can be generalised to the case where one underlying is not necessarily restricted to
be directly coupled to one stochastic volatility process. It is also possible to have some underlyings without
stochastic volatility and some with two or even more factors. Following the idea of the proof of Thédrem

we just have to make sure that, if one underlyfds coupled to more than one volatility procesSé@,
m=1,..., M, the matrixC; with

(34) C(k?, l) = th(k) . WVA(Z), C(kj, M + 1) = WV.(k) . WS,Z’, C(M—|— 1, M + 1) = WS,i . WS,z’ = 1,

7 7 (3

is positive definite.

Next we verify that the choice of the cross-correlations dud & ¢nd (L6) leads to the unique comple-
tion A of the correlation matrix which maximises the determinant. Furthermore we know (B3@\W84
Thm. 2] that this is equivalent, that the inverd®)(contains zero’s at each position which was previously
unspecified.

Theorem 4.2 Choosing the cross-correlations due i&)(and (L6) leads to the unique determinant max-
imising positive completion.

Proof: First we write the matrix4 given by equationX9) as

B DT
(35) A:<D C>

with square matriced?, D andC. The entries ofB are already specified. Next we introduce the term
C = C — DB~' D" which is the well known Schur-complement. Using this notation we can formally write
the inverse ofd as

(36)

o[ B (1+ DTé—lDB—l) —B-'DTC!
—C-1pTB-1 c-1 '

Thus we have to show thatand B~ DT are diagonal. Since the Gaussian-eliminatiorBorpincides with
calculating its inverse, equatioR) verifies that is diagonal. Moreover1) also shows thaB~ D7 only
contains zero’s below the diagonal. As this matrix is symmetric, caused by the diagonditgraf D, its
diagonal. Hence the inverse dfcontains zero’s at each previously unspecified position which is equivalent
with finding the determinant maximising completion due to Grone et@i1S\W84. O

Now we are able to complete the correlation matrix such that we obtain a symmetric positive definite
matrix. Next we are confronted with the problem of integrating this system of stochastic differential equa-
tions. In case of one volatility-underlying-pair Kahl aricBel KJO5 compared the efficiency of various
numerical integration methods. In the next section we show that these results are also applicable in the
multidimensional setting.

5 Numerical tests for the multidimensional stochastic volatility model

In this section we discuss suitable numerical integration schemes for the multidimensional stochastic volatil-
ity model (). Without stochastic volatility this problem is comparatively easy to solve as therlyings

S; aren-dimensional lognormal distributed. Thus in case of European options we do not have to discretise
the time to maturity at all. The situation becomes much more complicated when stochastic volatility comes
into play. As we do not know the distribution density we have to apply numerical integration schemes for
stochastic differential equations. In the standard model with only one underlying and one stochastic volatil-
ity Kahl and &ckel [KJO5 discussed different integration methods with special regard to the numerical
efficiency. It turned out that higher order methods, i.e. the Milstein scheme are inappropriate due to the
fact that we have to generate additional random numbers. The finally most efficient integration scheme is
referred talJK”’

Sy = WSy + (1= 5 (f* (Vim) + 12 (Vime)))) At + pf (Vi) AW (vm)
(37) +3 (f (Vi) + f (Vim11))) (AW(sm) = pPAW (v/m))

FEVT= 22 (Vi) b (Vi) (AWiwm)* = At)

"The namdJK refers to the originator’s of this scheme.




with correlation dVg-dWWy = pdt. As one underlying; is only directly coupled to one stochastic volatility
process/; we can generalise this integration scheme straightforward to the multidimensional case

MSmiy = WSem + (= 1 (2 Vi) + 2 (Vimr1))) At +0f (Viim)) AW (vim)
+5 (f ( ) f (Vi) (AW(sim) = PAWv.i.m))

V=28 (Vi) b (Vi) (AWiviim)” — A1)

wheresS; ,+1 denotes thém + 1)th step of theith underlying. For théJK scheme we assume that we
already know the numerical approximation of the whole path of the prdgesthis path has to be com-

puted with a suitable numerical integration scheme depending on the stochastic differential equation for the
stochastic volatility. This problem is intensively discussedid(5, Section 3]. The benchmark scheme for
themultidimensional IJKscheme is the standaEdiler-Maruyamamethod

(38)

l\')\»—l l\D\H

(39) In S(i,erl) = In S('L,m) + (Nz sz ( (¢,m) )) Atm + fz (‘/('L,m)) AVI/Y(.S','L’,m)
(40) Vet = a5 (Vigm)) Atm + 05 (Vigm)) AW, jm)-

Here one has to bear in mind that if the stochastic volatilityis given by a mean-reverting process the
Euler scheme is not able to preserve numerical positivity. Thus if the financial derivative is sensitive to the
dynamic of the variance of the underlying we recommend more advanced numerical integration schemes to
preserve positivity.

Next we set up a x 4-dimensional benchmark model to obtain a first impression on the numerical
efficiency of both integration schemes. The stochastic volatility= f(V;) is described by a hyperbolic
transformed Ornstein-Uhlenbeck process

(41) dy;y = —rky:dt + av2edWy

with transformation functiom; = o (yt + Y2+ 1) which was introduced and discussed k(5. We

choose the following parameter configuratioe= 1, o = 0.35, oy = 0.25 andyy = 0 throughout the whole
section and for all volatility processes. The initial value of the four underlyings is s& te 100. The
decisive point for these tests is the correlation structure of the Wiener processes. The underlying correlation
matrix (18) is chosen as follows

1 02 0 05
02 1 04 O
0O 04 1 06
05 0 06 1

(42) B=

For the underlying-volatility correlation we assume a highly negative correlation corresponding to a down-
ward sloping implied volatility surface in European vanilla option markets

(43) v =

This directly leads to the following correlation matrix completed duel) and (L6)

1 0.2 0 0.5 -0.7 -0.16 0 -0.4
0.2 1 0.4 0 -0.14 -0.8 -0.36 0

0 0.4 1 0.6 0 -0.32 -09 -0.48
0.5 0 0.6 1 -0.35 0 -0.54 -0.8
-0.7 -0.14 0 -0.35 1 0.112 0 0.28
-0.16 -0.8 -0.32 0 0.112 1 0.288 0

0 -0.36 -0.9 -0.54 0 0.288 1 0.437
-0.4 0 -0.48 -0.8 0.28 0 0.432 1 j

(44) A=




The first numerical test compares the evaluation of a basket option. Thereby we consider the payoff function
to be the mean of the four underlying assets. Thus the fair value of this option is given by

4 +
(45) C(T,K)=E (}1 > ST - K) :
=1

The numerical results are compared with a numerical reference solution computed \Ethah&laruyama
scheme 39) and a stepsize aht... = 27 0. The prices are calculated for a whole range of strikes-
{75,...,133.3} and a termstructure of maturitids = {0.5,1,1.5,...,4}. As there is a great difference

in prices of at the money options compared to in-the-money and out-of-money options we compute the
implied Black volatility, denoted agV (C, S, K,r,T), whereC' is the given option priceS the initial

value andr the risk free interest rate, to get a fair error measure. The biggest advantage of the implied
volatility is that the error-size throughout the whole level of strikes and maturities becomes comparable.
The first figure5 (A) shows the numerical reference solutions where we recognize the strongly downward
sloping skew structure of the implied volatility surface as a consequence of the negative correlation between
underlyings and volatilities4d) . In the figure6 we compare the numerical results of taeler scheme with

24.0%

= =%= = Euler

10° | . —— K

error

10

3
10 )
time used [msec]

(B)

Figure 5: (A): Implied volatility surface of the reference solution with a stepsiz&gf.c: = 27° and 32767 paths . (B): Weak

approximation error46) as a function of CPU time [in msec] for the simulation of 32767 paths. The number generator in (A) and
(B) was Sobol's method and the paths were constructed via the Brownian bridge.

themultidimensional IJKscheme where we integrate along the maturities with a stepsixe ef0.5. The
superiority of thelJK scheme is at its most impressive for the first matufity= 0.5 as we obtain a skew
within one integration step in comparison to the flat implied-volatility of uer for this maturity.

Figure 6: Implied volatility surface calculated with the (&Auler method and the (Bmultidimensional IJKkmethod. The stepsize
wasAt = 271 and the prices were averaged over 32767 paths . The number generator was the Sobol’s method and the paths were
constructed via the Brownian bridge.

10



To underscore this result we also compare the error and the computational effort of both integration
schemes for different stepsizes. The error is computed as the sum over the absolute value of the differ-
ences between the implied volatility of the reference solu@ty, K ;) and the numerical approximation

C(ti, Kj)

(46) Error= Z ’IV(C(ZL,Z‘, Kj), S, Kj, r, ti) — IV(C’(E, Kj), S, Kj, r, ti)
2
In figure 5 (B) we see that théJK leads to better results comparing the relation between approximation

guality and computational effort. The decisive point is that the computational effort ddikhecheme is
only slightly higher than th&uler scheme since we do not have to draw any additional random number.

6 Summary

Based on combining Gaussian-elimination and graph theory, we have introduced an algorithm to complete
the correlation matrix, if only an incomplete set of measured data is available, which does not allow to define
all correlations a unique way. Compared to the results of Grone € aE\[V84 and Barrett et al.BJL8Y,

our algorithm preserves that all entries are boundedaby;)| < 1, and avoids the costly computation

of optimisation problems. From an application-oriented point of view, our algorithm can be implemented
within pricing tools based on simulating multidimensional stochastic volatility models.
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