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Summary. The numerical simulation of electric circuits including signals with
largely differing time scales demands specific strategies. A multivariate model for
signals, which exhibit amplitude as well as frequency modulation, yields a warped
multirate partial differential algebraic equation (MPDAE). Corresponding initial
boundary value problems lead to particular solution types. Two strategies for nu-
merical simulation are discussed, which use contrary semidiscretisation techniques.

1 Introduction

Signals acting at widely separated time scales arise in radio frequency appli-
cations. The mathematical model of corresponding electric circuits consists in
differential algebraic equations (DAEs). Integrating these systems demands a
huge computational effort, since the fastest time scale restricts the step sizes.
Consequently, numerical methods have to incorporate the specific structure
of arising solutions in order to be efficient.

A multidimensional model yields a strategy for the simulation of ampli-
tude and/or frequency modulated signals. Narayan and Roychowdhury [5]
introduced an according warped multirate partial differential algebraic equa-
tion (MPDAE). The MPDAE solution of an initial boundary value problem
reproduces a multitone DAE solution. Solving the MPDAE demands less ef-
fort than handling the DAE directly, since the model omits the computation
of all fast oscillations. However, the warped MPDAE system includes a local
frequency function, which is a priori unspecified. The determination of appro-
priate local frequencies is crucial for the efficiency of the model. Continuous
phase conditions can be applied as additional boundary constraints to obtain
suitable solutions.

We present two approaches for the numerical simulation of the initial
boundary value problem, which both apply a semidiscretisation of the warped
MPDAE system. On the one hand, we consider a method of Rothe type, which
performs a discretisation in the slow time scale. On the other hand, we ar-
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range a method of lines, which discretises the fast time scale. The properties of
these two antipodal techniques are analysed. In particular, we discuss the in-
clusion of a continuous phase condition in view of an unknown local frequency.
Finally, numerical results illustrate the performance of the two methods.

2 Warped MPDAE Model

To explicate the multidimensional model, we consider a multitone signal,
which includes amplitude as well as frequency modulation, namely

x(t) =
[
1 + α sin

(
2π
T1

t
)]

sin
(

2π
T2

t + β sin
(

2π
T1

t
))

(1)

with parameters 0 < α < 1, β > 0. Fig. 1 illustrates this signal qualitatively.
Assuming T1 À T2, many fast oscillations proceed during one slow oscilla-
tion of the modulation. Thus the number of time points to represent this
signal increases drastically. Alternatively, we introduce an own variable for
each separate time scale to model the amplitude modulation part

x̂(t1, t2) =
[
1 + α sin

(
2π
T1

t1

)]
sin (2πt2) . (2)

This representation is called the multivariate function (MVF) of the signal (1).
Now the MVF is biperiodic and exhibits a simple structure in the rectangle
[0, T1] × [0, 1], which is also shown in Fig. 1. Hence we can resolve the MVF
using relatively few grid points. The frequency modulation part is modelled
by an additional time-dependent function

Ψ(t) =
t

T2
+

β

2π
sin

(
2π
T1

t
)

. (3)

The derivative ν := Ψ ′ plays the role of a local frequency belonging to the
multitone signal (1). The function ν is T1-periodic and features a simple be-
haviour, too. Nevertheless, we completely reconstruct the original signal via

x(t) = x̂(t, Ψ(t)). (4)

Thereby, Ψ is called a warping function, since it stretches the second time
scale. Consequently, we obtain an efficient representation of the multitone
signal by means of MVF and warping function/local frequency.

However, the multidimensional model is not unique. A family of MVFs
and respective warping functions can describe the same signal. An inappro-
priate choice of the local frequency may yield a MVF, which exhibits many
oscillations. Hence the identification of a local frequency with simple MVF
determines the benefit of this representation.

Remark: The MVF concept is also convenient, if the first time scale is
aperiodic and slowly varying. Consequently, the local frequency becomes ape-
riodic, too. In this case, we arrange the MVF in the domain R+× [0, 1]. Thus
performing a step in t1-direction already reproduces many fast oscillations.
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Fig. 1. Frequency modulated signal (left) and corresponding MVF (right).

Now we apply the multidimensional model in electric circuit simulation.
A network approach yields differential algebraic equations (DAEs), which de-
scribe the transient behaviour of all node voltages and some branch currents,
see [2]. In the following, we consider a semiexplicit DAE of index 1

dy
dt

= f(y, z) + b(t)

0 = g(y, z) + c(t)
(5)

with solutions y(t) ∈ Rd, z(t) ∈ Ra. The functions b(t) ∈ Rd, c(t) ∈ Ra

represent independent input signals. We assume that the input varies slowly
the amplitude and frequency of fast oscillations in the solution. Thus the above
multivariate representation becomes feasible. A transformation with respect
to the reconstruction (4) changes the DAE model (5) into a warped multirate
partial differential algebraic equation (MPDAE)

∂ŷ
∂t1

+ ν(t1)
∂ŷ
∂t2

= f(ŷ, ẑ) + b(t1)

0 = g(ŷ, ẑ) + c(t1).
(6)

Now we solve the MPDAE system in a domain [0, Tf ] × [0, 1] with arbitrary
final time Tf > 0. Therefore we consider the initial boundary value problem (6)
together with

ŷ(0, t2) = v(t2), ẑ(0, t2) = w(t2) for all t2 ∈ R,

ŷ(t1, t2) = ŷ(t1, t2 + 1), ẑ(t1, t2) = ẑ(t1, t2 + 1) for all t1 ≥ 0, t2 ∈ R.
(7)

Thereby, the choice of the periodic initial values v,w has to be consistent with
respect to the DAE (5). An according MPDAE solution yields a complete
DAE solution applying (4) with Ψ(t) =

∫ t

0
ν(τ)dτ . The reconstructed signal

is uniquely defined by the initial values y(0) = v(0), z(0) = w(0). Hence the
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choice of the other values in v,w just influence the efficiency of the model,
since the resulting MVF depends on these initial functions. Using constant
input b ≡ b(0), c ≡ c(0) in the DAE, a corresponding periodic solution
represents a suitable initial state in general.

Assuming T1-periodic input signals, biperiodic MPDAE solutions may ex-
ist. We can apply the problem (6),(7) to compute a biperiodic solution, too.
We solve the MPDAE proceeding in t1-direction until the solution enters a
biperiodic steady state response. This strategy represents an advancement of
transient analysis by using more information about the problem structure.

Since the local frequency ν stands for an a priori unknown function, the
system (6),(7) is underdetermined. Hence we require additional conditions to
isolate special solutions. In [5], continuous phase conditions are proposed to
achieve this purpose. Thereby, the idea is to control the phase in each cross
section t1 = const of a MVF. In the following, we apply a specific phase
condition to the (without loss of generality) first component of the solution
ŷ = (ŷ1, . . . , ŷd)T , namely

∂ŷ1

∂t2

∣∣∣∣
t2=0

= 0 for all t1. (8)

If the involved functions are sufficiently smooth, then differentiating (8) with
respect to t1 and (6) with respect to t2 implies

∂2ŷ1

∂t1∂t2

∣∣∣∣
t2=0

= 0 ⇒ ν(t1)
∂2ŷ1

∂t2
2

∣∣∣∣
t2=0

=
∂f1(ŷ, ẑ)

∂t2

∣∣∣∣
t2=0

for all t1. (9)

Thus to ensure that the phase condition determines the local frequency
uniquely, we assume the existence of a solution satisfying (8) and

∣∣∣∣∣
∂2ŷ1

∂t2
2

∣∣∣∣
t2=0

∣∣∣∣∣ ≥ δ for all t1 (10)

with a constant δ > 0 in the following.
Alternatively, Houben [3] introduces minimum demands, which shall re-

duce oscillations in MVFs. Using these criteria, the determination of a rela-
tively simple MVF representation is guaranteed. However, minimum demands
cause more computation work in comparison to the elementary condition (8),
which we add directly to the boundary conditions in the underlying domain.

3 Semidiscretisation Techniques

Now we examine two numerical techniques for solving the MPDAE initial
boundary value problem (6),(7), which both apply semidiscretisation.

Firstly, we perform a Rothe method (RM). For parabolic PDEs including a
time and a space variable, this means that the time derivative is discretised and
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thus a sequence of ODE boundary value problems in space arises. Accordingly,
a difference scheme replaces the derivative with respect to t1 in (6). Assuming
a positive local frequency, the implicit Euler scheme, for example, yields the
subsequent DAE systems

dỹj

dt2
(t2) =

1
νj

{
f(ỹj(t2), z̃j(t2)) + b(jh1)− 1

h1
[ỹj(t2)− ỹj−1(t2)]

}

0 = g(ỹj(t2), z̃j(t2)) + c(jh1)
(11)

for j = 1, 2, . . . with step size h1, where the jth part is an approximation of
the MPDAE solution in the layer t1 = jh1. The initial values correspond to
j = 0. The periodicity and the phase condition (8) generate the boundary
constraints

ỹj(0) = ỹj(1), z̃j(0) = z̃j(1), dỹ1
j

dt2
(0) = 0. (12)

The local frequency νj represents an unknown parameter in each system.
Hence the RM consists in the successive handling of boundary value problems
corresponding to parameter-dependent DAEs with d + a unknown functions.
The DAEs (11) inherit the index 1 from the DAE (5). Moreover, specific
techniques can be used to determine the periodic solution ỹj , z̃j and the pa-
rameter νj in view of phase conditions, see [4].

Secondly, we apply a method of lines (ML). Now the derivative with re-
spect to t2 is substituted by a difference formula in the MPDAE. We employ
symmetric differences and obtain a large DAE system including the subunits

dȳi

dt1
(t1) = f(ȳi(t1), z̄i(t1)) + b(t1)− ν(t1) 1

2h2
[ȳi+1(t1)− ȳi−1(t1)]

0 = g(ȳi(t1), z̄i(t1)) + c(t1)
(13)

for i = 1, . . . , n2 with step size h2 = 1/n2. The ith component represents
an approximation of the MPDAE solution in the layer t2 = (i − 1)h2. The
periodicity allows to identify ȳn2+1 = ȳ1, ȳ0 = ȳn2 and thus to eliminate
these unknown. Since the local frequency ν is unidentified, too, we have to
incorporate the phase condition (8) via a difference formula. For example,

0 = ∂ŷ1

∂t2
(t1, 0) .= 1

2h2

[
ȳ1
2(t1)− ȳ1

n2
(t1)

]
(14)

gives an additional algebraic relation. Consequently, the ML yields an initial
value problem of DAEs with dimension n2(d + a) + 1. However, if we see ν as
a part of the solution, then the index of the system (13),(14) is at least 2 even
for an original DAE (5) of index 1. Furthermore, a suitable consistent choice
of a starting value ν(0) is necessary.

As mentioned in the previous section, the initial boundary value problem
can be used to determine a biperiodic solution by transient analysis. If we want
to compute this steady state response directly, then a method of characteris-
tics becomes favourable, see [6]. Moreover, the employed information transfer
generates an inherent potential for parallelism. In contrast, the solution of the
initial boundary value problem implies a sequential structure.
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4 Numerical Results

We apply both semidiscretisation methods for the numerical simulation of a
voltage controlled Van der Pol oscillator. The corresponding system reads

u̇ = v
v̇ = −10(u2 − 1)v − (2πw)2u
0 = w − b(t),

(15)

which represents a semiexplicit DAE of index 1. If the input signal b is con-
stant, a periodic steady state response arises. Otherwise, a time-dependent
input signal produces frequency modulation. We choose the function

b(t) = 1 + 1
2 sin

(
2π
T1

t
)

with T1 = 1000. (16)

Since the involved time scales are widely separated, we use the corresponding
MPDAE model and treat problem (6),(7). As initial values, the periodic re-
sponse of (15) corresponding to b ≡ 1 is employed. In the RM (11), we solve
the periodic boundary value problems via a finite difference method including
trapezoidal rule. In the ML (13), the initial value problems are integrated by
the implicit Euler scheme. The used step sizes are equidistant, namely h1 = 20
and h2 = 0.01 in both techniques.

Fig. 2 illustrates the computed local frequencies. Since both functions re-
spond to the input signal, the local frequencies are physically reasonable. Fig. 3
and Fig. 4 show the MPDAE solutions for u and v, respectively. The MVF of
u features a constant amplitude, whereas the MVF of v includes amplitude
modulation. The component w just reproduces the input signal. Investigating
these MVFs, we recognise that assumption (10) is satisfied with δ ≈ 80.

Finally, we observe the corresponding DAE solutions. The results of the
RM and the ML are used in the reconstruction (4). The outcome for u is
shown in Fig. 5. Thereby, a reference solution was computed via an initial
value problem of (15) using trapezoidal rule. In the first few cycles, both
semidiscretisation methods exhibit a frequency, which is too high in compar-
ison to the reference signal. In the RM, the local frequency even increases
incorrectly for smaller step sizes h1, whereas the frequency remains the same
in the ML. In later cycles, all signals exhibit a significant phase shift to each
other, which reflects a certain sensitivity, see [6]. Nevertheless, amplitude and
shape agree in all three signals.

Other simulations, for example using a smaller value T1, indicate an even
more problematical behaviour of the semidiscretisation methods, where also
too high amplitudes may arise. Moreover, the use of a BDF2 scheme, see [1],
to proceed in t1-direction leads to less accurate results in both RM and ML.
Applying trapezoidal rule in the ML causes significant inaccuracies, which
reflect the higher index of the semidiscretised system. Thus the application
of semidiscretisation techniques seems to be critical, at least if the boundary
constraint (8) is involved.
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Fig. 2. Local frequency computed by RM (—) and ML (- -), respectively, together
with input signal (- · -).
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Fig. 3. MPDAE solution for u computed by RM (left) and ML (right).
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Fig. 4. MPDAE solution for v computed by RM (left) and ML (right).
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Fig. 5. DAE solution for u in time intervals [0, 5] (left) and [700, 705] (right) from
RM (—), ML (- -) and transient integration (- · -).

5 Conclusions

The MPDAE model provides an alternative approach for the numerical sim-
ulation of multitone signals. Two techniques based on semidiscretisation for
solving initial boundary value problems of MPDAEs have been presented,
namely a Rothe method and a method of lines. Thereby, a specific boundary
constraint is applied to identify the local frequency function. Numerical results
demonstrate that both techniques exhibit problems in computing an accurate
solution. Hence further theoretical examinations with respect to feasibility
and stability of semidiscretisation methods are necessary in this context.
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