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Summary. In radio frequency (RF) design, signals with widely separated time

scales arise. To describe those circuits efficiently, a multidimensional signal model

was developed. This approach transfers the circuit’s differential-algebraic equations

(DAE) to a multirate system of partial differential-algebraic equations (MPDAE). A

structural analysis, based on the concept of underlying PDE systems and the index

characterization of DAE systems, emphasises the entitlement of MPDAE-modelling.

1 Introduction - multidimensional signal model

In electronic circuit design the classical modified nodal analysis (MNA) leads
to a system of differential-algebraic equations (DAE). Excluding controlled
sources, the charge-flux oriented formulation of the network equations yields
[ST98]

AC q̇ + ARr(A>Ru(t), t) + ALL(t) + AV V (t) + AI ı(t) = 0, (1a)

Φ̇−A>Lu(t) = 0, (1b)

A>V u(t)− v(t) = 0, (1c)

q − qC(A>Cu(t), t) = 0, (1d)

Φ− ΦL(L(t), t) = 0. (1e)

In the following we will consider quasiperiodic input signals. To face widely
separated time scales, that occur frequently in RF application, the quasiperi-
odic functions can be generalized to multivariate functions (MVF), where for
each time scale a corresponding variable t1, . . . , tm is introduced. A signal with
m fundamental frequencies ωi = 2π/Ti, i = 1, . . . , m and X(k1, . . . , km) ∈ Cl
is described by

x(t) =
∞∑

k1=−∞
· · ·

∞∑

km=−∞
X(k1, . . . , km) exp((jk1ω1 + · · ·+ jkmωm) t).
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Its MVF then reaches the form

x̂(t1, . . . , tm) =
∞∑

k1=−∞
· · ·

∞∑

km=−∞
X(k1, . . . , km) exp(jk1ω1t1+· · ·+jkmωmtm).

Now, the time scales are decoupled and the MVF is periodic in each coor-
dinate direction. The original signal is contained on the diagonal of the MVF
and can be reconstructed by x(t) = x̂(t, . . . , t).

We apply the multidimensional signal model to the network equations and
introduce MVFs of charges, fluxes, sources and of the state variables. Looking
at the MVF of the charge function

q̂C(w, t1, . . . , tm) with
∂q̂C

∂w
=: Ĉ(w, t1, . . . , tm),

we define τm := (t, . . . , t)> ∈ IRm and get for the time derivative

d

dt
qC(A>Cu(t), t)

=
d

dt
q̂C(A>C û(τm), τm)

= Ĉ(A>C û(τm), τm)A>C ·
m∑

i=1

∂û(τm)
∂ti

+
m∑

i=1

∂

∂ti
q̂C(A>C û(τm), τm).

Therefore, we define τ̂m := (t1, . . . , tm)> and introduce the differential
operator Dm with

Dmf(x(τ̂m), τ̂m) :=
df

dτ̂m
· 1l =

m∑

i=1

(
∂f

∂x
· ∂x

∂ti
+

∂f

∂ti

)
.

Now, we are able to generalize the original DAE to the multirate system
of partial differential-algebraic equations (MPDAE)

ACDmq̂ + ARr̂(A>Rû(τ̂m), τ̂m) + AL̂L(τ̂m) + AV ̂V (τ̂m)
+AI ı̂(τ̂m) = 0, (2a)

DmΦ̂−A>L û(τ̂m) = 0, (2b)

A>V û(τ̂m)− v̂(τ̂m) = 0, (2c)

q̂ − q̂C(A>C û(τ̂m), τ̂m) = 0, (2d)

Φ̂− Φ̂L(̂L(τ̂m), τ̂m) = 0. (2e)

As the MVF x̂ contains the original signal on its diagonal, the DAE-
solution x with x = (u, L, V )> can be reconstructed by x(t) = x̂(tm) via the
MPDAE-solution x̂ = (û, ̂L, ̂V )>. For more details we refer to [BWLB96].

In order to resolve structural properties for this transferred system , we
apply the index concept to extract the algebraic and differential parts of the
MPDAE as it was done for the original DAE in [ST98].
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2 Index-1 networks

The differential-algebraic network equations (1) have differential index 1, if
the following two topological conditions are fulfilled (see [Ti99]):

T1: There are no cutsets consisting of inductances and/or current sources
only: ker(AC , AR, AV )> = {0}.

T2: There are no loops consisting of only capacitances and at least one voltage
source: kerQ>CAV = {0}.
To transfer this context to our partial differential-algebraic system, we

rewrite (2) in a semi-explicit form. We assume passivity for the network ele-
ments: therefore the capacitance, inductance and conductance matrices

C(w, τ̂m) :=
∂q̂C(w, τ̂m)

∂w
, L(w, τ̂m) :=

∂Φ̂L(w, τ̂m)
∂w

, G(w, τ̂m) :=
∂r̂(w, τ̂m)

∂w

are positive definite (but not necessarily symmetric) with a globally bounded
inverse.

Let QC be an orthogonal projector onto the kernel of A>C and its comple-
ment PC such that PC = I−QC , with the identity matrix I. Hence, equation
(2a) only contains information about PC û as

A>C û = A>C(PC + QC)û = A>CPC û.

Subsequently, we define two sets of network variables

ŷ =
(

ŷ1

ŷ2

)
=

(
PC û
̂L

)
and ẑ =

(
ẑ1

ẑ2

)
=

(
QC û
̂V

)

(to shorten notations, we skip the arguments of the multivariate functions).
We insert the charges (2d) in (2a) and multiply the equation by P>C from

the left. With

AC q̂C(A>C û, τ̂m) = AC q̂C(A>C ŷ1, τ̂m) + Q>CQC ŷ1 =: H(ŷ1, τ̂m)

we obtain a PDE for ŷ1:

DmH(ŷ1, τ̂m) = −P>C
(
ARr̂(A>R[ŷ1 + ẑ1], τ̂m) + ALŷ2 + AV ẑ2 + AI ı̂

)
. (3)

The Jacobian H1 := ∂H
∂ŷ1

= ACC(A>C [ŷ1 + ẑ1], τ̂m)A>C + Q>
CQC is positive

definite by construction.
Inserting the fluxes (2e) in (2b), we directly obtain a PDE for ŷ2:

DmΦ̂L(ŷ2, τ̂m) = A>L [ŷ1 + ẑ1]. (4)

Besides the differential equations (3) for ŷ1 and (4) for ŷ2 we are left with
equation (2a) multiplied by Q>

C from the left and (2c). Using QC ẑ1 = ẑ1 and
P>C PC ẑ1 = 0, we have
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(
Q>C

(
ARr̂(A>R[ŷ1 + QC ẑ1], τ̂m) + ALŷ2 + AV ẑ2 + AI ı̂

)
+ P>C PC ẑ1

A>V [ŷ1 + QC ẑ1]− v̂

)
= 0.

(5)
The Jacobian with respect to ẑ

B :=

(
Q>CARG(A>R[ŷ1 + ẑ1])A>RQC + P>C PC Q>CAV

A>V QC 0

)

is regular, iff T1 and T2 hold, see [Ti99]. Thus, demanding the topological
conditions, we are able to rewrite (2) in a semi-explicit form:

Dmŷ = F (ŷ, ẑ, τ̂m),
0 = h(ŷ, ẑ, τ̂m),

where the algebraic equation is resolvable for ẑ = ϕ(ŷ, τ̂m). Hence, we are able
to derive the underlying PDE

Dmŷ = F (ŷ, ϕ(ẑ, τ̂m), τ̂m).

3 Index-2 networks

To investigate the differences in the index-2 case, we split the network equa-
tions until it is possible to resolve them for all the different sets of network
variables.

After the first splitting û = PC û+QC û in the index-1 case, we determined
the algebraic equations (5)

Q>
C

(
ARr(A>R[PC û + QC û], τ̂m) + AL̂L + AV ̂V + AI ı̂

)
= 0, (5a)

A>V [PC û + QC û]− v̂ = 0. (5b)

In the index-2 case T1 and/or T2 are violated and the Jacobian relating to
QC û and ̂V is not regular anymore. Therefore, (5a) and (5b) contain hidden
constraints and further splittings of the network variables are necessary.
Lemma 1. If T1 and/or T2 are violated, the MPDAE (2) is equivalent to the
semi-explicit system

ACDmq̂C(A>C û, τ̂m) + P>C
(
ARr̂(A>Rû, τ̂m) + AL̂L + AV ̂V + AI ı̂

)
= 0,

DmΦ̂L(̂L, τ̂m)−A>L û = 0.

Index 1





P̄>V−C

(
A>V û− v̂

)
= 0,

P>R−CV Q>V−CQ>
C

(
ARr̂(A>Rû, τ̂m) + AL̂L + AI ı̂

)
= 0,

P>V−CQ>C
(
ARr̂(A>Rû, τ̂m) + AL̂L + AV ̂V + AI ı̂

)
= 0.

Index 2

{
Q>CRV (AL̂L + AI ı̂) = 0,

Q̄>V−C

(
A>V PC û− v̂

)
= 0.
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Proof. The orthogonal projectors used to obtain this semi-explicit description
are defined as follows (see [ST98]):

projector QV−C Q̄V−C QR−CV QCRV

onto kerA>V QC kerQ>CAV kerA>RQCQV−C ker(AC , AR, AV )>

with complements denoted by P and the corresponding subindex.
In the following, we will use the just defined projectors to filter out non-

trivial information from the algebraic equations, as the variables of interest lie
in the kernel of the antecedent matrices. To make the successive steps more
comprehensible, equations extracted from (5a) and (5b) are denoted using a
subindex: (5ai) and (5bi). If the differential operator is applied to an equation
(x), it is denoted by (x′).

Regarding equation (5b), we only get information about QCPV−C û as
A>V QCQV−C = 0. Furthermore, multiplying (5b) by Q̄>V−C from the left re-
veals the linear combination

Q̄>V−C

(
A>V PC û− v̂

)
= 0, (5b1)

which does not appear in the index-1 case, as T2 implies Q̄V−C = 0. We will
refer to this equation later.

To determine QCPV−C û from the part P̄>V−C · (5b) of the equation, we
have to mutiply by Q>CAV from the left and add Q>

V−CQV−CPV−C û = 0:
(
Q>CAV A>V QC + Q>

V−CQV−C

)
PV−C û = Q>CAV P̄>V−C

(
v̂ −A>V PC û

)
. (5b2)

With H2 := Q>CAV A>V QC + Q>V−CQV−C positive definite, we can resolve for
PV−C û, which leads to

QCPV−C û = QCH−1
2 Q>CAV P̄>V−C

(
v̂ −A>V PC û

)
.

At the moment we have the splitting

û = [PC + QC(PV−C + QV−C)] û

and still need equations for QCQV−C û and ̂V .
To split equation (5a) in the right manner, we have a look at its derivative,

as û is the argument of the nonlinear function r̂(·). In our case, we apply the
differential operator Dm, which yields

Dmû(τ̂m) =
∂û

∂t1
+ · · ·+ ∂û

∂tm
.

With the abbreviation G := G(A>Rû, τ̂m), we obtain

Q>CARGA>R[PC + QCPV−C + QCQV−C ]Dmû + Q>C(ALDm̂L + AIDm ı̂)

+ Q>CAV Dm̂V = 0. (5a′)
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Multiplying by Q>V−C from the left strikes off Dm̂V and we obtain an equation
for PR−CV Dmû as QCQV−CQR−CV =: QCRV and A>RQCRV = 0. Thus, we
also multiply by P>R−CV from the left and get

Q>
V−CQ>CARGA>RQCQV−CPR−CV Dmû (5a′1)

= −P>R−CV Q>
V−CQ>C

(
ARGA>R[PC + QCPV−C ]Dmû + ALDm̂L + AIDm ı̂

)
.

To resolve for PR−CV Dmû, we add Q>R−CV QR−CV PR−CV Dmû = 0, which
leads to H4 := H4(A>Rû, τ̂m) := Q>

V−CQ>CARGA>RQCQV−C +Q>
R−CV QR−CV

positive definite.
Now, we have to regard the splitting

û = [PC + QC(PV−C + QV−C(PR−CV + QR−CV ))] û

and have left the two equations Q>
R−CV Q>

V−C ·(5a′) as well as P>V−C ·(5a′).
The first one is a hidden constraint, which the index-1 equations are lacking

as T1 implies QCRV = 0. Using the PDE (4) for ̂L we obtain with the
abbreviation L := L(̂L, τ̂m)

Q>CRV

(
ALL−1A>L [PC + QCPV−C + QCQV−CPR−CV + QCRV ]û + AIDm ı̂

)

= 0. (5a′2)

Replacing QCRV û by QCRV QCRV û and adding P>CRV PCRV QCRV û = 0 yields

QCRV û =

−H−1
5 Q>CRV

(
ALL−1A>L [PC + QCPV−C + QCQV−CPR−CV ]û + AIDm ı̂

)

with H5 := H5(̂L, τ̂m) := Q>CRV ALL−1A>LQCRV + P>CRV PCRV positive def-
inite. Here, we have to apply the differential operator Dm one more time to
obtain an equation for QCRV Dmû.

As we now have determined all parts of Dmû, the second equation
P>V−C ·(5a′) yields P̄V−CDm̂V :

P>V−CQ>C
(
ARGA>RDmû + ALDm̂L + AIDm ı̂

)

+ Q>
CAV [P̄V−C + Q̄V−C ]Dm̂V = 0. (5a′3)

We multiply by A>V QC from the left and add Q̄>V−CQ̄V−C P̄V−CDm̂V = 0 to
obtain the positive definite matrix H3 := A>V QCQ>

CAV + Q̄>V−CQ̄V−C and

P̄V−CDm̂V = −H−1
3 A>V QC P̄>V−CQ>

C

(
ARGA>RDmû + ALDm̂L + AIDm ı̂

)
.

Finally, we have a look at the derivative of equation (5b1):

Q̄>
V−CA>V PCDmû− Q̄>

V−CDmv̂ = 0. (5b′1)

With PCDmû = −H−1
1 P>C

(
ARr(A>Rû) + AL̂L + AV ̂V + AI ı̂

)
from (3), we

get



Index Analysis of MPDAEs in RF-Circuits 7

Q̄>
V−CA>V H−1

1 P>C AV [P̄V−C + Q̄V−C ]̂V

= −Q̄>
V−C

(
Dmv̂ + A>V H−1

1 P>C
(
ARr(A>Rû) + AL̂L + AI ı̂

))
.

Replacing Q̄V−C ̂V by Q̄V−CQ̄V−C ̂V and adding P̄>V−C P̄V−CQ̄V−C ̂V = 0
yields

Q̄V−C ̂V =

−H−1
6 Q̄>

V−C

[
Dmv̂ + A>V H−1

1 P>C
(
ARr(A>Rû) + AL̂L + AV P̄V−C ̂V + AI ı̂

)]

with H6 := H6(A>C û, τ̂m) := Q̄>
V−CA>V H−1

1 AV Q̄V−C + P̄>V−C P̄V−C positive
definite. Again, another differentiation is needed to obtain an expression for
Q̄V−CDm̂V . ¤

Corollary 1. The system defined in Lemma 1 is equivalent to the index-2
semi-explicit (but not Hessenberg) system

Dmŷ = f(ŷ, v̂, ŵ, τ̂m), (6a)
0 = g1(ŷ, v̂, ŵ, τ̂m), (6b)
0 = g2(ŷ, τ̂m), (6c)

with three sets of network variables

ŷ =
(

PC û
̂L

)
, v̂ =




QCPV−C û
QCQV−CPR−CV û

P̄V−C ̂V


 and ŵ =

(
QCRV û
Q̄V−C ̂V

)
.

Now applying the differential operator Dm to (6c), we are able to resolve
g := (g1, g2)> for ẑ := (v̂, ŵ)> = Ψ(ŷ, τ̂m) and to derive the underlying PDE

Dmŷ = f(ŷ, Ψ(ŷ, τ̂m), τ̂m).

Of course, when thinking of solving the MPDAE, we do not use the con-
cept of the underlying PDE, but it is a helpful tool to use the analogy of
the MPDAE network equations to DAE-systems when transferring the index
concept.

A special characteristics index was proposed in [Wa00] for linear hyper-
bolic PDAEs. As our network MPDAE is of hyperbolic type, we can proceed
similarly. Defining a characteristic system leads to a continuous set of DAEs.
In our special case, the characteristic curves are straight lines in the direction
of the diagonal and the DAEs have the same structure as the original system
(1). Thus, it is natural to use the index for this DAE system to characterize
the MPDAE. Perturbation estimates and other suitable PDAE index concepts
proposed in [GW00] are reserved to future work.
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4 Conclusions

In this paper we have analysed a system of multirate partial differential-
algebraic equations, which arises when a multidimensional signal model is
applied to the MNA network equations. We showed, that the MPDAE in-
herits all the characteristics of the original network DAE. In both index-1
and index-2 cases, an underlying PDE can be found, i.e. the MPDAE can
be reduced to a PDE on a manifold. Index concepts can be transferred and
therefore no additional stability problems have to be expected when solving
the network equations via the multidimensional approach. And, exploiting
its special structure, the MPDAE can be solved very efficiently, e.g. with a
method of characteristics proposed in [PG02].
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with the grant number 03GUNAVN.
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