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Abstract

Signals exhibiting amplitude as well as frequency modulation at widely
separated time scales arise in radio frequency (RF) applications. A mul-
tivariate model yields an adequate representation by decoupling the time
scales of involved signals. Consequently, a system of differential algebraic
equations (DAEs) modelling the electric circuit changes into a system of
partial differential algebraic equations (PDAEs). The determination of
an emerging local frequency function is crucial for the efficiency of this
approach, since inappropriate choices produce many oscillations in the
multivariate solution. Thus the idea is to reduce oscillating behaviour
via minimising the magnitude of partial derivatives. For this purpose, we
apply variational calculus to obtain a necessary condition for a specific
solution, which represents a minimum of an according functional. This
condition can be included in numerical schemes computing the complete
solution of the PDAE. Test results confirm that the used strategy ensures
an efficient simulation of RF signals.

1 Introduction

Mathematical modelling of electric circuits is based on a network approach, which
yields systems of differential algebraic equations (DAEs), see [2]. Thereby, the
system describes the transient behaviour of all node voltages and some branch
currents. In radio frequency (RF) applications, the amplitude and/or frequency
of carrier waves is often modulated by slowly varying signals. Corresponding
time scales differ by several orders of magnitude. Hence transient analysis of the
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DAE system becomes inefficient, since high frequency oscillations limit the size
of time steps, whereas the slow time scale determines the total time interval of
the simulation.

A multivariate signal model permits an alternative approach by assigning an own
variable to each separate time scale. Therefore the DAE system changes into a
system of partial differential algebraic equations (PDAEs). Narayan and Roy-
chowdhury [6] introduced the according warped multirate PDAE, where a local
frequency function arises in addition to the multivariate signal representation.
Corresponding multiperiodic solutions yield the desired RF signals of the DAE
model via a reconstruction scheme. Since the time scales are decoupled in the
multivariate approach, we can solve the PDAE system efficiently.

However, the efficiency of the PDAE model depends essentially on the determi-
nation of an adequate local frequency function. Unfavourable choices cause many
oscillations in the corresponding multivariate signal representation. In contrast,
a simple structure of the PDAE solution is required in order to use discretisa-
tions with relatively large step sizes. Continuous phase conditions, which are
imposed on the multivariate representation, are applied efficiently to fix the lo-
cal frequency function, cf. [6]. Numerical simulations verify that the resulting
multivariate functions exhibit a simple form. Yet there is no guarantee for this
advantageous quality of continuous phase conditions.

Alternatively, Houben [4] proposes a minimisation procedure, which reduces os-
cillatory behaviour in the multivariate functions. Thereby, the magnitude of
according partial derivatives is minimised. This strategy is constructed for the
solution of the PDAE including a mixture of initial and boundary conditions. On
the other hand, we consider the direct computation of multiperiodic solutions,
i.e. pure boundary value problems, in this paper.

Consequently, we identify the local frequency function using a similar minimum
requirement with respect to partial derivatives of the corresponding multivariate
signal representation. The employed construction is tailored to the determination
of multiperiodic functions. An according functional is defined, which quantifies
the magnitude of partial derivatives in the whole domain of dependence regarding
the periodicities. The possible PDAE solutions are interconnected via a trans-
formation formula. All solutions generate the same DAE solution in the recon-
struction scheme. Based on the transformation, we apply variational calculus to
develop a necessary condition for an optimal solution. This condition can be used
in a numerical technique, which computes the multivariate signal representation
as well as its corresponding local frequency function.

The paper is organised as follows. In Sect. 2, we illustrate the multivariate
signal model briefly. Sect. 3 describes the PDAE model and its transformation
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Figure 1: Signal x for moderate time scales (left) and for widely separated time
scales (right).

properties. Furthermore, existing strategies for the determination of the local
frequency function are outlined. Subsequently, we arrange the deciding functional
and perform the according variational technique in Sect. 4. Finally, numerical
results using a voltage controlled oscillator are demonstrated, where the presented
strategy is employed.

2 Multivariate Signal Model

To outline the multidimensional model, we consider the RF signal

x(t) :=
[
1 + α sin

(
2π
T1

t
)]
· sin

(
2π
T2

t + β sin
(

2π
T1

t
))

(1)

with T1 > T2. Thereby, the parameters α and β introduce amplitude modulation
(AM) and frequency modulation (FM), respectively. For T1 À T2, widely sepa-
rated time scales arise, see Fig. 1. Thus we have to perform many time steps in
order to resolve such a signal.

In the multivariate model, we assign an own variable to each separate time scale,
which yields the function

x̂(t1, t2) :=
[
1 + α sin

(
2π
T1

t1

)]
· sin

(
2πt2 + β sin

(
2π
T1

t1

))
. (2)

This new representation is called the multivariate function (MVF) of the sig-
nal. The MVF is biperiodic and thus already determined by its values in the
rectangle [0, T1] × [0, 1], where the second period is transformed from T2 to 1.
We reconstruct the original signal completely by its MVF via x(t) = x̂(t, t/T2).
Unfortunately, the MVF (2) exhibits many oscillations, see Fig. 2 (left). The
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Figure 2: Inappropriate MVF x̂ (left) vs. efficient MVF ŷ (right).

number of oscillations increases with the amount of FM, i.e. the parameter β.
Thus the representation (2) is inefficient.

Alternatively, we model AM and FM separately. The AM part is included in the
new MVF

ŷ(t1, t2) :=
[
1 + α sin

(
2π
T1

t1

)]
· sin (2πt2) , (3)

which owns a simple structure now, see Fig. 2 (right). Hence we can sample
this MVF using relatively few grid points. On the other hand, the FM part is
described by the time-dependent warping function

Ψ(t) :=
t

T2

+
β

2π
sin

(
2π
T1

t
)

. (4)

Now the reconstruction of the original signal reads x(t) = ŷ(t, Ψ(t)), where the
warping function stretches the second time scale. The derivative of the warping
function can be interpreted as a local frequency of the signal, i.e.

ν(t) := Ψ′(t) =
1

T2

+
β

T1

cos
(

2π
T1

t
)

. (5)

Thus the local frequency represents an elementary T1-periodic function. Conse-
quently, we obtain an efficient model of the RF signal (1) by the MVF (3) and
the local frequency (5).

The local frequency corresponding to the improper MVF (2) can be seen as
ν ≡ 1/T2. Hence the selection of an appropriate local frequency function is
crucial for the efficiency of the multivariate signal model.
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3 Warped Multirate PDAE

Numerical simulation of electric circuits analyses the behaviour of all node volt-
ages and some branch currents during a given time interval. Kirchhoff’s laws
generate systems of differential algebraic equations (DAEs) in the form

dq(x)

dt
= f(x(t)) + b(t). (6)

The arising functions in this DAE model represent the following quantities:

x : R→ Rk unknown voltages/currents,
b : R→ Rk independent input signals (voltages/currents),
q : Rk → Rk terminal charges/branch fluxes,
f : Rk → Rk currents of static elements/

voltage drops of voltage controlling elements.

Since smooth solutions have to be determined, let x,q ∈ C1 and b, f ∈ C0.
In the following, we assume that the input b is periodic with a slow rate T1.
Moreover, the solution x shall include a second time scale, which exhibits high
frequency oscillations. Therefore the input generates AM and/or FM in the
arising solution. In case of widely separated time scales, a transient analysis of
the DAE model (6) demands an enormous amount of computational work, since
the fast rate restricts the step sizes in time, while the slow rate specifies the time
interval of the simulation.

Consequently, we change to the multivariate signal model described in the pre-
vious section. The transition to functions in several variables transforms the
DAEs (6) into a system of partial differential algebraic equations (PDAEs). Brach-
tendorf et al. [1] introduced the according multirate PDAE for determining purely
AM signals. Narayan and Roychowdhury [6] generalised the model for the addi-
tional presence of FM, which yields the warped multirate PDAE

∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f(x̂(t1, t2)) + b(t1). (7)

Thereby, x̂ : R2 → Rk represents the MVF of x. Moreover, an a priori unknown
local frequency function ν : R → R arises, which describes the FM. Hence the
system (7) is underdetermined and we require an additional condition to extract
specific solutions. According to the other functions, let x̂ ∈ C1 and ν ∈ C0.

An arbitrary solution of the PDAE (7) yields a signal satisfying the DAE (6) via
the reconstruction

x(t) := x̂(t, Ψ(t)) with Ψ(t) :=
∫ t

0
ν(τ) dτ. (8)
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In this context, multiperiodic PDAE solutions produce RF signals of the desired
type. More details about this connection in case of constant time rates can be
found in [9]. Thus we compute (T1, 1)-periodic MVFs x̂, where the second period
is fixed to 1, corresponding to T1-periodic local frequency functions ν. Although
the presence of exactly two separate time scales is most frequently in RF signals,
the multidimensional model can be generalised directly to the case of several time
rates.

Now we analyse some properties of the PDAE (7). The system is autonomous in
the second time scale. Therefore, given a solution x̂, the shifted function

ŷ(t1, t2) := x̂ (t1, t2 + c) with constant c ∈ R (9)

also satisfies the PDAE including the same local frequency ν. Furthermore, the
periodicities of the solution are preserved by the shifting. Hence this translation
represents an inherent degree of freedom in the PDAE solution and thus in the
reconstructed DAE solution, too. Hence we require an additional condition to
isolate a solution from the continuum of shifted functions. This can be done by
scalar phase conditions like

x̂1(0, 0) = η (η ∈ R) or
∂x̂1

∂t2
(0, 0) = 0 (10)

in the first component of the MVF x̂ = (x̂1, . . . , x̂k)
> without loss of generality.

Given a PDAE solution including a MVF and local frequency function, we obtain
other solutions corresponding to different local frequencies via a transformation.
The following assumptions shall be fulfilled:

(i) x̂ ∈ C1(R2,Rk) is (T1, 1)-periodic,

(ii) ν ∈ C0(R,R) is T1-periodic,

(iii) µ ∈ C0(R,R) is T1-periodic,

(iv)
∫ T1

0
µ(τ) dτ =

∫ T1

0
ν(τ) dτ.

(11)

If x̂ and ν represent a solution of the PDAE system (7), then the transformed
function ŷ ∈ C1(R2,Rk) with

ŷ(t1, t2) := x̂
(
t1, t2 +

∫ t1
0

ν(τ)− µ(τ) dτ
)

(12)

satisfies the PDAE including the local frequency function µ. Moreover, the new
MVF ŷ is (T1, 1)-periodic, too. If the assumptions (11) are not valid, then the
transformation (12) also generates a PDAE solution. However, this solution
is not biperiodic in general. In the following, we assume that the biperiodic
boundary value problem of the PDAE system features a unique solution except
for transformations of type (12) and translations of form (9).
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It is easy to verify that PDAE solutions, which are interconnected by the trans-
formation (12), reproduce the same DAE solution in the reconstruction (8), i.e.

x(t) = x̂
(
t,

∫ t

0
ν(τ) dτ

)
= ŷ

(
t,

∫ t

0
µ(τ) dτ

)
. (13)

Hence all solutions generated by the transformation (12) yield the desired in-
formation. Accordingly, we want to determine an uncomplex MVF in order to
use relatively few grid points in a discretisation scheme. In addition, the local
frequency function is physically reasonable, if and only if the corresponding MVF
exhibits a simple structure, which is demonstrated by the example in Sect. 2.

The requirements (11) indicate the degree of freedom in the choice of the local
frequency function. Given a solution x̂ and ν of the PDAE, where (i) and (ii)
hold, we obtain another (T1, 1)-periodic solution

ŷ(t1, t2) := x̂ (t1, t2 + Θ(t1)) with Θ(t1) :=
∫ t1
0

θ(τ) dτ (14)

for an arbitrary T1-periodic function θ : R → R with
∫ T1

0
θ(τ) dτ = 0. The

corresponding T1-periodic local frequency is given by µ(t1) = ν(t1) − θ(t1). The
defined function Θ satisfies the boundary conditions Θ(0) = Θ(T1) = 0 and
thus is T1-periodic, too. Vice versa, the transformation (14) yields a biperiodic
solution for an arbitrary T1-periodic function Θ ∈ C1, which fulfils homogeneous
boundary conditions.

Narayan and Roychowdhury [6] propose continuous phase conditions to determine
the local frequency function and the corresponding MVF. The idea is to control
the phase in each cross section of the MVF with constant t1. Examples for
continuous phase conditions are

x̂1(t1, 0) = η for all t1 ∈ R, (15)

where a suitable constant η ∈ R is used, or

∂x̂1

∂t2
(t1, 0) = 0 for all t1 ∈ R (16)

in the, without loss of generality, first component of the MVF. Hence we obtain
additional boundary conditions in the domain of dependence. Thereby, a solu-
tion from the continuum given by (9) is specified automatically. Based on the
transformation formula (12), the existence of corresponding PDAE solutions can
be motivated using the implicit function theorem. The strategy applies for ini-
tial/boundary value problems as well as for biperiodic boundary value problems.
Numerical simulations confirm that the phase conditions (15) and (16) yield sim-
ple MVFs, see [8]. The requirements imply that one component of the MVF
exhibits an elementary form on the line t2 = 0. However, we can not guarantee
that the complete MVF exhibits an adequate structure in general.
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Alternatively, Houben [4] introduces a minimisation technique, which shall gen-
erate MVFs with a relatively low amount of change with respect to the first
coordinate direction. In this approach, the magnitude

s(t1) :=

∫ 1

0

∥∥∥∥
∂q(x̂)

∂t1

∥∥∥∥
2

dt2 (17)

is minimised for each t1 > 0, where the Euclidean norm ‖ · ‖ in Rk is applied.
The important quality is that the partial derivative in (17) can be replaced by
the other terms in the PDAE (7). Consequently, an according calculus yields an
explicit formula for the resulting optimal local frequency function in dependence
on the MVF. The strategy is constructed for solving a mixture of initial and
boundary conditions. Starting from initial values in t1 = 0, the PDAE is solved
by progression in the first coordinate direction, while regarding the periodicity in
the second coordinate direction. Test results show that this technique produces
elementary MVFs, too, see [4]. However, the minimisation is based on q(x̂)
instead of the MVF x̂ itself in order to use information from the PDAE. Some
components of the MVF may not influence the function q(x̂) at all and thus can
not be controlled. For example, if the underlying DAE (6) is semi-explicit, then
algebraic variables do not appear in q(x̂). Furthermore, we can not perform an
adequate weighting in each component of the MVF here, which is necessary in
case of largely differing physical units in the system.

4 Variational Technique

We consider biperiodic boundary value problems of the PDAE in the following.
As we have seen in Sect. 2, an inappropriate choice of the local frequency function
results in an oscillatory MVF. Thereby, the number of oscillations within the
domain [0, T1] × [0, 1] can become arbitrarily large. According to (17), the idea
is to decrease oscillating behaviour in the MVFs by minimising some amount of
change. Now we apply the MVF directly in the minimisation. Consequently, the
magnitude of arising partial derivatives has to be quantified.

Let x̂ = (x̂1, . . . , x̂k)
> be the components of a (T1, 1)-periodic MVF. We define

the functional γ : C1(R2,Rk) → R+
0 via

γ (x̂) := T1

∫ T1

0

∫ 1

0

k∑

l=1

wl

(
∂x̂l

∂t1

)2

dt2 dt1 (18)

using constant weights wl ≥ 0 for l = 1, . . . , k. This formula describes only the
amount of change with respect to the first coordinate direction. The transfor-
mation (12) does not affect the total change in the second coordinate direction.
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Hence, using the alternative functional γ̃ : C1(R2,Rk) → R+
0 with

γ̃ (x̂) :=
1

T1

∫ T1

0

∫ 1

0

k∑

l=1

w̃l

(
∂x̂l

∂t2

)2

dt2 dt1, (19)

it holds γ̃(x̂) = γ̃(ŷ) whenever x̂, ŷ are related via (12) under the assump-
tions (11). The proof is straightforward. Therefore, instead of combining (18)
and (19), we just employ the first functional. Furthermore, we recognise that
both functionals are invariant with respect to translations of type (9) in case of
biperiodic MVFs. Remark also that setting some weights equal to zero enables
to focus on an arbitrary subset of components, which allows some flexibility.

To perform the following calculus, we assume x̂ ∈ C2(R2,Rk) for all arising MVFs.
Let x̂opt be an optimal solution, i.e. a global minimum of the functional (18),
corresponding to a local frequency νopt. Applying transformations of type (14),
we obtain competitive MVFs

ŷε(t1, t2) := x̂opt (t1, t2 + εΘ(t1)) for each ε ∈ R (20)

including an arbitrary T1-periodic Θ ∈ C1(R,R) satisfying Θ(0) = Θ(T1) = 0.
The optimal behaviour of the MVF implies

γ(ŷε) ≥ γ(x̂opt) for all ε ∈ R. (21)

To simplify notation, we suppress the location (t1, t2 +εΘ(t1)) of function evalua-
tions in the following. Let x̂opt = (x̂1, . . . , x̂k)

> be the components of an optimal
function now. It follows that the functional (18) corresponding to a competitive
MVF (20) exhibits the formula

γ(ŷε) = T1

∫ T1

0

∫ 1

0

k∑

l=1

wl

(
∂x̂l

∂t1
+ εΘ′∂x̂l

∂t2

)2

dt2 dt1. (22)

We differentiate the functional with respect to ε and thus obtain

dγ(ŷε)
dε

= 2T1

∫ T1

0

∫ 1

0

k∑

l=1

wl

(
∂x̂l

∂t1
+ εΘ′∂x̂l

∂t2

)

·
(

Θ
∂2x̂l

∂t1∂t2
+ εΘΘ′∂

2x̂l

∂t2
2

+ Θ′∂x̂l

∂t2

)
dt2 dt1.

(23)

A necessary condition for a global minimum with respect to the underlying func-
tional (18) is given by

dγ(ŷε)

dε

∣∣∣∣
ε=0

= 0. (24)
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Setting ε = 0 recovers the location (t1, t2) for function evaluations. We omit this
notation in the following, too. Consequently, (23) and (24) imply

∫ T1

0

∫ 1

0

k∑

l=1

wl · ∂x̂l

∂t1
·
(

Θ
∂2x̂l

∂t1∂t2
+ Θ′∂x̂l

∂t2

)
dt2 dt1 = 0. (25)

Integration by parts with regard to Θ(0) = Θ(T1) = 0 yields

∫ T1

0

(
∂x̂l

∂t1
· ∂x̂l

∂t2

)
·Θ′ dt1 = −

∫ T1

0

(
∂2x̂l

∂t1
2
· ∂x̂l

∂t2
+

∂x̂l

∂t1
· ∂2x̂l

∂t1∂t2

)
·Θ dt1. (26)

Thus one term in (25) drops out and we get

∫ T1

0

[∫ 1

0

k∑

l=1

wl · ∂2x̂l

∂t1
2
· ∂x̂l

∂t2
dt2

]
·Θ dt1 = 0. (27)

This relation holds for all T1-periodic functions Θ ∈ C1 with Θ(0) = Θ(T1) = 0.
The fundamental lemma of variational calculus assumes arbitrary smooth func-
tions fulfilling homogeneous boundary conditions. Nevertheless, the result re-
mains the same under the restriction to periodic functions. Consequently, prop-
erty (27) implies

r(t1) :=

∫ 1

0

k∑

l=1

wl · ∂2x̂l

∂t1
2
· ∂x̂l

∂t2
dt2 = 0 for all t1 ∈ R. (28)

Hence we obtain a necessary condition, which the MVF has to satisfy in order to
be an optimal solution. We see that the resulting structure agrees with the free
parameters, i.e. the local frequency, in the PDAE system. The local frequency ν
represents a scalar function depending on t1. Likewise, the scalar function r
in (28) depends on t1 and describes the additional condition to determine the
local frequency.

It is interesting to see the result of the variational calculus applied to the unhelpful
functional (19). In this case, the necessary condition reads

r̃(t1) :=

∫ 1

0

k∑

l=1

w̃l · ∂2x̂l

∂t2
2
· ∂x̂l

∂t2
dt2 = 0 for all t1 ∈ R. (29)

Considering the periodicity of x̂ in the variable t2, integration by parts proves

∫ 1

0

∂2x̂l

∂t2
2
· ∂x̂l

∂t2
dt2 = 0 for l = 1, . . . , k. (30)

Consequently, condition (29) is always satisfied. This property reflects the fact
that the functional (19) is invariant with respect to transformations (12).
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Now we can apply the condition (28) in a numerical method to compute the
MVF x̂ as well as the local frequency ν. Newton’s method yields an approximative
solution of arising nonlinear systems. Thereby, the choice of starting values is
critical for the convergence of the iteration. We suggest the following strategy.
Replacing the input signals b in (6) by constant mean values b0 results in the
autonomous DAE

dq(x)

dt
= f(x(t)) + b0. (31)

If a corresponding periodic solution xper : R → R exists, then we compute this
function and its period T0 by methods described in [5], for example. We define

x̂(t1, t2) := xper(t2), ν(t1) :≡ 1/T0 (32)

and use these functions as starting values in a Newton iteration. It holds γ(x̂) = 0,
i.e. this choice represents a global minimum of the functional (18). Thus we may
expect that (32) yields good starting values for the optimal PDAE solution.

However, the outlined strategy is often not sufficient for convergence. In this
case, we apply a homotopy method based on the PDAE

∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f(x̂(t1, t2)) + λ (b(t1)− b0) + b0 (33)

with parameter λ ∈ [0, 1]. For λ = 0, a PDAE arises, where a solution is given
by (32). For λ = 1, we obtain the desired system. Accordingly, small step sizes
with respect to the parameter λ assure that the solution of one step represents
good starting values for the subsequent step. A physical interpretation of this
homotopy method means to supply the electric circuit with appropriate input
signals. The technique can be used in any numerical scheme solving the PDAE
system.

The computational effort in numerical methods, which apply the additional con-
dition from the variational technique, is not significantly higher in comparison
to methods using continuous phase conditions like (15) or (16), although evalua-
tions of (28) demand more costs and involve more unknowns. The solution of the
PDAE system causes the main part of computational work, since correspond-
ing discretisations exhibit a two-dimensional structure, whereas the additional
constraints represent one-dimensional requirements.

Finally, we remark that other choices of the functional to be minimised are fea-
sible, where variational calculus can be applied in the same way. For example,
according to (17), derivatives of the MVF x̂ can be substituted by derivatives
of q(x̂). Furthermore, instead of integrating the whole domain of dependence,
the minimisation can be restricted to initial values of the MVF on the line t2 = 0.

11
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Figure 3: Circuit diagram of voltage controlled oscillator.

5 Illustrative Example

To apply the constructed technique, we consider a DAE system modelling a
voltage controlled oscillator. Fig. 5 illustrates the corresponding circuit diagram,
where a capacitance, an inductance and a nonlinear resistor arise. Thereby,
the capacitance is controlled by an additional input signal and thus becomes
time-dependent. This circuit is designed similarly to the test example in [6]. A
mathematical description yields system

u̇ = (−ıR(u)− ı) /(Cz)

ı̇ = u/L

0 = z − b(t),

(34)

which represents a semi-explicit DAE of index 1. More details concerning the
index concept with respect to electric circuits can be found in [3]. The unknown
functions are the node voltage u [V], the branch current ı [A] and the variable z,
which reproduces the input signal. The input signal b owns no physical unit,
because it describes a relative change of the capacitance in the system (34). We
select the harmonic oscillation

b(t) = 1 + 0.8 cos
(

2π
T1

t
)

(35)

using the slow rate T1 = 1 ms, which accords to a frequency of 1 kHz. The
current-voltage relation of the nonlinear resistor is given by the function

ıR(u) = (G0 −G∞)Uk tanh

(
u

Uk

)
+ G∞u. (36)
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Figure 4: Capacitance (left) and optimal local frequency (right).

In our simulations, the used technical parameters are

C = 1 nF, L = 1 µH, Uk = 1 V, G0 = −0.1 A/V, G∞ = 0.25 A/V.

For constant input b ≡ 1, the DAE system exhibits a periodic oscillation with
a high frequency about 4 MHz. The time-dependent input (35) generates AM
and FM at largely differing time scales. Consequently, we change to the PDAE
model (7), where we apply the additional condition (28) from the variational
technique. The weights are set to wl = 1 for all l. Furthermore, we use the
first scalar phase condition in (10) with η = 0 to fix a solution. In the PDAE
system, partial derivatives are discretised on a uniform grid employing asym-
metric formulae of second order. Likewise, we evaluate the requirement (28) by
approximations based on values in the grid points. The arising nonlinear system
is solved by Newton iterations, where we utilise the homotopy method explained
in the previous section. The input signal and the resulting local frequency func-
tion are given in Fig. 4. As expected for LC-oscillators, low capacitances cause
high frequencies in a nonlinear correlation. Hence the computed local frequency
is physically reasonable. The simple form of the corresponding MVFs, which are
illustrated in Fig. 5, confirms this fact.

To justify the optimal behaviour of the obtained solution, we apply transfor-
mation (12) to calculate some competitive solutions. Thereby, the new local
frequency functions read

µ(t1) := νopt(t1) + α0

(
1
T1

∫ T1

0
νopt(τ) dτ

)
sin

(
2π
T1

t1

)
, (37)

where a parameter α0 ∈ R is used. Since an integral mean value is included, the
parameter α0 represents a relative magnitude of the perturbation in comparison
to the optimal local frequency. The new local frequency satisfies our assumptions
(iii) and (iv) in (11) required for the transformation. Now we employ formula (12)
to compute the corresponding MVFs. The following table illustrates the resulting
values of the functional (18) evaluated for these competitive MVFs.

13
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Figure 5: Optimal MVFs for each component.

α0 10−3 10−4 10−5 0 −10−5 −10−4 −10−3

γ(x̂µ) 515.53 18.82 12.94 12.89 12.94 18.81 509.96

We recognise that the minimum is reached for α0 = 0, which recovers the local
frequency νopt computed by the variational technique. Moreover, the magnitude
of the functional increases rapidly the more the parameter α0 differs from zero.

Furthermore, we compute a PDAE solution using the continuous phase condi-
tion (15) with η = 0. Fig. 6 demonstrates the resulting local frequency and the
MVF of u. Differences to the optimal local frequency are tiny, namely less than
a relative magnitude of 10−4. In contrast, a small discrepancy is visible in the
MVFs. Thus moderate changes of the local frequency function cause huge defor-
mations in the corresponding MVFs in case of widely separated time scales, see [7]
for further details. Despite this sensitivity, the presented methods produce correct
solutions, since the local frequency is not prescribed but determined indirectly by
the corresponding MVF. The value of the functional (18) results to γ = 13.06 in
the latter simulation, which is very close to the optimal value. Hence continuous
phase conditions permit efficient simulations of the PDAE model, too. However,
this behaviour is heuristic and an according strict justification is missing.
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Figure 6: Local frequency ν (left) and MVF û (right) corresponding to simulation
using continuous phase condition.
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Figure 7: DAE solution for ı reconstructed by PDAE solution (circles) and com-
puted by transient analysis (solid line).

Finally, we use the computed optimal PDAE solution to obtain corresponding
RF signals satisfying the DAE via the reconstruction (8). For comparison, a
transient analysis of the DAE system is performed applying trapezoidal rule,
where values of the PDAE solution provide the initial condition. Fig. 7 displays
the outcome for the current ı in different time intervals. In the first few cycles, the
two signals exhibit an excellent agreement. In later cycles, a phase shift emerges
between both approximations, which is produced by two effects. Firstly, small
numerical errors in the local frequency function amplify during many oscillations.
Secondly, the trapezoidal rule causes a phase shift in comparison to the exact so-
lution, too, which is typical for such integration schemes. Nevertheless, the other
properties of the signal agree in later cycles, i.e. the amplitude, the frequency
and the shape. We recognise AM and FM in this component. During the time
interval [0, T1], about 4 000 oscillations arise, which can be reconstructed by the
PDAE solution.
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6 Conclusions

The multidimensional model based on warped multirate PDAEs provides an ef-
ficient simulation of RF signals, if an arising local frequency function is selected
suitably. For this purpose, a minimum demand has been imposed on the cor-
responding multivariate solution in case of biperiodic boundary value problems.
A transformation formula connecting feasible solutions has enabled a variational
calculus, which produces a necessary condition for an optimal solution. The struc-
ture of the arising constraint agrees to the degree of freedom in the PDAE caused
by the included local frequency function. According numerical simulations, where
the additional condition from the variational technique is used, validate the ef-
ficiency of the presented approach. Furthermore, the designed strategy can be
generalised to the minimisation of other functionals in this context.
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