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Abstract
In radio frequency (RF) applications, slowly varying signals often modulate the
amplitude and frequency of fast carrier waves. A multivariate signal model yields
an efficient representation via decoupling the widely separated time scales. Conse-
quently, the differential algebraic equations (DAEs), which describe a correspond-
ing electric circuit, change into warped multirate partial DAEs. On the other
hand, the transient behaviour of the circuit can be approximated by a parameter-
dependent DAE model including a multivariate structure, too. The properties
of this alternative strategy are investigated. In particular, the two multidimen-
sional approaches are compared with respect to the simulation of RF signals.

1 Introduction

The mathematical model of electric circuits yields systems of differential algebraic
equations (DAEs), which specify the corresponding transient behaviour. Electric
circuits often feature largely differing time scales. Splitting the DAE into subsys-
tems enables to solve each individual part by an adapted time integration, cf. [1].
However, this approach is not adequate, if nearly all arising signals exhibit a
common fast time rate.

In communication electronics, for example, slow input signals alter high fre-
quency oscillations. Consequently, solving the circuit’s DAE demands an enor-
mous computational effort, since the fastest rate limits the tolerable size of time
steps. Alternatively, amplitude modulated signals can be efficiently represented
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by means of a multivariate model, which decouples the time scales. Brachtendorf
et al. [2] introduced an according multirate partial differential algebraic equation
(MPDAE), where corresponding solutions reproduce signals of the DAE exactly.

If the multidimensional model is extended by a local frequency function, then we
can analyse frequency modulated signals, too. Narayan and Roychowdhury [7]
prepared a warped MPDAE for this purpose. The determination of appropriate
local frequencies is crucial for the efficiency of the model. Hence the theoretical
and numerical properties of the warped MPDAE system are more sophisticated
in comparison to the MPDAE model for constant time scales.

We design another multivariate model, which yields a parameter-dependent DAE
system. This strategy can be interpreted as freezing repeatedly the time in the
input of the original DAE. Accordingly, the numerical simulation of this model
becomes less costly compared to solving the MPDAE system. However, the
outcome of the parameter-dependent DAEs reproduces solutions of the circuit’s
DAE only approximately. Nevertheless, both models exhibit similar solutions for
widely separated time scales.

The intention of the paper is to compare the two multidimensional models with
respect to their analytical and numerical qualities. We define the problem con-
cerning the simulation of RF signals in Sect. 2. Next the multivariate signal
model and the resulting MPDAE model is outlined. In Sect. 4, we introduce the
parameter-dependent DAE system and analyse its properties. Sect. 5 includes
the connections between both models with respect to characteristic curves. Sub-
sequently, we observe the use of a solution satisfying the parameter-dependent
DAE as starting values for the MPDAE approach. The reconstruction of approx-
imations to the circuit’s signals is investigated in Sect. 7. Finally, we present
numerical simulations using two versions of a Van der Pol oscillator.

2 Problem Definition

Based on a network approach, the mathematical model of electric circuits typ-
ically generates systems of differential algebraic equations (DAEs), see [3]. We
write the DAE system in the form

dq(x)

dt
= f(x(t)) + b(t), (1)

where x : R → Rk are the unknown time-dependent node voltages and branch
currents. The functions q, f : Rk → Rk represent a charge and a resistive term,
respectively. Furthermore, b : R → Rk specifies independent input signals. We
assume q,x ∈ C1 and f ,b ∈ C0 in the following.
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Figure 1: Signal x for time rates T1 = 10, T2 = 0.5 (left) and T1 = 100, T2 = 0.5
(right).

In RF application, we often encounter oscillators. If the input signals are con-
stant, i.e. b(t) ≡ b0, then system (1) becomes

dq(x)

dt
= f(x(t)) + b0, (2)

which is an autonomous DAE now. We assume that this system features a sta-
ble periodic steady state response xper. The corresponding period T0 is a priori
unknown. We may use time or frequency domain methods to determine this solu-
tion and its period, see [6]. Since system (2) is autonomous, the shifted function
xper(t + c) also represents a periodic solution for each c ∈ R. Accordingly, we
require a phase condition to isolate a special solution from this continuum. For
example, in time domain, we may apply

x1(0) = η (η ∈ R), (3)

which means that a value of the (without loss of generality) first component of the
solution x = (x1, . . . , xk)

> is prescribed. The value η must be located in the range
of the first component of xper. Alternatively, a smooth periodic solution exhibits
time points, where its derivative vanishes, and those are isolated in general. Hence
another possibility is to demand

dx1

dt

∣∣∣∣
t=0

= 0. (4)

These phase conditions can be applied as additional boundary conditions in a
numerical technique.

Now we consider a time-dependent input signal in (1). Consequently, the inherent
time scale T0 may also vary in time. We assume that the input signal changes at
a slow time rate in comparison to fast oscillations of a time scale near T0. In RF
applications, slow input signals change the amplitude and frequency of carrier

3



0
20

40
60

80
100

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

1.5

t
1

t
2

0 20 40 60 80 100
1.8

2

2.2

t
1

Figure 2: MVF x̂ (left) and corresponding local frequency ϑ (right).

waves. The input signals are often periodic, too, which yields the slow rate T1.
A simple instance is the signal

x(t) =
[
1 + α sin

(
2π
T1

t
)]

sin
(

2π
T2

t + β sin
(

2π
T1

t
))

(5)

with time rates T1 À T2. Fig. 1 illustrates this signal for α = 0.5, β = 15 and two
choices of T1, T2. Therefore we require a huge number of time steps to resolve the
signal in case of largely differing time scales. Accordingly, transient analysis of the
DAE (1) becomes inefficient, since the fast rate restricts the integration step size,
whereas the slow rate determines the total time interval of the simulation. Thus
alternative techniques for the numerical simulation are needed, which skilfully
apply information from the separate time scales.

3 Warped MPDAE Model

A multidimensional model can be used to describe RF signals, which include
amplitude as well as frequency modulation. Thereby, we assign an own variable
to each disjoint time scale. However, the frequency modulation has to be modelled
separately to obtain an efficient representation. In our example (5), we set up
the multivariate function (MVF)

x̂(t1, t2) =
[
1 + α sin

(
2π
T1

t1

)]
sin (2πt2) , (6)

which includes the amplitude modulation part only. This function is biperiodic,
where the second period is transformed to 1. Thus the values in the rectangle
[0, T1[×[0, 1[ already fix this function. Fig. 2 shows the MVF, which exhibits a
simple behaviour. Hence we sample the MVF using relatively few grid points.
The frequency modulation part is described by an additional time-dependent
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function

Θ(t) =
t

T2

+
β

2π
sin

(
2π
T1

t
)

. (7)

We take the derivative ϑ := Θ̇ as a local frequency of the signal (5). In our
example, this local frequency results in

ϑ(t) =
1

T2

+
β

T1

cos
(

2π
T1

t
)

, (8)

which is an elementary T1-periodic function, see Fig. 2. Now we completely
reconstruct the original signal via

x(t) = x̂(t, Θ(t)). (9)

Thus the second time scale is stretched and we call Θ a warping function. Con-
sequently, we obtain an efficient representation of the RF signal by the MVF and
corresponding local frequency.

The transition to functions of several variables changes the DAE model (1) into
a warped multirate partial differential algebraic equation (MPDAE)

∂q(x̂)

∂t1
+ ϑ(t1)

∂q(x̂)

∂t2
= f(x̂(t1, t2)) + b(t1), (10)

where x̂ is the MVF of x. The signals b operate exclusively at a slow time scale
and thus do not require a multidimensional description. We assume that the
input signals produce frequency modulation in the solution. Consequently, the
local frequency function ϑ depends on the same variable as b.

It follows that a solution of the MPDAE (10) yields a solution of the DAE (1)
by the reconstruction (9) with Θ(t) =

∫ t

0
ϑ(σ)dσ. To solve the MPDAE in a

finite domain, appropriate boundary conditions have to be specified using the
periodicity. If the input signals are T1-periodic, then we assume the existence of
a biperiodic solution, i.e.

x̂(t1 + T1, t2) = x̂(t1, t2), x̂(t1, t2 + 1) = x̂(t1, t2) for all t1, t2 ∈ R, (11)

together with a T1-periodic local frequency ϑ. Accordingly, we utilise the rect-
angle [0, T1[×[0, 1[ in time domain inclusive biperiodic boundary conditions. A
corresponding numerical technique based on the inherent information transport
along characteristic curves is investigated in [8].

Given an aperiodic input b, an initial/boundary value problem of the MPDAE
system arises, which is sketched in Fig. 3, namely

(IC) x̂(0, t2) = h(t2) for all t2 ∈ R
(BC) x̂(t1, t2 + 1) = x̂(t1, t2) for all t1 ∈ R+, t2 ∈ R.

(12)
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Figure 3: Time domain for initial/boundary value problem of MPDAE.

Thereby, the 1-periodic initial function h has to be chosen consistent with respect
to the DAE (1). Moreover, initial states including identical value h(0) reproduce
the same DAE solution. Thus the choice of initial values influences the efficiency
of this approach, too. We may also use problem (12) to determine a biperiodic
MVF in case of periodic input. Starting from some initial values, the MPDAE is
solved in t1-direction until the solution reaches a biperiodic steady state response.
This technique corresponds to a multidimensional extension of transient analysis.

The MPDAE model demands the determination of an appropriate local frequency
function. The local frequency shall provide a simple MVF and thus an efficient
multidimensional representation. Hence a suitable local frequency is a priori
unidentified. We keep the function ϑ as an additional unknown in the system.
Consequently, an extra condition is required to determine the complete solution.
Houben [5] proposes a minimum demand, which prevents undesirable oscillations
in MVFs. On the other hand, we consider continuous phase conditions, see [7],
in the following. These constraints control the phase of the solution in each cross
section with constant value t1. Considering (without loss of generality) the first
component of x̂ = (x̂1, . . . , x̂k)

>, we may use

x̂1(t1, 0) = η(t1) (η : R+ → R) for all t1 ∈ R+, (13)

including a prescribed function η, or

∂x̂1

∂t2

∣∣∣∣
t2=0

= 0 for all t1 ∈ R+. (14)

Thus additional boundary conditions arise in time domain. These requirements
represent multidimensional generalisations of the phase conditions (3) and (4)
from the DAE case. The above phase constraints often yield simple MVFs in
solving the MPDAE. However, the efficiency of the resulting multidimensional
description can not be guaranteed in general. Therefore the continuous phase
conditions represent heuristic choices motivated by the behaviour of RF signals.
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Furthermore, the system (10) is autonomous in t2-direction. Hence if x̂ represents
a solution, then the shifted function x̂(t1, t2 + c) satisfies the MPDAE for each
c ∈ R, too. In problem (12), the initial values fix a solution uniquely. On the
contrary, using biperiodic boundary conditions, we have to isolate single functions
from the continuum of shifted solutions. The additional constraints (13) or (14)
are able to perform such a fixing.

More details about the MPDAE model for the case of constant time scales can
be found in [10].

4 Parameter-dependent DAE Model

Another multidimensional model corresponding to the DAE (1) is obtained by
the following idealisation. Since we assume slowly varying input signals, they
are nearly constant in relatively large time intervals. Freezing time in the input
yields the DAE

dq(x)

dt
= f(x(t)) + b(λ) (15)

with parameter λ ∈ R+. For fixed λ, the DAE shall exhibit a stable periodic
steady state response xλ with frequency ϕ(λ). Applying the normalising trans-
formation t → ϕ(λ)−1t of the time axis, the parameter-dependent DAE

ϕ(λ)
dq(x)

dt
= f(x(t)) + b(λ) (16)

for λ ∈ R+ arises. All periodic solutions xλ of (16) feature the period 1 now.
Each DAE of this family is autonomous. Accordingly, we can use the phase
condition (3) or (4) in a numerical time domain method to compute the periodic
solution xλ and its original frequency ϕ(λ). If this is done for all λ, we obtain a
function

x̃ : R+ × R→ Rk, (λ, t) 7→ xλ(t), (17)

which is periodic in t with rate 1 and satisfies (x̃ = (x̃1, . . . , x̃k)
>)

x̃1(λ, 0) = η(λ) (η : R+ → R) for all λ ∈ R+ (18)

or
dx̃1

dt

∣∣∣∣
t=0

= 0 for all λ ∈ R+. (19)

In practice, we solve the DAE model (16) using only a finite set of parameters
0 ≤ λ0 < λ1 < · · · < λn. If the input signals are T1-periodic, then we determine
a (T1, 1)-periodic function x̃, i.e. λj ∈ [0, T1[ holds.
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We are able to solve parameter-dependent DAEs of the family (16) for each
parameter λj separately. Hence this approach allows ideal parallel computation.
Furthermore, b(λj) ≈ b(λl) implies that the DAE has to be solved for just
one of the two parameters. If b includes just a single input signal, then the
computational effort decreases significantly, since many recurrences appear in
general.

We use the model (16) to get an impression of the oscillator’s behaviour. Plotting
the function x̃ as a surface provides a clear visualisation. Moreover, the identi-
fication t1 = λ, t2 = t enables a comparison to the MPDAE model. However,
it is necessary that x̃ ∈ C1 holds for this relation. Accordingly, we assume the
existence of a smooth solution of the parameter-dependent DAEs, which satis-
fies one of the boundary conditions (18),(19). This assumption is as strong as
the requirement that a solution of the MPDAE exists, which fulfils one of the
continuous phase conditions (13),(14).

In a numerical simulation using the parameters λ0, . . . , λn, we have to compute
separate solutions with correct collective phase to achieve a smooth solution.
For each λj, several isolated solutions satisfying one of the boundary conditions
(18),(19) exist in general. A discretisation of the DAEs yields nonlinear systems,
which are solved iteratively by Newton methods. The result corresponding to
λj represents good starting values in the subsequent step of λj+1. This choice
usually leads to a solution with correct phase. However, the arising sequential
structure reduces the potential for parallelism.

The parameter-dependent DAE (16) can also be obtained from the MPDAE (10)
by dropping the derivative with respect to t1. Accordingly, the local frequency ν
becomes the frequency function ϕ. In case of widely separated time scales, the
MVFs change relatively slowly in t1-direction in comparison to the t2-direction.
Hence the idealisation by neglecting the slow derivative is reasonable.

A disadvantage of the model (16) results from freezing the time with respect to
input signals. Consequently, we are not able to reconstruct an exact solution of
the corresponding DAE (1). On the contrary, the MPDAE approach (10) yields
exact signals of the DAE (1) via (9) due to its origin.

5 Characteristic System

In this section, we compare the analytical behaviour of the MPDAE model (10)
with the parameter-dependent DAE model (16). The MPDAE system exhibits an
inherent hyperbolic structure, see [8]. Accordingly, we arrange the characteristic
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system
d
dτ

t1(τ) = 1

d
dτ

t2(τ) = ϑ(t1(τ))

d
dτ

q(x̂(τ)) = f(x̂(τ)) + b(t1(τ)),

(20)

where t1, t2 and x̂ depend on a variable τ now. Solutions of the system (20) are
called characteristic curves. Given a local frequency function ϑ, we solve the first
part and obtain

t1(τ) = τ + c1

t2(τ) = Θ(τ + c1) + c2 with Θ(τ) =

∫ τ

0

ϑ(σ) dσ
(21)

involving integration constants c1, c2 ∈ R. Fig. 4 illustrates some of these charac-
teristic projections in case of widely separated time scales. Assuming a high local
frequency, it holds ϑ(t1) ≥ ϑ0 > 0 for all t1 and thus the warping function Θ is
bijective.

We consider MPDAE solutions, which are periodic in the second coordinate di-
rection with rate 1. Hence we observe the domain D := R+ × [0, 1], see Fig. 4.
Selecting an initial point (λ, 0) for arbitrary λ ≥ 0, the characteristic projection

t1(τ) = τ + λ

t2(τ) = Θ(τ + λ)−Θ(λ)
(22)

runs through this point for τ = 0. Only points corresponding to τ ∈ [0, τf ] are
situated in D, where

τf (λ) = Θ−1 (1 + Θ(λ))− λ > 0. (23)
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A transformation of the last part in (20) with respect to a variable ξ ∈ [0, 1]
yields the system

1

τf (λ)
· dq(x̂(ξ))

dξ
= f(x̂(ξ)) + b(λ + τf (λ)ξ). (24)

Now there exist two possibilities how extremely differing time scales arise. Firstly,
the local frequency may increase. If ϑ(t1) À 1 holds for all t1 ≥ 0, then it follows
τf (λ) ¿ 1 for all λ ≥ 0. Consequently, we can approximate the input signal
in (24) by b(λ) for all ξ ∈ [0, 1]. Secondly, the input signal may become slower,
which means that b is nearly constant even in relatively large time intervals.
Therefore the approximation b(λ) for all ξ ∈ [0, 1] is reasonable, too. Hence
the system (24) becomes more and more similar to the parameter-dependent
DAE (16) in case of increasing differences in time scales. Accordingly, the time
intervals τf approach the period ϕ−1 in the parameter-dependent DAE. However,
we can not perform a transition to the limit case τf → 0, because the system (24)
would change completely. This fact indicates that the parameter-dependent DAE
is only an approximation for the MPDAE system for fixed time rates.

6 Application as Starting Values

We have seen that the parameter-dependent DAE (16) represents a good approx-
imation for the MPDAE (10) in case of widely separated time scales. Since the
computational effort for simulating the parameter-dependent DAE is lower than
for the MPDAE approach, the idea is to solve the family of DAEs first and then
to use this information for handling the MPDAE.

In the MPDAE system, the local frequency function ϑ is not unique. According
choices determine the efficiency of the MVF representation. On the contrary,
the function ϕ in the parameter-dependent DAE is defined as the frequency of
periodic solutions. Thus we might think of prescribing ϑ := ϕ as a good estimate.
The MPDAE model can be solved without an additional determination of the
local frequency now. Unfortunately, this choice does not work due to a high
sensitivity of the problem in case of largely differing time scales. For simplicity,
assuming constant frequency ϑ ≡ ϑ0, the warping function demonstrates this
behaviour. Let T1 be a slow rate, it follows

Θ(T1; ϑ0 · (1 + ε)) =

∫ T1

0

ϑ0 · (1 + ε) dσ = Θ(T1; ϑ0) + T1ϑ0ε. (25)

If T1ϑ0 À 1 holds, then the relative error ε is amplified significantly. Hence tiny
changes of the local frequency result in a large deformation of the corresponding
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MVF. Accordingly, we do not expect an a priori specification of local frequencies
to yield an efficient representation.

Nevertheless, we use the results of the parameter-dependent DAEs as starting val-
ues in Newton methods, which solve nonlinear systems in numerical techniques
for the MPDAE. Consequently, the same phase condition has to be used in both
models. Since this choice of starting values is near the desired solution, conver-
gence properties of the iteration improve considerably. In comparison to a rough
estimate, we require less iteration steps, which leads to a reduction of computa-
tion work. However, if the choice is still not sufficient for the convergence of some
Newton method, then we apply a homotopy method. The MPDAE system

µ
∂q(x̂)

∂t1
+ ϑ(t1)

∂q(x̂)

∂t2
= f(x̂(t1, t2)) + b(t1) (26)

includes the homotopy parameter µ ∈ [0, 1]. For µ = 0, the parameter-dependent
DAE arises. The plain MPDAE is obtained for µ = 1. Thus small changes
in the homotopy parameter guarantee that the solution of one step represents
good starting values in the next step. This technique can also be interpreted in
the context of characteristic curves. For small µ, the characteristic projections
increase rapidly and reach a line t1 = const. in the limit case µ → 0.

7 Perturbed DAE System

Motivated by (9) in the MPDAE case, we use the solution of the parameter-
dependent DAE (16) to reconstruct directly the function

y(t) := x̃(t, Φ(t)) with Φ(t) =

∫ t

0

ϕ(σ) dσ. (27)

Although this signal is not a solution of the original DAE (1), it satisfies a per-
turbed DAE system. Given a solution x̃ ∈ C1 of (16), we calculate the derivative

s̃ :=
∂q(x̃)

∂λ
. (28)

Considering the identification t1 = λ, t2 = t, the function x̃ satisfies the modified
MPDAE

∂q(x̃)

∂t1
+ ϕ(t1)

∂q(x̃)

∂t2
= f(x̃(t1, t2)) + b(t1) + s̃(t1, t2), (29)

which is not autonomous in the second time scale any more. Hence the recon-
structed signal (27) solves the perturbed DAE

dq(y)

dt
= f(y(t)) + b(t) + p(t) with p(t) := s̃(t, Φ(t)). (30)
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In general, the input signals b occur just in some equations of the system (30).
On the contrary, the perturbation p may influence all components depending on
the structure of the function q. In case of widely separated time scales, we expect
that the perturbation is small. An a posteriori error estimation can be obtained
by the perturbation index concept, see [4]. Let the DAE (1) exhibit perturbation
index r and consider a time interval I := [t0, t1]. If x,y are solutions of (1)
and (30), respectively, then it holds

max
t∈I

‖x− y‖ ≤ C

(
‖x(t0)− y(t0)‖+ max

t∈I
‖p‖

+ max
t∈I

∥∥∥∥
dp

dt

∥∥∥∥ + · · ·+ max
t∈I

∥∥∥∥
dr−1p

dtr−1

∥∥∥∥
)

,
(31)

provided that the terms on the right-hand side are sufficiently small. Thereby,
an arbitrary vector norm ‖ · ‖ is used. The constant C depends on the DAE (1),
its specific solution x and the interval I but not on the perturbance.

The index 1 case in uncritical, since the right-hand side in (31) can be bounded
directly by the maximum norm of s̃. For index 2, the term ṗ is involved, too, and
thus partial derivatives of s̃ in connection with the function Φ̇ = ϕ arise. However,
we can use a numerical solution for x̃ and ϕ to calculate a rough estimate of ‖ṗ‖.
In general, a higher index than 2 does not occur in circuit simulation. The ODE
case, i.e. index 0, can be included, too, where a bound by the maximum norm
of s̃ is valid like in the situation of index 1.

Hence the relation (31) enables an a posteriori error calculation. Thereby, the
quality of the approximation by the perturbed DAE system (30) is estimated.
Common applications do not permit an explicit computation of the constant C.
Nevertheless, we accept the signal (27) as an adequate approximation for the
solution of (1) in case of sufficiently small involved norms of the perturbation.
For example, if the perturbation has the magnitude of some physical noise in
the underlying electric circuit, then an acceptance of the approximation (27) is
obvious. Alternatively, a backward analysis allows for using a numerical solu-
tion of the DAE (1) as the exact solution of a perturbed DAE. Consequently,
a disturbance p in (30) with a magnitude of such a perturbation implies that
the signal (27) will be an approximation as accurate as the result of a numerical
scheme applied to the DAE (1).

8 Illustrative Examples

In our numerical simulations, we consider a Van der Pol oscillator. This bench-
mark corresponds to an electric circuit, which consists of a capacitance, an in-
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ductance and a nonlinear resistor. Adding a voltage source, a forced oscillator
arises. We consider the ordinary differential equation (ODE)

u̇ = v
v̇ = −10(u2 − 1)v − (2π)2u + b(t).

(32)

Using constant input b, the oscillator produces a periodic response. If a time-
dependent input is employed, then the system exhibits frequency modulated so-
lutions. The system (32) represents a stiff ODE. On the contrary, the frequency
modulation vanishes in the nonstiff case, cf. [9]. We apply the input signal

b(t) = 30 sin
(

2π
T1

t
)

(33)

with time rates T1 = 20, 200, 2000. The multidimensional models result in a
multirate partial differential equation (MPDE) and a parameter-dependent ODE,
respectively. We select the phase conditions (14) and (19). In the MPDE ap-
proach, we employ biperiodic boundary conditions. All arising problems are
solved by finite difference methods with symmetric differences on uniform grids.
The outcome of the parameter-dependent ODE yields the starting values in New-
ton iterations for solving the MPDE.

Fig. 5 illustrates the local frequencies of the MPDE model and the frequencies
of the parameter-dependent ODEs. We observe that the two functions coincide
in case of largely differing time scales. Table 1 illustrates the magnitudes of
differences between the computed solutions. The more the time scale T1 becomes
slower, the more both multidimensional models agree. Therefore just the MVFs
from the MPDE approach are shown in Fig. 6. The shape of MVFs is similar for
all three time rates.

Table 1: Maximum differences between solutions from multivariate models.

T1 |ϑ− ϕ| |û− ũ| |v̂ − ṽ|
20 3.9 · 10−2 3.3 · 10−1 5.5 · 100

200 3.8 · 10−3 3.2 · 10−2 5.5 · 10−1

2000 3.8 · 10−4 3.2 · 10−3 5.5 · 10−2

We use the formulae (9) and (27) to obtain corresponding ODE solutions of (1)
and (30), respectively, in the case T1 = 2000. Fig. 7 and Fig. 8 demonstrate
the results. For comparison, an initial value problem of (32) was solved via
trapezoidal rule. In the first few cycles, all three signals exhibit a good agreement.
In later cycles, a phase shift arises, since small numerical errors of the frequency
functions amplify during many oscillations.
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Figure 6: MVFs computed by MPDE model for time rate T1 = 2000.

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

t
500 502 504 506 508 510

−3

−2

−1

0

1

2

3

t

Figure 7: ODE solution u reconstructed by MPDE solution (—) and by
parameter-dependent ODE solution (– –) together with integrated reference sig-
nal (– · –) in time intervals [0, 10] (left) and [500, 510] (right).
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Figure 8: ODE solution v reconstructed by MPDE solution (—) and by
parameter-dependent ODE solution (– –) together with integrated reference sig-
nal (– · –) in time intervals [0, 10] (left) and [500, 510] (right).

Finally, we also calculate approximately the magnitude of the perturbance (28)
corresponding to the reconstructed signal (27). Table 2 illustrates the outcome
for the two components. In the three cases, results differ exactly by a scaling
with respect to the time rate T1, since the numerical solutions for the parameter-
dependent ODE involve equal values of the input signal. As the derivative in the
second equation of the ODE system features a higher magnitude in comparison
to the first equation, the same holds for the perturbations, too.

Table 2: Maximum norm of perturbations.

T1

∣∣∂ũ
∂λ

∣∣ ∣∣ ∂ṽ
∂λ

∣∣
20 1.8 · 10−1 2.6 · 100

200 1.8 · 10−2 2.6 · 10−1

2000 1.8 · 10−3 2.6 · 10−2

Furthermore, we investigate a Van der Pol oscillator, where an input signal in-
fluences the capacitance term. Thus the corresponding electric circuit represents
a voltage controlled oscillator. We formulate the system

u̇ = v
v̇ = −10(u2 − 1)v − (2πw)2u
0 = w − b(t),

(34)

which is a DAE of index 1. We consider the input signal

b(t) = 1 + 1
2
sin

(
2π
T1

t
)

(35)

with time rates T1 = 20, 200, 2000. Again the MPDAE approach and the pa-
rameter-dependent DAE model is applied in a numerical simulation, where the
settings accord to the previous example.
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Fig. 9 depicts the computed local frequency of the MPDAE model, which re-
sponds to the input signal. For all three time rates, the frequencies and MVFs of
both models exhibit a better agreement than in the previous benchmark. Table 3
demonstrates the quantities. The MVFs computed by the MPDAE approach
are shown in Fig. 10. Again the outcome is similar for all periods T1. The re-
lation between reconstructed univariate solutions behaves like in the previous
discussion.

Table 3: Maximum differences between solutions from multivariate models.

T1 |ϑ− ϕ| |û− ũ| |v̂ − ṽ| |ŵ − w̃|
20 1.3 · 10−2 6.0 · 10−2 5.6 · 10−1 0
200 1.3 · 10−3 3.6 · 10−3 4.4 · 10−2 0
2000 1.3 · 10−4 3.6 · 10−4 4.4 · 10−3 0

The magnitude of the arising perturbation (28) corresponding to the parameter-
dependent DAE model results to

∣∣∂ũ
∂λ

∣∣ ≤ 3.8 ·10−3 and
∣∣ ∂ṽ
∂λ

∣∣ ≤ 4.7 ·10−2 in the case
of time scale T1 = 2000. The third component for w̃ exhibits no perturbation,
since it represents an algebraic variable of a semi-explicit DAE.
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Figure 9: Local frequency of MPDAE model (—) and input signal (· · ·) using
time rate T1 = 2000.
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Figure 10: MVFs computed by MPDAE model for time rate T1 = 2000.

9 Conclusions

Two multidimensional models for simulating RF signals have been presented. The
MPDAE model reconstructs exact DAE solutions and thus corresponding numer-
ical methods yield the signals for arbitrary demand of accuracy. The parameter-
dependent DAE model produces an approximation of the DAE solution, which
exhibits a constant error. However, a simulation requires less computational effort
and allows more parallelism in the latter approach. Furthermore, the connections
between both models permit to use solutions of the parameter-dependent DAEs
as starting values for a simulation applying the MPDAE system.

Acknowledgements

This work is part of the BMBF programme “Multiskalensysteme in Mikro- und
Optoelektronik” within the project “Partielle Differential-Algebraische Multi-
skalensysteme für die Numerische Simulation von Hochfrequenz-Schaltungen”
(No. 03GUNAVN). The author thanks Prof. Dr. M. Günther (University of
Wuppertal) for helpful discussions.

17



References

[1] Arnold, M.; Günther, M.: Preconditioned dynamic iteration for coupled
differential-algebraic systems. BIT 41 (2001) 1, pp. 1-25.

[2] Brachtendorf, H. G.; Welsch, G.; Laur, R.; Bunse-Gerstner, A.: Numeri-
cal steady state analysis of electronic circuits driven by multi-tone signals.
Electrical Engineering 79 (1996), pp. 103-112.

[3] Günther, M.; Feldmann, U.: CAD based electric circuit modeling in indus-
try I: mathematical structure and index of network equations. Surv. Math.
Ind. 8 (1999), pp. 97-129.

[4] Hairer, E.; Lubich, Ch.; Roche, M.: The Numerical Solution of Differential-
Algebraic Systems by Runge-Kutta Methods. Springer, Berlin, 1989.

[5] Houben, S.H.M.J.: Simulating multi-tone free-running oscillators with opti-
mal sweep following. in: Schilders, W.H.A., terMaten, E.J.W., Houben,
S.H.M.J. (eds.): Scientific Computing in Electrical Engineering, Mathemat-
ics in Industry, Springer, 2004, pp. 240-247.

[6] Kundert, K. S.; Sangiovanni-Vincentelli, A.; Sugawara, T.: Techniques for
finding the periodic steady-state response of circuits. in: Ozawa, T. (ed.):
Analog Methods for Computer-Aided Circuit Analysis and Diagnosis. Marcel
Dekker Inc., New York, 1988, pp. 169-203.

[7] Narayan, O.; Roychowdhury, J.: Analyzing oscillators using multitime
PDEs. IEEE Trans. CAS I 50 (2003) 7, pp. 894-903.

[8] Pulch, R.: Multi time scale differential equations for simulating frequency
modulated signals. Appl. Numer. Math. 53 (2005) 2-4, pp. 421-436.

[9] Pulch, R.: Numerical techniques for solving multirate partial differential
algebraic equations. in: Schilders, W.H.A., terMaten, E.J.W., Houben,
S.H.M.J. (eds.): Scientific Computing in Electrical Engineering, Mathemat-
ics in Industry, Springer, 2004, pp. 337-344.

[10] Roychowdhury, J.: Analysing circuits with widely-separated time scales us-
ing numerical PDE methods. IEEE Trans. CAS I 48 (2001) 5, pp. 578-594.

18


