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Abstract: In many applications, differential equation models require geometric
integration, i.e., the application of structure-preserving integration schemes. In
computational finance, for example, the numerical simulation of extended Libor
market models used to value structured interest rate derivatives has to preserve
positivity or boundedness of the underlying stochastic processes used to model
mean-reverting volatility or forward rates. This paper discusses how stochastic
integration schemes can be constructed in order to maintain these properties of
the analytical solution. Milstein-type methods prove to be the method-of-choice
with respect to both efficiency and preservation of structural properties, as they
turn out to dominate the increments of Brownian motions. These theoretical
results are confirmed by numerical tests.
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1 Introduction

Geometric integration, i.e., development and analysis of structure-preserving in-
tegration schemes, is indispensable in the numerical simulation of many ordinary
differential and differential-algebraic models [4]. In many applications, essential
model properties such as (equality and inequality) constraints or positivity are
mandatory and have to be maintained in the numerical approximation. Positivity
in particular plays an essential role for some processes in financial applications.
For example stock option models or state-of-the-art interest rate derivative models
usually require positivity due to financial interpretation.

In the extended Libor market model with stochastic volatility [1,2, 7], forward
rates F} are defined by scalar stochastic differential equations of the type

dF; = O'(t) ‘/Yt(,D(Ft)th, Fy >0 (1)



where W; denotes a Brownian motion on a probability space (Q,F, P) and o :
R* — R* a positive function. The function ¢ can be given either by displaced
diffusion, ¢(x) =z +m (m € R), or as constant elasticity of variance, ¢(x) = x®
(v € RT). The volatility V; is described by the mean reverting process

AV, = k(0 — Vi)dt + VPAW;, Vo >0 (2)

with k,0,¢ € RT, 1/2 < p < 1 and a second Brownian motion Wt uncorrelated
to Wi. The probability space satisfies the usual conditions and the filtration is
assumed to be generated by the two Wiener processes F = o(W;, W;). This
extended model (1-2) does not allow for an analytic solution and forward rates
are non-lognormal, introducing a smile into the implied volatility surface. As the
mean reverting process (2) for V; can be computed independently of (1), we have
to deal with two (only one-sided) coupled scalar stochastic differential equations.

Depending on the model parameters, one can show that the volatility V; and
the forward rates F; are bounded from below by b € R, i.e.,

e Vo>0= P ({V,>bforallt>0}) =1 with b=0;

e Fp>0=P ({F; > bforall t > 0}) =1 with b = —m (displaced diffusion)
and b = 0 (constant elasticity of variance), resp.;

These structural properties are generally required in order to interpret V; as a
volatility and F; as a forward rate and have to be preserved during numerical
integration. Based on an analysis of analytical and numerical positivity, we show
that this task can be performed efficiently by stochastic integration schemes of the
Milstein type.

The paper is organized as follows. Introducing the concept of analytical positiv-
ity and boundedness from below (by a constant b € R), both model equations (1-2)
are classified in Section 2 with respect to structural properties depending on model
parameters. Following the lines of Schurz [11], the notion of eternal (or finite) life
time of stochastic integration schemes is used to test these schemes for numerical
positivity and boundedness, resp., if applied to (1) and (2). Whereas standard
approaches such as the Euler method must fail, schemes that are based on bal-
ancing or dominating the Wiener increment AW, ., = Wy ., — W, allow for
structure-preservation. The analysis indicates that the Milstein method, a domi-
nating scheme, turns out to be the best in any case: its explicit version for forward
rate model (1), and its implicit one for mean-reverting processes (2). Balancing
schemes, however, are characterized by a conflict of interest: if not restricting to a
weaker version of numerical positivity, numerical positivity excludes convergence of
the method and vice versa. Numerical tests in Section 4 for both model equations
validate these theoretical results.



2 Analytical positivity and boundedness

Consider a scalar It6 diffusion X; given by the stochastic differential equation
dX; = a(Xt)dt + b(Xt)th, Xo > b (3)

with Brownian motion W;. To decide, whether X; is bounded from below by b
or not, we utilize the concepts introduced in [9] without giving any proofs, which
would clearly extend the scope of this article.

We define the scale function s and the speed density m,

s(r) = exp (- /x: zg((z)) dt) ’ m(@) = S(ﬂf)ll?Q(x)

and correspondingly the measures dM = m(z)dr and dS = s(x)dx. In terms of
these differentials the generator L of the It6 diffusion (3) is given by

L) = 537 | )] ()

2dM |dS

Based on the knowledge of drift a and diffusion b, this representation enables us
to classify the range of an It6 diffusion X; with respect to a boundary b € R:

Definition 2.1 Let x > b be arbitrary but fized, and

z—b

S(b,z] := limS[z,z], Slz,x] = /33 (y)dy, (5)
S(F) = /szdM /szds (6)

Then the boundary b is called attractive if
S(b,z] < 0.

We classify b as attainable if
(b) < oo.

Assuming X > b, these concepts can be interpreted as follows:

e The Itd diffusion X; has an unattractive or attractive but unattainable
bound b, if B
P({X;>bforallt>0})=

e The It6 diffusion X; has an attainable bound b, if
P({X;>bforallt>0})=1and P({3t" >0: X =b}) > 0;

For b = 0, attractivity and attainability are equivalent to positivity and non-
negativity.

This characterization enables us to show the assumed structural characteristics
of forward rates (1) and for the volatility (2) asserted in the introduction.
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Mean reverting processes

Depending on its parameters, the mean reverting process (2) has a positive (non-
negative range):

Lemma 2.2 The stochastic process given by
dX; = k(0 — Xy)dt + eXTdWy (7)
with k,0,¢,p € RY, has an unattractive bound b = 0 if

1. p=13 and 260 > € or

1
2
1
otherwise zero is attainable.

Proof: To verify the first assertion, we start with computing the function s

s(r) = exp (_ /; 2”(92—2)612) = exp (— log(x)iﬁf + xi’;)

. €z
- 2 2K
= 2729/ exp (x2>
€

This calculation leads to the following result for the measure S

S(0,2] = oo if 2k0 > €% and S(0, ] < oo else.

Accordingly we only have to check the case where 2k < €2 (to simplify notation
let A = 2k0/€%):

X(0) = /01 (/Oys(z)dz> m(y)dy = /Ow Cyl)‘eygi;dy = /Ow C/edy < .

Thus the lower bound 0 is always attainable if 2x6 < €.
To prove the second statement, we have to calculate the function s:

B 2k60 1-2p 2K 99
s(y) = exp ( Z1-2p)" ) exp (62(2 —op)" :

In the case that p > % the second term is bounded from below by ¢ € R on [0, z].
However there exists some xy > 0 such that

€2(1 — 2p) 0 0 -

Hence we get for any arbitrary = > xg

0 2K0 1-2 R
S0,z] > S(O,:UO]Z/ cexp <— )y p> dy>/ Yy dy = oc.
0 0

e2(1—2p
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Therefore the bound is unattractive. Last we have to prove that 0 is attainable if
p < 3. First we notice that s(y) € [L,U] C R on the interval [0,z]. So we obtain

s0)= [*([[see)mtnar < ["@wmnar <G [*ihan <o

which completes the proof. O

Forward rate models

Assuming a positive volatility V; and o(t) > 0 for all ¢ > 0, the positivity of
the forward rates (1) is characterized by the following two corollaries that follow
immediately from Def. 2.1:

Corollary 2.3 (Displaced diffusion) The Ité diffusion
dXy = (a + bXy)dWy, Xo>0 (8)
with a € R and b € RT has the following characteristics:
o X; € [—a/b,x]
e —a/b is an attractive boundary but not attainable.
Corollary 2.4 (Constant elasticity of variance) The Ité diffusion
dX; = XPdWy, Xo>0,a>0. (9)
possesses the following properties
o 0 <a<1/2= 0 is an attainable boundary,

e 1/2 < o= 0 is an unattainable but attractive boundary.

The proof can be found in [§].

3 Numerical positivity and boundedness

The concept of numerical positivity was introduced by Schurz [11]. We slightly
generalize this concept to boundedness from below by b € R.

Definition 3.1 Let X; be a stochastic process with
P ({X;>b forallt > 0}) = 1. (10)
Then the stochastic integration scheme possesses an eternal life time if
P ({Xn41 > b/ X, > b}) = 1. (11)

Otherwise it has a finite life time.



In this definition the life time only depends on one single step of the integration
scheme. Schurz also introduced a weaker definition of positivity.

Definition 3.2 A stochastic integration scheme is called e-positive or, more gen-
erally, e-bounded from below by b € R, if

P({Xp41 >b/X, >b+e}) =1 (12)

Obviously an eternal life time implies e-boundedness.
In general, one cannot expect numerical schemes to preserve positivity or
boundedness. An intrinsic example is given by

Proposition 3.3 The Euler method has a finite life time for all Ito diffusions (3)
with positive paths.

Proof: Consider one integration step of the Euler scheme from X, ~ X; to

Xn+1 ~ th+1 with Atn = tn+1 —tn and Ath = th+1 — thi
Xn+1 = a(Xn)Atn + b(Xn)Ath

It suffices to prove the proposition for a(Xy)b(X,) > 0. Then

a(Xn)
b(Xy)

X1 <0& Ath < — Atn-

occurs with a positive probability. O

The Euler scheme has to fail since AW, takes all values ¢ € R with a positive
probability. So the question raises up how it is possible to prevent a numerical
integration scheme from becoming negative (or more general, bounded below).
There are mainly two possibilities to provide positivity: balancing and dominating.

The idea of balancing was also introduced by Schurz et al. [10], where the
Balanced Implicit Method (BIM) is used to preserve positivity.

Definition 3.4 (BIM) One integration step of the BIM is given as follows

Xnt1 = Xp+a(Xn)Ay, +b(X0) AW, + (X — Xpg1)Cr(X)
Cn(Xn) = co(Xn)Ar, +a1(Xn)[AW,|.
In this method the functions ¢y and ¢y are called control functions. To guarantee

convergence of the method, the control functions must be bounded and have to
satisfy the inequality

1+ CO(Xn)Atn + (Xn)|Ath| > 0. (13)

Next we present some result about positivity preservation in the case of mean
reverting processes.



3.1 Mean-reverting processes & implicit Milstein
schemes

For arbitrary parameters, it is not possible to get a closed solution form for mean-
reverting processes (2). First we will concentrate on the most popular mean-
reverting process which are commonly used to model stochastic volatility [5, 6].

Recently these processes have been introduced to model stochastic volatility
in the context of extended Libor market models [2]:

dX; = H(G — Xt)dt + e/ X dW. (14)

In Section 2 we have already analyzed this process and proved its positivity in the
case that 2xk6 > €2. One can show that the BIM method is not an appropriate
choice to integrate this SDE: numerical positivity is contradictory to convergence,
since positivity would demand an unbounded control function c¢;. However, we
can guarantee positivity in the weaker sense of e-positivity:

Lemma 3.5 The BIM method is e-positive for the stochastic process (14) if we
choose the control functions as follows:

¢ = K,
ex™? ifx >e,
a(r) = _1
ee" 2 else.
Proof: See [8] and [11] for a detailed discussion. O

But we can apply the idea of domination to this SDE, regarding the class of
explicit and (drift-)implicit Milstein schemes: applied to the Ité diffusion, these
schemes read

- 1
Xny1 = Xn+a(X)As, +b(Xn) AW, + 5b’(Xn)b(Xn) (AW, )2 — Ay,) , (15)
where the drift term a(X) is evaluated at the approximate solution at time point
tn and t,11, respectively:

X = X, (explicit Milstein scheme) ; (16)

X = X, (implicit Milstein scheme) ; (17)

Due to the negative sign of X; in the drift a(X;) = k(0 — X}), the explicit Milstein
scheme is not the right choice for (14). A more suitable choice is the implicit
Milstein method, as shown in

Theorem 3.6 The implicit Milstein method (15,17) has an eternal life time for
the integration of the stochastic process (14) independent of the stepsize Ay, .



Proof: One integration step reads as follows

1 1
Xn—H = Xn + 5(9 - Xn+1)Atn + 6XT% Ath + 162 ((Ath)z - Atn) .

In an elementary way we can eliminate the implicitness

1
X + 600, + eXFAW,, + 162 (AW,)2 — Ay,)  N(X,)
1+ KA, - D(X,)’

Xn+1 =

Now we only have to verify that the numerator N(X,,) is positive. Employing the
idea of dominating we can accumulate all random terms in a function g:

1
g(AW,) = e/ X, AW, + ZeQ(AWM)Q
= 9' (AW, = eV Xn + %EQAth

Ath cR €

2V X,
= min g(AW;) =g <— > = —-X,.

Knowing this lower bound enables us to exchange all random terms in the numer-
ator

1
N(X,) = Xn+ </<9 — 462> Ay, + g(AW;,)

1 2 .
> B
> X, + </<¢0 1€ > Ay, + AVIII};HERg(AWt")
1
= Xn -+ <K/9 — 4€2> Atn - Xn
1,
= Kl — =€ Atn > 0,
4
since the analytical positivity causes k6 > €2/2. g

This result is rather surprising as the Milstein method provides numerical
positivity for arbitrary step sizes in a natural way. Now we can deal with a more
general case,

where % < p < 1. The Milstein method can also preserve positivity in this case.

Lemma 3.7 The implicit Milstein method has an eternal life time for the inte-
gration of (18) if
1
Ay < .

n 62

Proof: See [8]. O
Using the implicit Milstein method to provide positivity by dominating AW,
leads to an eternal life time for a wider range of mean-reverting processes.



3.2 Forward rates processes and explicit Milstein
schemes

The idea of dominating leads to a general result for the explicit Milstein method,
which will be applied to forward rate models later on.

Theorem 3.8 The explicit Milstein method (15,16) for the Ité diffusion (3) has
an eternal life time if the following properties hold:

b(x)b (z) > 0, (19)
- b(x)

r—b > 2 (x), ) (20)

A, < 2(z — )V (x) — b(x) (21)

" (b(:v)b’(a:) — 2(1(1:))()’(33)'
The last condition is only necessary if the denominator is positive.

Proof: Let z = X,, > b and define g(2) := b(z)z + 3b(2)b(z)z2. Then (15,16) can
be written as

X1 — a4 (a(:r) - ;b(x)b’(x)) Au. + g(ATL).

According to (19) g possesses a global minimum. For that purpose an obvious
calculation shows that

g (z) = b(z) + b(z)V (z)=.

Hence we get
1 b(x)
b (x) 20 (x)
For this reason we can calculate the lower bound for all random terms AW} . This
enables us to exchange the value of g(AW;,) by its minimum

with ¢g(2) =

1 b(x
Xpt1 > x+ (a(x) — 2b(x)b’(az)> Ay, — 2;(;)
Considering the requirements (20) and (21) we get that X,, 11 > b. O

The integration in the extended Libor market model also requires the integra-
tion of the displaced diffusion (8) and constant elasticity of variance model (9).
Here as well the Milstein method leads to surprising results. Note that in both
cases implicit and explicit Milstein schemes coincide due to the vanishing drift
term.



Integration of Displaced Diffusion
The displaced diffusion models the forward rates as
dX; = opp(t)( Xy + m)dW (22)

with opp(t) := o(t)v/V;. Keeping the analytical behavior in mind we know that
this process is bounded from below by —m.

Proposition 3.9 The explicit Milstein method has an eternal life time for the
integration of equation (22), if Ay, < 1/0%p.

Proof: It is sufficient to verify the properties (19-20) and the step size restric-
tion (21) of Theorem 3.8 for a(z) = 0, b(x) = opp(z +m), V/(x) = opp and
b= —m:

bz (z) = ohplz+m) >0,
= b(x) S T+m  x+m
The step size restriction immediately follows from (z — b)b/(x) = b(x). O

Integration of Constant Elasticity of Variance
The model of constant elasticity of variance describes the forward rates as
dXy = ocpy () XdW (23)

with occpy(t) := o(t)v/Vi. In this case the stochastic process takes only positive
values. But the boundary 0 has a different behavior with respect to a.

Proposition 3.10 The Milstein method has the following properties for the inte-
gration of equation (23):
o a< % = finite life time,

= eternal life time if step size is adapted.

N[ —

o o>

Proof: See [8]. O

4 Numerical tests

In the last section the theoretical results above are underlined by numerical tests.
Special attention is paid to the aspect of numerical positivity or boundedness from
below in the case of displaced diffusion. The tests are mainly done with regard
to two different aspects. On the one hand we study whether the Monte-Carlo
approximation converges to the analytical values of caplet prices which are given
by closed form solutions. On the other hand we analyze convergence speed and
positivity preserving properties of numerical integration schemes when applied to
mean-reverting processes in order to model volatility in the Libor market model.
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4.1 Pricing caplets using forward rate models

The numerical simulation of caplet prices is an important indicator to study the
applicability of different integration schemes in the Libor market model. The
caplet price approximation is connected with the weak convergence order as we
compare expectations.

To make this point clear, let Fj(t) be the exact solution at time point ¢ for
a forward rate that sets at T} and pays at Tj11 and its numerical approximation
EN(t). We assume forward rates to be defined by the It6 diffusion (1), where we
assume for the moment a constant volatility o, := o (t)\/V;. With 6y, := Tjy1 — T},
the approximation error is given by

5k B(t, Ty 1)B [(Fi(Tk) — K)*| =6x B(t, Ti1)E [(FY (Th) — K) 7]

()

with the exact caplet price C(t) and the price B(t, Tj+1) at time ¢ for a zero-coupon
bond expiring at time point Ty > t.

The numerical tests are based on three different integration schemes with con-
stant step size A 1= Ay :

1. Euler: FY,, = EYN + opp(FY)AW;
2. Milstein: FY | = EYN + opp(FY) (AW + Lok (FY) (AW)? — A));

2
3. log-Euler: Fﬁrl = Fév exp (—; (akﬂFLT]L{]}V)) A+ SDS‘,f:I:\]}V)AVI/).

Provided that the analytical solution is positive, the log-Euler scheme can be
derived by transforming the original stochastic differential equation into a log-
normal process. By construction, positivity is preserved numerically. Of course,
the log-Euler scheme is not suitable for non-positive processes.

Constant Elasticity of Variance (CEV)

At first, we analyse the numerical behavior in the CEV extension. This model
is characterized by the fact that the forward rates take only nonnegative values.
Indeed the boundary 0 is attainable if 0 < o < 1/2.

In Fig. 1 (left-hand side) the approximation error measured over all strikes and
all maturity times is plotted against the computation time in double logarithmic
scale: the Milstein scheme yields the most accurate result for a fixed computation
time and, vice versa, needs the shortest computation time to achieve a required
error tolerance. Particularly for strikes which are not at-the-money the Milstein
scheme provides the best results.

Fig. 1 (right-hand side) shows the result for a different parameter set. In this
case the log-Euler scheme leads to better results than before but nevertheless the
Milstein scheme is most efficient.
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Error vs. Computational time Error vs. Computational time

T
+ Euler + + Euler

ES ~6— Milstein o~ Milstein

—*- Log-Euler —*- Log-Euler

¥
’
Error
s

. .
10 10° 10° 10! 10° 10°

Time (seconds) Time (seconds)

Figure 1: dFy(t) = 0, F(t)*dW with:

— Fx(0) = 0.06, o, = 0.04899, o = 0.5 (left-hand side),

— F(0) = 0.06, o, = 0.8161, a = 1.5 (right-hand side);
tenor spacing T' = 0.5, maturity times T3, = 1, 2,4, 6, strikes K = 0.04,0.05,0.06,0.07,0.08,
number of paths 2000000, Error = ||Cexact — Cmc||2,x x7, (grid points: strike x maturity
times), discretization stepsizes: A; = 1,0.5,0.25,0.125.

Displaced Diffusion

The model of displaced diffusion is a second possibility to introduce a skew in
the implicit volatility surface. Indeed the problem is that the forward rates can
become negative as the stochastic process takes values in the interval [—m, c0).
Therefore it doesn’t make sense to try to preserve positive values in the numerical
integration. The analysis of the Milstein method in the chapter before shows that
it provides an eternal life time with respect to the interval [—-m, c0). We investigate
whether the numerical approximation of caplet prices benefits from this property.

In the first example shown in Fig. 2 (left-hand side) we only present the re-
sults for the Euler and the Milstein scheme as the log-Euler method shows huge
numerical instabilities. The reason for these instabilities is that the log-Euler en-
forces numerical positivity, which is not consistent with the analytical properties
of the It6 process that is bounded from below by —0.02. Comparing the Euler and
the Milstein method we obtain a familiar result. The Milstein scheme is superior
with respect to the approximation and on the other hand the computational times
needed for one step are nearly equal.

The negative choice of the parameter m in Fig. 2 (right-hand side) is a new
challenge for the different integration schemes as the forward rates now take values
in the interval [m, c0): again the Milstein method turns out to be the best.

Summing up, in both models the Milstein scheme is the method of choice:
first, the computational costs are significantly lower; second, the Milstein method

12



Error vs. Computational time | Error vs. Computational time
10 T
+ Euler + Euler
o Milstein o~ Milstein
—*- Log-Euler

T

10° |

Error
I
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Figure 2: dF,(t) = o1 (F(t) + m)dW with:

— Fr(0) =0.06, o, = 0.2 and m = £0.02 (left-hand /right-hand side);
tenor spacing T' = 0.5, maturity times T}, = 1, 2, 4, 6, strikes K = 0.04, 0.05, 0.06,0.07, 0.08,
number of paths 2000000, Error = ||Cexact — Crrcl|2, x xm, (grid points: strike x maturity

times)

provides a better approximation to the exact caplet prices and in addition to that it
preserves the analytical structure of the stochastic process. The log-Euler scheme
is not suitable for displaced diffusion models with negative bounds m > 0.

4.2 Mean-reverting processes

Now the integration schemes are tested particularly with regard to the class of
mean-reverting processes, where preservation of positivity is mandatory. Let us
start with a first example:

dXt == (1 - Xt)dt + €/ XtdW with X[) =1.

This model is typically used to simulate stochastic volatility in the extended Libor
market model [2].

The results in Table 1 clearly show that the implicit Milstein method is superior
to the other methods concerning convergence speed as well as preserving positivity.
As expected the Euler scheme cannot maintain this property and is less efficient
than the implicit Milstein scheme due to its lower convergence order. The BIM can
indeed guarantee positivity. However, the error is even bigger than in the Euler
method because an extensive use of the control functions ¢y and ¢; is necessary,
which lowers drastically its efficiency.

The examples make clear that the appropriate choice of an integration scheme
is essential for the appropriate numerical calculation of a mean-reverting process,
regarding efficiency and positivity preservation. The implicit Milstein method can

13



l ] Euler ] BIM ] Milstein ] imp. Milstein ‘

Time Stepsize ‘ Error Negative ‘ Error ‘ Negative ‘ Error ‘ Negative ‘ Error ‘ Negative ‘

Ay = % 0.2754 27.29 % 0.5187 0% 0.2464 23.14 % 0.1503 0 %
T=1 Ay = i 0.1926 25.82 % 0.4339 0% 0.1166 7.45 % 0.0677 0 %

Ay = é 0.1370 21.59 % 0.3426 0% 0.0558 0.65 % 0.0333 0 %

Ay = % 0.3290 45.54 % 0.7118 0 % 0.2639 34.72 % 0.2080 0 %
T=2 Ay = i 0.2241 43.39 % 0.5832 0 % 0.1269 12.12 % 0.0849 0 %

Ay = é 0.1563 38.88 % 0.4499 0% 0.0607 1.18 % 0.0397 0%

Ay = % 0.3435 69.18 % 1.2734 0% 0.2767 53.12 % 0.3174 0 %
T =4 Ay = i 0.2333 67.21 % 1.0188 0% 0.1305 20.63 % 0.1019 0 %

Ay = é 0.1610 62.44 % 0.7415 0 % 0.0633 2.22 % 0.0435 0 %

Table 1: Test results for dX; = (1 — X;)dt + 1.4/ X dW
Time: [0,T]; stepsize: Ay; Error: integration error compared with implicit Milstein
(A = ﬁ); Negative: percentage of negative paths; choice of control functions for BIM:

co(z) =1 and ¢1(x) = 1.4z 2.

meet both requirements. Furthermore it is nearly at optimal computational costs
as shown in Fig. 3. For this reason the implicit Milstein scheme is the method of
choice to integrate a mean-reverting process.

5 Conclusion

In the Monte-Carlo simulation of extended Libor market models, stochastic in-
tegration schemes, which preserve the essential structures of the underlying pro-
cesses, are required. Among those structural properties are, first, positivity for
mean-reverting processes, which are used to model the stochastic volatility, and
for constant elasticity of variance processes that can be used to model forward
rates. Second, boundedness from below by a constant is a structural property
when using a displaced diffusion approach in forward rate models.

These structure preserving methods have to be based on the concept of bal-
ancing or dominating the Wiener increments. We have shown that Milstein-type
schemes turn out to be the method-of-choice: they combine numericall efficiency
with preserving of the structural properties.

Other classes of methods, including Fuler and log-Euler schemes, fail to support
this structural constraints on the numerical solution. Balanced implicit methods
can maintain positivity, but only at the cost of losing convergence of the methods.

Future work has to concentrate on more general stochastic differential equa-
tions that may be characterized by more general analytical structures such as
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Error vs. Computational time
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—— Milstein
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Figure 3: dX; = (1 — X;)dt + 1.4/ X;dW, path wise error,100000 paths, BIM: ¢q = 1

and ¢q(z) = 1.4a~2

equality and inequality constraints.

For this class of problems, linear-implicit schemes have been proven to be
favorable in the deterministic case and are a promising approach to obtain excellent
stability properties without the need to solve nonlinear systems.
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