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Summary. The simulation of circuits including signals with widely separated time
scales can easily become very time-consuming. To avoid this, a multidimensional
signal model was developed. The resulting system of network equations can be solved
very efficiently by a method of characteristics. We investigate the applicability of
this method to circuits including digital signal structures. Moreover, systems given
in linear-implicit form are solved using the multidimensional approach.

1 Introduction

Signals with widely separated time scales often arise in radio frequency ap-
plication. To describe such signals more efficiently, a multidimensional model
has been developed, which transfers the circuit’s differential-algebraic equa-
tions (DAE) to a multirate system of partial differential-algebraic equations
(MPDAE). A specially tailored method of characteristics has already been
sucessfully used to solve MPDAE-modelled network equations governed by
semi-explicit DAEs including harmonic signals [4].

Now, we want to apply the method of characteristics to MPDAE-modelled
switched capacitor (SC) circuits. In those circuits, transistors are driven by
high frequency pulses, which are characterized by a digital signal structure.

In the first test example of a switched capacitor filter, the applicability of
the method to the non-harmonic, strongly nonlinear signals is investigated.
The second circuit of the Miller integrator serves to simulate network equa-
tions, which are given in linear-implicit form.

2 Switched capacitor filter

The first test example is the switched capacitor filter depicted in figure 1. A
sinusoidal input signal charges the first capacitor driven by the pulse pa and
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Fig. 1. Switched capacitor filter
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Fig. 2. Pulses pa and pb

this charge is transmitted to the second capacitor driven by the pulse pb. The
transistors work as switches and the pulses have to be complementary to each
other as shown in figure 2. The equations for the two nodes are in ODE form
given by

−IDS(upa , uin, u1, 0) + IDS(upb
, u1, u2, 0) + C1u̇1

+ CGSO ·W · d(u1 − upa)
dt

+ CGDO ·W · d(u1 − upb
)

dt
= 0 (1)

−IDS(upb
, u1, u2, 0) + C2u̇2 + CGSO ·W · d(u2 − upb

)
dt

= 0 (2)

with overlap capacitances CGSO, CGDO and transistor width W . For the
drain to source current IDS(ugate, udrain, usource, ubulk) of the MOS-transistors
M1 and M2, a level-1 model by Stichman-Hodges is used [1].

The pulses work at the fast time scale T2 = 3·10−5 s, whereas the sinusoidal
input Vin oscillates with T1 = 10−3 s. To describe these widely separated time
scales more efficiently, a multidimensional signal model is applied. A detailed
description of this modelling approach can be found in [2].

3 Multidimensional approach

To decouple the different time scales of the switched capacitor circuit, a cor-
responding variable is assigned to each of them. For two different time scales
this approach generalizes a two-tone signal s(t) to a so-called multivariate
funtion (MVF) ŝ(t1, t2), for example

s(t) = sin
(

2π

T1
t

)
sin2

(
π

T2
t

)
; ŝ(t1, t2) = sin

(
2π

T1
t1

)
sin2

(
π

T2
t2

)
.

The original signal can always be reconstructed by s(t) = ŝ(t, t).
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Applying this multidimensional signal model to the SC-filter circuit trans-
fers the network-ODE (1)+(2) to a multirate partial differential equation
(MPDE):

(C1 + CGSO ·W + CGDO ·W )
(

∂u1(t1, t2)
∂t1

+
∂u1(t1, t2)

∂t2

)

= IDS(upa
(t2), uin(t1), u1(t1, t2), 0)− IDS(upb

(t2), u1(t1, t2), u2(t1, t2), 0)

+ CGSO ·W · dupa
(t2)

dt2
+ CGDO ·W · dupb

(t2)
dt2

(3)

(C2 + CGSO ·W )
(

∂u2(t1, t2)
∂t1

+
∂u2(t1, t2)

∂t2

)

= IDS(upb
(t2), u1(t1, t2), u2(t1, t2), 0) + CGSO ·W · dupb

(t2)
dt2

. (4)

As the PDE is of hyperbolic type, we are able to apply the method of
characteristics described in [4]. The ODEs arising in the characteristic system
of the MPDE are solved via discretization along the characteristic curves,
which are straight lines in the direction of the diagonal. Boundary conditions
are given by the periodicity of the MVFs. The simulation results for node 2,
which coincide with solutions generated by Matlab-routines, are shown in
figure 3.

Thus, the application of the method of characteristics to network equa-
tions including digital signal structures works successfully. In the following,
we investigate a system given in a linear-implicit form.
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Fig. 3. MPDE-solution (left), reconstructed ODE-solution (right)
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4 Miller integrator

The Miller integrator in figure 4 produces the negative integral of the input
signal at node 3. The sinusoidal input with period T1 = 10−5 s is sampled
periodically with T2 = 25 · 10−9 s. Pulses pa and pb have a similar behaviour
as above (see figure 2).
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Fig. 4. Miller integrator

How the index of the network equations may depend on the value of tech-
nical circuit parameters is investigated in [3]. In our example, the network
equations are an index-1 DAE-system. Again, bivariate functions are intro-
duced for all state variables and sources, which leads to multirate partial
differential-algebraic equations (MPDAE) given in a linear-implicit form:

C1 ·
(

∂u1(t1, t2)
∂t1

+
∂u1(t1, t2)

∂t2

)
= IDS(upa(t2), uin(t1), u1(t1, t2), vbb)

− IDS(upb
(t2), u1(t1, t2), u2(t1, t2), vbb) (5)

C2 ·
(

∂ [u2(t1, t2)− u3(t1, t2)]
∂t1

+
∂ [u2(t1, t2)− u3(t1, t2)]

∂t2

)

= IDS(upb
(t2), u1(t1, t2), u2(t1, t2), vbb) (6)

0 = u3(t1, t2) + 1000 · u2(t1, t2) (7)

with a negative substrate bias voltage vbb.
Again, the method of characteristics described in the previous section was

used to solve the system. Also for this example, the one-dimensional solution
reconstructed from the MPDAE-solution coincides well with a corresponding
Matlab-solution of the original network equations. Figure 5 shows the sim-
ulation results for node 1. Thus, equations given in linear-implicit form can
also be solved via the multidimensional approach.
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Fig. 5. MPDAE-solution (left), zoom into DAE-solution (right)

5 Conclusions

The approach via characteristic systems was successfully applied to MPDAE-
modelled pulsed signals in switched capacitor circuits. Not only harmonic but
also digital-like signals can be simulated using the described method of char-
acteristics. In addition, network equations given in linear-implicit form can be
solved as well as explicit ones. In any case, the efficiency of the multidimen-
sional approach and of the specially tailored method can be exploited.
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