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Abstract

In radio frequency (RF) applications, electric circuits produce signals in-
cluding widely separated time scales. A multidimensional representation
yields an efficient model by decoupling the time scales. Consequently,
a warped multirate partial differential algebraic equation (MPDAE) de-
scribes the circuit’s behaviour. The appropriate determination of an aris-
ing local frequency function is crucial for the efficiency of this approach.
Variational calculus implies a necessary condition to a specific solution,
which exhibits a minimal amount of oscillations in the whole domain of
dependence. We apply a similar strategy to minimise oscillatory perfor-
mance in some boundary values only. Now variational calculus yields a
boundary condition, which can easily be used in numerical methods. We
compare the results of both minimisation criteria in a simulation of a
warped MPDAE model.

1 Introduction

The mathematical modelling of electric circuits is based on differential algebraic
equations (DAEs), see [2]. In communication electronics, radio frequency (RF)
signals exhibit widely separated time scales. Thus transient analysis of the DAE
system becomes inefficient, since the fastest time scale restricts the step sizes in
time, whereas the slowest time scale determines the total time interval of the
simulation. A specific multivariate model decouples the time scales of RF sig-
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nals and thus generates an efficient representation. Accordingly, Brachtendorf et
al. [1] introduced the multirate partial differential algebraic equation (MPDAE),
which results from a transformation of the original DAE. This multidimensional
approach can be applied successfully to simulate amplitude modulated signals.

Narayan and Roychowdhury [4] generalised this model for the simulation of RF
signals, which include amplitude as well as frequency modulation. Now a local
frequency function arises in the resulting warped MPDAE system. Inappropriate
choices of these parameters cause many oscillations in the corresponding multi-
variate solution and thus increase the amount of computational work unneces-
sarily. Hence the efficiency of this approach depends on the determination of a
suitable local frequency function. An additional condition is required to spec-
ify a complete solution. Houben [3] introduced a minimisation criterion, which
reduces the amount of oscillations in solutions. This strategy can be applied to
the MPDAE in combination with a mixture of initial and boundary conditions.
For biperiodic boundary value problems, an alternative minimisation technique is
feasible, where a corresponding variational calculus yields a necessary condition
for an optimal solution, see [6]. Thereby, the amount of partial derivatives is
minimised in the whole domain of dependence.

In this paper, we restrict the minimisation scheme to some boundary values. In
general, the number of oscillations in the whole solution is low if and only if the
number of oscillations in the used boundary layer is low. Thus the efficiency of the
multidimensional approach is preserved. Accordingly, a variational calculus im-
plies an additional condition for an optimal solution, where just boundary values
are involved. Furthermore, a method of characteristics is qualified for comput-
ing biperiodic solutions of the MPDAE, see [5]. In this strategy, a discretisation
based on characteristic curves yields a boundary value problem of DAE subsys-
tems. Therefore restricting the minimisation to the boundary values allows to
add easily the resulting condition to the boundary constraints in the method of
characteristics. Consequently, we can use standard numerical techniques to solve
the arising boundary value problem of DAEs.

The paper is organised as follows. In Sect. 2, we introduce briefly the warped
MPDAE model. The minimisation criteria and the according constraints, which
are obtained by variational calculus, are illustrated in Sect. 3. Finally, we present
numerical simulations applying both criteria, where a forced Van der Pol oscillator
is used as benchmark.
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2 Warped MPDAE Model

In electric circuit simulation, a network approach yields systems of differential
algebraic equations (DAEs), see [2], which we write in the form

dq(x)

dt
= f(x(t)) + b(t),

x : R→ Rk, q : Rk → Rk,
b : R→ Rk, f : Rk → Rk.

(1)

Thereby, x ∈ C1 denotes unknown node voltages and branch currents. We assume
that the input signals b are periodic with a slow rate T1. Furthermore, the
system shall possess an inherent fast time scale. Hence the solution x becomes
quasiperiodic. According to [4], the system of warped multirate partial differential
algebraic equations (MPDAEs), which corresponds to the DAE system (1), reads

∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f(x̂(t1, t2)) + b(t1), x̂ : R2 → Rk, ν : R→ R. (2)

Now x̂ ∈ C1 represents the multivariate function (MVF) describing the amplitude
modulation in the signal x. In addition, a local frequency function ν arises, which
models the frequency modulation. The system (2) is underdetermined, since the
local frequency is not specified a priori. We need an additional condition to fix
a unique solution. An arbitrary solution of the MPDAE (2) yields a solution of
the DAE (1) via the reconstruction

x(t) := x̂(t, Ψ(t)) with Ψ(t) :=

∫ t

0

ν(σ) dσ, (3)

where the second time scale is stretched by the warping function Ψ. A biperiodic
MVF x̂ with periods T1 and 1 in connection with a T1-periodic local frequency ν
reproduces a quasiperiodic solution x of the original DAE (1). Thus we consider
biperiodic boundary value problems of the MPDAE (2) in the following, where
the rectangle [0, T1]× [0, 1] is regarded in the domain of dependence.

In the method of characteristics, see [5], we discretise the t1-direction first, e.g.
using equidistant step size h1 := T1/n. Hence the points tj1 := (j − 1)h1 arise
for j = 1, . . . , n. Let ν1, . . . , νn be the corresponding discrete values of the local
frequency function. A unique characteristic curve, which is determined by the
local frequency function, runs through each point (tj1, 0) at the boundary. Let
x̃j : R → Rk be the solution on the jth curve, which depends on a parameter τ
now. The corresponding characteristic systems are

dq(x̃j)

dτ
= f(x̃j(τ)) + b(τ + tj1) for j = 1, . . . , n. (4)

The periodicities yield boundary conditions, which interconnect these separate
systems. The boundary conditions exhibit the form

(
x̃1(0)>, . . . , x̃n(0)>

)>
= B (

x̃1(ξ1)
>, . . . , x̃n(ξn)>

)>
with B ∈ Rnk×nk. (5)
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Thereby, the end points ξj as well as the matrix B depend on the local frequency
function. Since the local frequency is unspecified a priori, we obtain a free bound-
ary value problem of DAE subsystems given by (4) and (5). For fixed starting
values ν1, . . . , νn, we can compute an approximation of ξ1, . . . , ξn as well as B and
thus evaluate the boundary conditions in a numerical method. However, we need
a suitable additional condition to determine the unknown values ν1, . . . , νn.

3 Minimisation Techniques

Unqualified choices of the local frequency function generate many oscillations
in the corresponding MVF. Thus the idea is to reduce oscillatory behaviour by
minimising the amount of respective partial derivatives. Let x̂ = (x̂1, . . . , x̂k)

>

be the components of the MVF and x̂ ∈ C2. In [6], the functional

γ (x̂) := T1

∫ T1

0

∫ 1

0

k∑

l=1

wl

(∂x̂l

∂t1

)2

dt2 dt1 (6)

is investigated, where w1, . . . , wk ≥ 0 represent constant weights. Regarding all
biperiodic solutions of (2), we assume the existence of a global minimum x̂opt with
respect to this functional. Biperiodic solutions of the warped MPDAE system
feature specific transformation properties. Based on a transformation formula,
we obtain certain competitive solutions, see [6]. Using this relation, a variational
calculus implies a necessary condition for the optimal MVF, namely

r(t1) :=

∫ 1

0

k∑

l=1

wl · ∂2x̂l

∂t1
2
· ∂x̂l

∂t2
dt2 = 0 for all t1 ∈ R. (7)

We recognise that this constraint involves values related to the MVF in all points
of the domain [0, T1] × [0, 1], which is required to perform the minimisation ev-
erywhere.

On the contrary, we restrict the minimisation to the boundary values in the layer
t2 = 0 now. Accordingly, the new functional reads

δ (x̂) := T1

∫ T1

0

k∑

l=1

wl

( ∂x̂l

∂t1

∣∣∣∣
t2=0

)2

dt1. (8)

Again we assume the existence of an optimal biperiodic solution, i.e. a global
minimum of (8). In this case, an analogue variational calculus yields the necessary
condition

s(t1) :=
k∑

l=1

wl · ∂2x̂l

∂t1
2

∣∣∣∣
t2=0

· ∂x̂l

∂t2

∣∣∣∣
t2=0

= 0 for all t1 ∈ R. (9)
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We can evaluate the derivative with respect to t1 within the layer t2 = 0. In con-
trast, the other derivative is perpendicular to this layer and requires points from
outside for an approximative evaluation. However, if the system (1) represents
an ordinary differential equation (ODE), i.e. q(x) ≡ x, we use the MPDAE (2)
to replace this derivative. Assuming ν(t1) > 0, we obtain

s(t1) =
k∑

l=1

wl · ∂2x̂l

∂t1
2

∣∣∣∣
t2=0

· 1

ν(t1)
·
[
fl(x̂(t1, 0)) + bl(t1)− ∂x̂l

∂t1

∣∣∣∣
t2=0

]
= 0 (10)

for all t1 ∈ R. Now we are able to approximate the derivatives with respect to t1
by difference formulae within the layer t2 = 0. Thereby, we employ just boundary
values arising in (5). For example, an approximation of second order is given by

sj :=
k∑

l=1

wl · 1
h1

2

[
x̃j−1

l (0)− 2x̃j
l (0) + x̃j+1

l (0)
]

·
{

fl(x̃
j(0)) + bl(t

j
1)− 1

2h1

[
x̃j+1

l (0)− x̃j−1
l (0)

]}
= 0

(11)

for j = 1, . . . , n. In this form, we can add the constraints (11) to the conditions (5)
to solve the boundary value problem resulting in the method of characteristics.
Thus we obtain n additional equations to fix the unknown values ν1, . . . , νn.

If the system (1) represents a DAE, then the derivatives of x̂ in (8) may be re-
placed by corresponding derivatives of the function q(x̂). In an analogue calculus,
information from the MPDAE (2) can be applied to replace the resulting term
now. Furthermore, if the system (1) features only some explicit components, i.e.
qp(x) ≡ xp for some p ∈ P ⊂ {1, . . . , k}, then setting wl = 0 for l /∈ P allows to
employ the above conditions, too.

4 Test Results

As test example, we consider a forced Van der Pol oscillator. The corresponding
system consists of two ODEs, namely

ẋ1 = x2, ẋ2 = −10
(
x1

2 − 1
)
x2 − 4π2x1 + 30 sin

(
2π
T1

t
)

. (12)

We choose the slow rate T1 = 1000. In addition, the system exhibits a fast time
scale with a magnitude about 1. Hence quasiperiodic solutions emerge, which
include amplitude as well as frequency modulation. Consequently, we apply the
warped MPDAE model in connection with the additional conditions from the
previous section. We set the weights to w1 = w2 = 1. The optimal solution
corresponding to the functional (6) is computed via a finite difference method
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Figure 1: Input signal (left) and optimal local frequency functions (right) com-
puted by criterion in whole domain (solid line) and by criterion in boundary
values (dashed line).

using symmetric differences on a uniform grid. Considering the functional (8),
we apply the method of characteristics, where the arising boundary value problem
of ODEs is solved by a shooting method including trapezoidal rule.

Fig. 1 illustrates the resulting optimal local frequency functions. Let ŷ and ẑ
be the optimal MVFs corresponding to the functionals (6) and (8), respectively.
Fig. 2 and Fig. 3 show these MVFs. The discrepancy between both MVFs exhibits
the typical behaviour of transformations involving biperiodic solutions. Although
the minimisation is done with respect to boundary values only, the MVF ẑ fea-
tures a simple structure, too. The values of the functional considering the whole
domain of dependence result to γ(ŷ) = 3913 and γ(ẑ) = 10405. Vice versa, it
holds δ(ŷ) = 5630 and δ(ẑ) = 90.

To verify the optimality of the computed solution corresponding to the func-
tional (8), we determine some competitive solutions employing the underlying
transformation formulae. Thereby, the original local frequency νopt is trans-
formed to a new function, which represents just one example of a feasible trans-
formation, i.e.

ν(t1) := νopt(t1) + α0

(
1
T1

∫ T1

0
νopt(σ) dσ

)
sin

(
2π
T1

t1

)
(13)

with parameter α0 ∈ R. Let x̂α0 be the corresponding MVF. Table 1 illustrates
the resulting values of the functional (8). In fact, the minimum is reached for
α0 = 0, which reproduces the computed optimal local frequency.

Table 1: Values of functional δ for competitive solutions.

α0 −10−4 −10−5 −10−6 −10−7 0 10−7 10−6 10−5 10−4

δ(x̂α0) 296.0 94.44 90.53 90.30 90.28 90.30 90.47 92.84 182.7
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Figure 2: Optimal MVFs ŷ1 (left) and ŷ2 (right) for minimisation in whole do-
main.
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Figure 3: Optimal MVFs ẑ1 (left) and ẑ2 (right) for minimisation in boundary
values.
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5 Conclusions

The warped MPDAE model provides an efficient alternative for simulating quasi-
periodic signals, which exhibit amplitude as well as frequency modulation. Ad-
equate solutions can be obtained via a minimisation criterion, which ensures a
simple structure of MVFs in the whole domain of dependence. An alternative
criterion has been presented, where the minimisation is restricted to some bound-
ary values. Hence a variational calculus yields an according condition, which can
be added to boundary conditions in a numerical scheme, especially in a method
of characteristics. Although just boundary values are considered in the minimi-
sation, the resulting solutions feature a simple form.
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