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PARABOLIC DIFFERENTIAL-ALGEBRAIC MODELS IN
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Abstract. In refined network analysis, a compact network model is combined with distributed
models for semiconductor devices in a multidimensional approach. For linear RLC networks con-
taining diodes as distributed devices, we construct a mathematical model that joins the differential-
algebraic initial-value problem for the electric circuit with parabolic-elliptic boundary value problems
modeling the diodes. For this mixed initial-boundary value problem of partial differential-algebraic
equations a first existence and uniqueness result is given and its asymptotic behavior is discussed.
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1. Introduction. One main task in today’s modeling and simulation of complex,
more refined technical systems is to adequately describe the joint usage of elements
combining lumped and distributed parts. These parts are often defined by a model
reduction process. In these combined parts, topology is sufficient to describe the
spatial allocation of lumped elements in a network approach, whereas the spatial
dimension is indispensable to correctly reflect the behavior of distributed elements,
either in 1d, 2d or even 3d, depending on the application and the model accuracy
needed. Examples for this approach can be found in mechanics (combining rigid
and elastic or elastoplastic elements in flexible multibody systems) [17], in biology
(describing the human blood circulation by models of varying spatial complexity) [14]
or ecology (modeling river systems by a network of hydrodynamical elements for water
level prediction) [15], to name but a few. From a mathematical point of view, this
modeling approach leads to partial differential-algebraic equations, for short PDAE
systems, that couple differential-algebraic models for the lumped part and partial
differential equations for the distributed elements by appropriate boundary conditions
and source terms. These systems may not only be characterized by their multiscale
feature in space (lumped versus distributed elements), but also in time: the time
scales of the subsystems can differ by several orders of magnitude.

In chip design, PDAE models have been successfully used in refined network mod-
eling: since spatial dimensions of semiconductor technology shrink steadily, former
secondary effects tend to influence or even conduct the general behavior of the elec-
tric networks. Therefore hyperbolic PDAE models [6] are introduced to incorporate
transmission line effects to the description of highly integrated circuits of extremely
fast clock rate, whereas the inclusion of thermal effects in SOI circuits constitutes
a parabolic PDAE system [2]. A third example is given by taking into account the
distributed nature of semiconductor devices. The stationary case, which is appro-
priate for circuits that are characterized by very different time scales related to the
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relaxation of diodes to equilibrium and to the electric currents in the network, can be
modeled by elliptic PDAE systems based on stationary drift-diffusion equations [1].
For all three PDAE examples mentioned above, existence results have been derived
that justify the PDAE modeling approach.

In this paper, we aim at generalizing the last example to a non-stationary descrip-
tion. We introduce a mathematical model for such a coupled system, where the electric
network is given by a linear RLC-circuit, described by differential algebraic equations
(DAEs), and the devices are modeled by the nonstationary drift-diffusion model,
which is a set of nonlinear parabolic-elliptic partial differential equations (PDE). We
will study the well-posedness of this mixed parabolic-elliptic PDAE system. For the
pure system of nonstationary drift-diffusion equations Gajewski proved the first exis-
tence result [3]. The ideas from that paper are the basis of our investigations.

The work is organized as follows. In Section 2, we describe the modeling of the
lumped part (DAE network equations for the circuit), distributed part (nonstation-
ary drift-diffusion model for the diodes) and their interdependence based on suitable
coupling conditions. In Section 3, we discuss topological conditions for the overall
network. For the appropriate choice of these condition, an inspection of the system’s
total energy is needed. In fact, the diodes create voltage-defined currents that enter
the current balance in the network equations. On the other hand, the circuit’s node
potentials define boundary conditions for the drift-diffusion system. The next sec-
tion combines these results to shape the overall coupled system in a (spatially) weak
formulation. Section 5 is devoted to the existence and uniqueness analysis of this
system. Generalizing the total energy derived in Section 2 to a parametric Liapunov
functional, uniform a-priori estimates can be derived for both lumped and distributed
components. These enable us to generalize local existence and uniqueness results,
obtained by a fixed-point argument, to global results. In Section 6, the asymptotic
behavior of the joint system, especially its relaxation to equilibrium, is addressed; the
result depends heavily on the network’s topology. Finally, in the last section we draw
some conclusions and give an outlook on a few open problems.

2. Refined modeling of networks with diodes. To start with, we outline
the network equations to describe the shunt electric elements. Next, we specify the 1d
model for a semiconductor device, the drift-diffusion system. Then we aim at putting
both models together by specifying coupling conditions.

2.1. Network models for electric circuits. We consider a linear RLC net-
work which contains semiconductor devices with two Ohmic contacts, like, for in-
stance, diodes. Then our circuit is an electric network which connects diodes, lin-
ear capacitors, inductors and resistors, and independent voltage and current sources,
v(t) ∈ RnV and ı(t) ∈ RnI . Applying Modified Nodal Analysis (MNA) [7, 13] to
setup the network description, the vector of unknowns x comprises all node poten-
tials u(t) ∈ Rn, and the currents L(t) ∈ RnL and V (t) ∈ RnV through inductors
and voltage sources, respectively: thus x = (u, L, V )>, for t ∈ [0, T ], say. This set of
unknowns is supplemented by currents λ ∈ R2d at the boundaries of all d diodes. It
is precisely through λ that the diodes are coupled as non-basic elements to the RLC
network. Then the DAE network equation for the RLC part is given by




ACCA>C 0 0
0 L 0
0 0 0


dx

dt
+




ARGA>R AL AV

−A>L 0 0
−A>V 0 0


x+




Aλλ
0
0


+




AIı
0
v


= 0. (2.1)



PARABOLIC DIFFERENTIAL-ALGEBRAIC MODELS 3

Here, the incidence matrices AC ∈ Rn×nC , AL ∈ Rn×nL and AR ∈ Rn×nG describe
the branch-node relationships for capacitors, inductors and resistors; the incidence
matrices AV ∈ Rn×nV and AI ∈ Rn×nI describe this relationship for voltage and
current sources, respectively. In variance, Aλ ∈ Rn×2d matches the boundaries of the
diodes with the corresponding network nodes. Furthermore, we have the capacitance,
inductance and conductance matrices C ∈ RnC×nC , L ∈ RnL×nL and G ∈ RnG×nG ,
which are assumed to be positive-definite and symmetric. The network equations are
supplemented with consistent initial data

x(0) = x0. (2.2)

The consistency of the initial data (2.2) with the equation (2.1) will be discussed later.

2.2. The one-dimensional diode model. We model a diode as a line segment
of length l, characterized by a doping profile C(x), x ∈ (0, l). We neglect all thermal
effects, and assume that two carriers are responsible for the diode’s output current,
that is, electrons with negative charge −q, and holes with positive charge q. The
behavior of the diode is described in terms of number densities of electrons and holes,
denoted by n = n(x, t), p = p(x, t), and of electrostatic potential, denoted by V =
V (x, t), with (x, t) ∈ (0, l) × (0, T ). These variables satisfy the following transient
drift-diffusion system [12],

−q∂tn+ ∂xjn = qR, (2.3a)
q∂tp+ ∂xjp = −qR, (2.3b)

jn = −q {−Dn∂xn+ µnn∂xV } , (2.3c)
jp = q {−Dp∂xp− µpp∂xV } , (2.3d)

−ε∂2
xV = q(C + p− n), (2.3e)

where jn and jp denote the current densities for electrons and holes.
In (2.3), Dn, Dp are the diffusivities and µn, µp are the mobilities for electrons

and holes, respectively. Around thermodynamic equilibrium, they are linked by

Dn = UTµn, Dp = UTµp,

called Einstein’s relations, where UT is the (constant) thermal potential. Since we
neglect thermal effects, we assume at once the validity of these relations. Moreover,
for simplicity, we assume diffusivities and mobilities to be positive constants.

The recombination-generation term R = R(n, p) is assumed to have the structure:

R(n, p) = F (n, p) ·
(np
n2

i

− 1
)
. (2.4)

Here F = F (n, p) is Lipschitz-continuous and satisfies the estimate

0 ≤ F (n, p) · (1 + |n|+ |p|) ≤ F̄ , (2.5)

where F̄ is a constant and ni denotes the intrinsic carrier concentration.
System (2.3) is supplemented with the initial-boundary conditions

n(x, 0) = n0(x), p(x, 0) = p0(x), (2.6a)
n(x, t) = nD(x), p(x, t) = pD(x), x = 0, l, (2.6b)
V (0, t) = Vbi(0) + u1(t), V (l, t) = Vbi(l) + u2(t), (2.6c)
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where p0, n0 ∈ L2([0, l]) are positive functions, and

nD = C/2 +
√

(C/2)2 + n2
i , pD = −C/2 +

√
(C/2)2 + n2

i ,

Vbi = UT ln (nD/ni) .

The potentials u1, u2 in (2.6c) represent the external electric potentials applied to
the devices. They are not independent functions to be assigned, but they are to be
determined by the equations for the electrical network.

Remark 1. From a physical point of view, mobilities and diffusivities are bound-
ed, strictly positive functions of x and E = ∂xV [11, 16]. In this paper we assume
these functions to be constant. It would be also possible to treat a class of non-constant
mobilities as in [3], omitting Einstein’s relations, and assuming

µn(x,E) = mn +Mn(x, |E|), Dn(x,E) = UTmn,

µp(x,E) = mp +Mp(x, |E|), Dp(x,E) = UTmp,

where mn and mp are positive constants and
∣∣Mn(x, z)

∣∣z ≤ M̄,
∣∣Mp(x, z)

∣∣z ≤ M̄, for any x ∈ [0, l], z > 0,

with 0 ≤ M̄ < min(mn,mp).
Remark 2. Conditions (2.4), (2.5) are satisfied by recombination-generation

terms of Shockley-Read-Hall (SRH) type,

RSRH(n, p) =
np− n2

i

τp(n+ ni) + τn(p+ ni)
,

where ni is the intrinsic carrier concentration, τp and τn are the lifetimes of electrons
and holes, respectively [16].

2.3. Coupling conditions. Without loss of generality, we consider a network
which contains exactly one diode. All the arguments below generalize in a straight-
forward way to networks containing a multitude of diodes. So, the drift-diffusion
equations (2.3) for the diode are coupled to the electric network by

(
u1(t)
u2(t)

)
= A>λu(t), (2.7)

which relates the boundary data (u1, u2) to the node potentials u(t) ∈ Rn of the DAE
model for the electric network, and furthermore by the term

Aλλ = Aλ

(
λ1

λ2

)
,

which appears in the circuit equations (2.1). The total electric current λ transferred
from the device to the circuit depends on the solution of (2.3) and must satisfy

λ1 + λ2 = 0,

which asserts that the currents transmitted to the circuit at the two Ohmic contacts
of the device are opposite. In other words, we require that the quantity

I := λ1 = −λ2



PARABOLIC DIFFERENTIAL-ALGEBRAIC MODELS 5

is a current and is conserved through the device, consistent with Kirchhoff’s law. In
the stationary case [1], the current I is given by the electric current due to charge
transport, J = jn + jp. In the evolutionary case, J is not conserved anymore. Never-
theless, from (2.3a)–(2.3b) we can derive the conservation of total charge,

∂t(−qn+ qp) + ∂xJ = 0.

Using Poisson’s equation (2.3e), we find

∂x(−ε∂t∂xV + J) = 0,

which implies

−ε∂t∂xV (x, t) + J(x, t) = −ε∂t∂xV (0, t) + J(0, t)
= −ε∂t∂xV (l, t) + J(l, t).

With these considerations we can identify the current conserved over the device

I(t) = −ε∂t∂xV (x, t) + J(x, t), (2.8)

as the sum of the displacement current, due to the variation of charge, and the electric
current, due to charge transport. Thus the current transmitted to the circuit reads

λ =
(
λ1(t)
λ2(t)

)
=

(
1
−1

)
I(t). (2.9)

We can render more explicit the current by integrating (2.8) over [0, l]. Using
(2.6c) and (2.7), we obtain immediately

I(t) = −ε
l

d
dt

(u2(t)− u1(t)) + 〈J〉 (t)

=
ε

l
A>D

du

dt
+ 〈J〉 (t), (2.10)

where

AD = Aλ

(
1
−1

)
,

and we have used the average operator

〈f〉 (t) =
1
l

∫ l

0

f(x, t) dx.

The same coupling current is obtained by the explicit solution of (2.3e),

V (x, t) = u1(t) + Vbi(0) +
x

l

(
u2(t) + Vbi(l)− u1(t)− Vbi(0)

)

+
∫ x

0

∫ x′

0

q

ε

(
n(x′′, t)− p(x′′, t)− C(x′′)

)
dx′′ dx′

−x
l

∫ l

0

∫ x′

0

q

ε

(
n(x′′, t)− p(x′′, t)− C(x′′)

)
dx′′ dx′, (2.11)
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which gives an explicit formula for the electric field E = ∂xV (modulo sign),

E(x, t) =
1
l

(
u2(t) + Vbi(l)− u1(t)− Vbi(0)

)
+

∫ x

0

q

ε

(
n(x′, t)− p(x′, t)− C(x′)

)
dx′

− 1
l

∫ l

0

∫ x′

0

q

ε

(
n(x′′, t)− p(x′′, t)− C(x′′)

)
dx′′ dx′, (2.12)

These explicit formulas will be useful later.
In conclusion, using (2.9) and the definition (2.10) for the transmitted current,

the coupling term Aλλ in the circuit equations is given by

Aλλ =
ε

l
ADA>D

du

dt
+ AD 〈J〉 . (2.13)

3. Topological conditions. In this section we discuss appropriate topological
conditions for the electric network, which will be used in the final formulation of
the problem. In the first part, we introduce a general decomposition into differential
and algebraic circuit components, and require that the coupled system has topological
index 1. Next, we discuss the energy of the coupled problem and show that additional
topological conditions are needed which ensure that all differential components can
be controlled by the total energy.

3.1. Decomposition of the circuit’s unknowns. Using a well established
procedure [19], we decompose the circuit’s unknowns into a differential component
and an algebraic component. Using (2.13), the first component of (2.1) becomes

MC
du

dt
+ ARGA>Ru + ALL + AV V + AD 〈J〉+ AIı = 0,

where we have introduced the symmetric matrix

MC := ACCA>C +
ε

l
ADA>D = (AC ,AD)

(
C 0
0 ε

l

) (
A>C
A>D

)
.

We denote by QCD a projector onto the kerMC = ker(AC ,AD)>, and set P CD =
Id − QCD, such that P CDQCD = QCDP CD = 0. Then the network variables
can be split into a differential component, y = (y1,y2)> := (P CDu, L)>, and an
algebraic component, z = (z1,z2)> := (QCDu, V )>. In terms of these components,
the network equations read

(
H 0
0 L

)
d
dt

(
y1

y2

)
+

(
P>CDARGA>RP CD P>CDAL

−A>LP CD 0

)(
y1

y2

)
(3.1a)

+
(

P>CDARGA>RQCD P>CDAV

−A>LQCD 0

)(
z1

z2

)
+

(
P>CD(AIı + AD 〈J〉)

0

)
= 0,

(
Q>CDARGA>RQCD Q>CDAV

A>V QCD 0

)(
z1

z2

)
(3.1b)

+
(

Q>CDARGA>RP CD Q>CDAL

A>V P CD 0

)(
y1

y2

)
+

(
Q>CD(AIı + AD 〈J〉)

−v

)
= 0.
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Here H = MC +Q>CDQCD is a positive-definite, symmetric matrix. By definition of
QCD, we have Q>CDAD = 0. Then system (3.1) can be written in the compact form

ÃP
dy

dt
+ BP y + CP z + F P (ı) +

(
AD 〈J〉

0

)
= 0, (3.2a)

BQz + CQy + F Q(ı, v) = 0, (3.2b)

with obvious notation. The differential-algebraic system (3.2) has differential index-1
(for a given function 〈J〉) if (3.2b) can be solved for z as a function of y. Thus we
need the invertibility of the linear map BQ in the subspace (kerMC)×RnV . To this
end, we assume the following topological conditions [6, 19]:

ker(AD,AC ,AR,AV )> = {0}, (3.3)
kerQ>CDAV = {0}. (3.4)

Then, due to the positive-definiteness of G, the matrix

BQ =
(

Q>CDARGA>RQCD Q>CDAV

A>V QCD 0

)

satisfies

kerBQ = ker
(
(AR,AV )>QCD

)× kerQ>
CDAV = ker QCD × {0},

and hence z is a linear function of y, ı and v . Explicitly, system (3.2) is equivalent
to

ÃP
dy

dt
+ B̃P y + F̃ P (ı, v) +

(
AD 〈J〉

0

)
= 0, (3.5a)

z = −B−1 (CQy + F Q(ı, v)) , (3.5b)

with

B =

(
Q>CDARGA>RQCD + P>CDP CD Q>CDAV

A>V QCD 0

)
,

B̃P = BP −CP B−1CQ,

F̃ P = F P −CP B−1F Q.

Remark 3. The topological conditions (3.3) and (3.4) have simple physical inter-
pretations. Condition (3.3) forbids cutsets composed of independent current sources
and inductors. Condition (3.4) states that loops containing at least one voltage source
and any number of capacitors and diodes are forbidden.

3.2. Total energy of the coupled problem. Next, we discuss the total phys-
ical energy of our coupled system. We will propose two expressions for this quantity,
which will lead us to consider an additional topological condition for the network.

To start, we introduce the local physical energy wD(x, t) associated to the device

wD = qUT

{
n

(
ln
n

ni
− 1

)
+ p

(
ln

p

ni
− 1

)}
+
ε

2
E2,

where E = ∂xV [3]. For smooth solutions, wD satisfies the following balance equation:

∂twD+ ∂x

(
−UT ln

n

ni
jn+ UT ln

p

ni
jp

)
=− j2n

qµnn
− j2p
qµpp

−qUTR ln
np

n2
i

− I∂xV, (3.6)
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where I = I(t) is defined by (2.8). The total energy of the device is given by

WD(t) =
∫ l

0

wD(x, t) dx.

We can also consider the total energy WC associated to the circuit, defined by

WC =
1
2
u>ACCA>Cu +

1
2
>LLL.

Multiplying the network equations (2.1) by x>, we obtain the following relation

dWC

dt
+ u>ARGA>Ru + u>AIı + >V v + u>Aλλ = 0. (3.7)

An obvious choice for the total energy of the coupled problem is just the sum of
the energy of the device and the energy of the circuit, W = WD +WC . Integrating
(3.6) over the space domain [0, l], recalling the boundary conditions (2.6) and using
(3.7), we find that W satisfies the equation

dW
dt

+ u>ARGA>Ru + u>AIı + >V v

= −
∫ l

0

(
j2n
qµnn

+
j2p
qµpp

)
dx−

∫ l

0

qUTR ln
np

n2
i

dx− [Vbi(I − J)]l0 . (3.8)

Here we have used the identity

u>Aλλ = −(u2 − u1)I. (3.9)

It is possible to give an alternative definition for the total energy, where no bound-
ary terms appear in the total energy balance equation. To this end, we introduce a
special steady-state solution (ne, pe, V e) of (2.3), which corresponds to zero external
electric voltage source v and electric current source ı, where the potentials applied to
the diode vanish, and, furthermore, this solution shall satisfy the conditions:

ne = ni exp
(
V e/UT

)
, pe = ni exp

(−V e/UT

)
.

A steady-state solution corresponding to these constraints represents a physical state
in total thermodynamic equilibrium. The equilibrium voltage V e is uniquely deter-
mined by the following nonlinear elliptic problem:

−ε∂2
xV = qC − qni (exp (V/UT )− exp (−V/UT )) , (3.10)

V (x, t) = Vbi(x), x = 0, l,

with

Vbi = UT ln(nD/ni), nD = C/2 +
√

(C/2)2 + n2
i .

Having introduced this steady state solution (ne, pe, V e), we can consider a shifted
local energy w∗D for the device:

w∗D = wD − we
D −

(
∂wD

∂n

)e

(n− ne)−
(
∂wD

∂p

)e

(p− pe)−
(
∂wD

∂E

)e

(E − Ee)

≡ qUT

{
n

(
ln

n

ne
− 1

)
+ ne + p

(
ln

p

pe
− 1

)
+ pe

}
+
ε

2
|E − Ee|2,
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which is quadratic in the neighborhood of the equilibrium. Here the e-superscript
signifies the evaluation at the equilibrium state, and Ee = ∂xV

e. Let W ∗
D denote the

corresponding global energy, then the total energy W ∗ = W ∗
D +WC satisfies

dW ∗

dt
+ u>ARGA>Ru + u>AIı + >V v

= −
∫ l

0

( j2n
qµnn

+
j2p
qµpp

)
dx−

∫ l

0

qUTR ln
np

n2
i

dx. (3.11)

For both choices W and W ∗, the components of the circuit variables which
contribute to the total energy for the coupled problem are given by (P Cu, L),
where P C = Id − QC , and QC is a projector onto kerA>C . We require that these
components contain the differential components (P CDu, L), that is, we demand
QCP CDu = 0. By the definition of QCD and P CD, this condition is equivalent
to QCu = QCQCDu ≡ QCDu, or QC = QCD, which reads as topological condition:

A>DQC = 0. (3.12)

If (3.12) is valid, then the index-1 topological conditions (3.3) and (3.4) reduce to

ker(AC ,AR,AV )> = {0}, (3.13)
kerQ>CAV = {0}. (3.14)

Also, the energy of the circuit assumes the simple form

WC =
1
2
y>AP y,

with

AP =
(

ACCA>C + Q>CQC 0
0 L

)
. (3.15)

In the following, we assume altogether the validity of (3.12)–(3.14).
Remark 4. The topological conditions (3.12)–(3.14) have the following network

interpretations: (i) the diode’s terminals are connected by a path of capacitors, (ii)
there is no cutset of inductors and current sources, and (iii) there is no loop of ca-
pacitors containing at least one voltage source, respectively.

4. Problem formulation. Assuming the topological condition (3.12)–(3.14),
we can combine the evolutionary drift-diffusion model and the RLC-network equations
from above and formulate the full coupled problem on a time interval [0, T ]. Before
doing so, the consistency of the initial data (2.2) needs to be briefly addressed. We
identify x0 = (u0, L0, V 0)> and define

y0 = (y1,0, y2,0) = (P Cu0, L0)
>, z0 = (QCu0, V 0)

>.

Then the differential part y0 and the algebraic part z0 of the initial data (2.2) must
satisfy the consistency condition

BQz0 + CQy0 + F Q(ı(0), v(0)) = 0.

This condition can be fulfilled by supplementing (3.2a) with arbitrary initial data y1,0

such that Q>Cy1,0 = 0. Then the algebraic part of the initial data is fixed by

z0 = −B−1 (CQy0 − F Q(ı(0), v(0))) =: (z1,0, V 0)
>.
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In particular, the initial applied voltage will be u(0) = y1,0 + z1,0.
The final equations (4.1) for the full coupled problem are summarized in Box 4.1.

The structure of the coupling of electric networks and devices has many resemblances

Box 4.1: Mixed system of parabolic-elliptic IBVP and DAE-IVP.

Parabolic-Elliptic IBVP for the diode:

−q∂tn+ ∂xjn = qR, jn = −q (µnn∂xV − UTµn∂xn) ,
q∂tp+ ∂xjp = −qR, jp = −q (µpp∂xV + UTµp∂xp) , (4.1a)

−ε ∂2
xV = q(C − n+ p),

with R = F (n, p) (np/n2
i − 1),

n(x, 0) = n0(x), p(x, 0) = p0(x) (4.1b)

n(x, t) = n2
i /p(x, t) = nD(x, t), (x = 0, l)

V (0, t) = Vbi(0) + u1(t), V (l, t) = Vbi(l) + u2(t),
(4.1c)

with Vbi = UT ln
nD

ni
, nD = C/2 +

√
(C/2)2 + n2

i ;

Coupling interface: (
u1

u2

)
= A>λ(y1 + z1), 〈J〉 = 〈jn + jp〉 ; (4.1d)

DAE-IVP problem for the network:

ÃP
dy

dt
+ B̃P y + F̃ P (ı, v) +

(
AD 〈J〉

0

)
= 0,

z = −B−1 (CQy + F Q(ı, v)) ,
(4.1e)

y(0) = y0. (4.1f)

with the coupling arising from networks with transmission lines [6]. In both cases
some subsystems describe refined electric network elements, which depend on the
boundary (terminal) node potentials.

Next, we are going to reformulate problem (4.1) in a functional setting which
is more suitable for a mathematical treatment. We denote by Lr = Lr([0, l]), and
Hk = Hk([0, l]) the usual spaces of functions, with norms ‖·‖Lr , and ‖·‖Hk , respec-
tively. We also use the space L2

+ of all functions in L2 which are nonnegative almost
everywhere. Let [0, T ] be a bounded time interval. For any Banach space X, we
denote by C([0, T ];X), Lr([0, T ];X) and Hk([0, T ];X) the usual spaces of functions
defined on [0, T ] with values in X. For our purposes, we introduce the following
Banach spaces:

X = {u ∈ H1 |u(0) = u(l) = 0},
Y =C([0, T ];L2) ∩ L2([0, T ];X) ∩H1([0, T ];X∗),

CL =C([0, T ];Rn+nL),

CV =C([0, T ];Rn+nV ),
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where X∗ is the dual space of X.
Before proceeding, note that the variables directly involved in problem (4.1) are

the electron and hole density, n and p, and the network’s differential part y. In fact,
only the gradient of the electric potential (the field E = ∂xV ) appears in the equations
for n and p. Recalling the explicit representation of the field (2.12), we immediately
see that E depends on the electric network only through the quantity u2− u1. Then,
although u1 and u2 depend both on y1 and z1 through (4.1d), we find that

u2 − u1 = −A>Dy1, (4.2)

since, by definition, A>Dz1 = 0. We can now present the weak formulation of problem
(4.1) which will be studied in the following sections.

Definition 4.1 (Solutions to PDAE). We define the tuple (n, p, V,y, z) to be a
solution of the PDAE problem (4.1) if the network algebraic component z ∈ CV and
the electric potential V are given by

z(t) = −B−1 (CQy(t) + F Q(ı(t), v(t))) ,

V (x, t) = Vbi(0) + u1(t) +
∫ x

0

E(x′, t) dx,
(
u1

u2

)
= A>λ(y1 + z1),

and the tuple (n, p,E,y) satisfies the following conditions:
(i) (n− ne), (p− pe) ∈ Y , and n, p ∈ C([0, T ];L2

+) satisfy (4.1b);
(ii) the unknown y = (y1,y2)>, belongs to CL and satisfies (4.1f);
(iii) the electric field E is given by (2.11), with u2 − u1 = −A>Dy1;
(iv) for all test-functions ψn, ψp ∈ X, n and p satisfy the weak formulation

(∂tn, ψn) + (UTµn∂xn− µnnE, ∂xψn) + (R,ψn) = 0, (4.3a)
(∂tp, ψp) + (UTµp∂xp+ µppE, ∂xψp) + (R,ψp) = 0, (4.3b)

where (·, ·) is the usual L2-inner product;
(v) the network variable y satisfies

ÃP
dy

dt
+ B̃P y + F̃ P (ı, v) +

(
AD 〈J〉

0

)
= 0. (4.4)

5. Existence of solutions. In this section, we study the existence and unique-
ness of solutions to the PDAE problem (4.1). The existence proof resides heavily on
some physically based a priori estimates which will allow the prolongation of a local so-
lution. Local existence and uniqueness can be established by the Banach-Caccioppoli
fixed-point theorem, for sufficiently small times. These results are presented in two
separate parts: the first one deals with a priori estimates; in the second one, local
existence and uniqueness are addressed, and a global existence result is stated and
proved.

5.1. A priori estimates. In this first part, we assume the existence of a so-
lution (n, p, V,y,z) to (4.1), in an arbitrary time interval [0, T ]. For any function
g(n, p, E,y), we introduce the notation δg = g − ge, with ge = g(ne, pe, Ee,ye), and
Ee = ∂xV

e, ye = 0. We also write δV = V − V e.
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Following Gajewski [3], for any α > 0, we introduce the Liapunov functional:

Hα(δn, δp, δE, δy) =
∫ l

0

qUT

{
(n+ α)

(
ln

n+ α

ne + α
− 1

)
+ ne

+(p+ α)
(

ln
p+ α

pe + α
− 1

)
+ pe

}
dx+

∫ l

0

ε

2
|δE|2dx+

1
2
y>AP y

=: H∗α(t) +
1
2
y>AP y,

where AP is defined in (3.15). The parameter α is needed to ensure that Hα is well
defined, since n and p may vanish locally.

Remark 5. Formally, as α tends to zero, the Liapunov functional Hα tends
to the total physical energy W ∗ of the coupled system, defined in Section 3.2. This
assertion can be stated in a precise way by observing that the function

g(z) =
{
z ln z, if z > 0,
0, if z = 0,

is continuous for z ∈ [0,∞). Then the functional H = limα→0Hα is well defined and
we have H = W ∗.

For any solution of the full problem (4.1), the quantity Hα(δn, δp, δE, δy) is a
function of time only. Its time derivative is

dHα

dt
= q (∂tn,UT δ ln(n+ α)) + q (∂tp, UT δ ln(p+ α))

+ ε (∂tδE, δE) + y>AP
dy

dt
, (5.1)

where the L2-scalar product (·, ·) is employed. Writing (4.3) with ψn = UT δ ln(n+α)
and ψp = UT δ ln(p+ α), the first two terms at the right-hand side of (5.1) become

q
(
∂tn,UT δ ln(n+ α)

)
+ q

(
∂tp, UT δ ln(p+ α)

)

=
(
jn,−UT∂xδ ln(n+ α)

)
+

(
jp, UT∂xδ ln(p+ α)

)− qUT

(
R, δ ln((n+ α)(p+ α))

)

=
(
jn, ∂xδΦn − ∂xδV

)
+

(
jp, ∂xδΦp − ∂xδV

)− qUT

(
R, δ ln((n+ α)(p+ α))

)

=
(
jn, ∂xδΦn

)
+

(
jp, ∂xδΦp

)− qUT

(
R, δ ln((n+ α)(p+ α))

)− (
J, δE

)
, (5.2)

where Φn,Φp,Φe
n,Φe

p are defined by the relations

n+ α = ni exp
(
V − Φn

UT

)
, p+ α = ni exp

(
−V − Φp

UT

)
,

ne + α = ni exp
(
V e − Φe

n

UT

)
, pe + α = ni exp

(
−V

e − Φe
p

UT

)
.

These new quantities can be interpreted as α−shifted ‘quasi-Fermi levels’, and coincide
with the physical quasi-Fermi levels as α tends to zero. The third term at the right-
hand side of (5.1) can be rewritten as

ε (∂tδE, δE) =[εδV ∂t∂xδV ]l0 − q (∂t(δn− δp), δV )

= [εδV ∂t∂xδV ]l0 − (∂xJ, δV )

= − [(−ε∂t∂xδV + J)δV ]l0 + (J, ∂xδV )
= −I(u2 − u1) + (J, δE) . (5.3)
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Finally, the definition of ÃP , the circuit equations (3.5) and the identity (2.13) yields

y>AP
dy

dt
= y>ÃP

dy

dt
− ε

l
y>1ADA>D

dy1

dt
= −y>B̃P y − y>F̃ P (ı, v)− y>1Aλλ. (5.4)

In conclusion, we obtain the following result:
Lemma 5.1. For the functional Hα, we have

Hα(t)−
∫ t

0

∫ l

0

(jn∂xδΦn+ jp∂xδΦp) dxds+
∫ t

0

∫ l

0

qUTRδ ln
(
(n+α)(p+α)

)
dxds

= Hα(0)−
∫ t

0

(
y>B̃P y + y>F̃ P

)
ds. (5.5)

Proof. Using (5.2)–(5.4), and y>1Aλλ = −(u2 − u1)I, the identity (5.1) becomes

dHα

dt
=

∫ l

0

(jn∂xδΦn+jp∂xδΦp) dx+
∫ l

0

qUTRδ ln
(
(n+α)(p+α)

)
dx−y>B̃P y−y>F̃P .

An integration over any time-interval [0, t] (t < T ) yields the thesis.
The identity shown in the previous lemma is the key result to prove some a priory

bounds for the solution, stated in the following lemmas:
Lemma 5.2. Assume that the recombination term is of type (2.4)-(2.5), and the

mobilities are bounded. Then there exist constants C1, C2 independent of t such that
for any solution n, p of (4.3) holds

‖n(·, t)‖L1 + ‖p(·, t)‖L1 + ‖E(·, t)‖2L2 + |y(t)|2 ≤ C1e
C2t. (5.6)

Proof. Recalling the identity (5.5), we estimate its left-hand side term by term.
The current can be written as

jn = qµn

(
UT∂xn− n∂xV

)
= qµn

(
α∂xV − (n+ α)∂xΦe

n− (n+ α)∂xδΦn

)
.

Therefore, using the non-negativity of n and the boundedness of the mobility, we get

−
∫ l

0

jn∂xδΦndx ≥ −q
∫ l

0

µn

(
n+α

2 | ∂xΦe
n|2 + α

2 |∂xV |2
)
dx

≥ −c1(1 + ‖n‖L1 + ‖E‖2L2),

for some constant c1 > 0. The estimate for jp is analog. For the recombination-
generation integral, using nepe = n2

i , and (a− 1) ln(a) ≥ 0, we can estimate
∫ l

0

(
qUTRδ ln((n+ α)(p+ α))

)
dx

≥ −αqUT

n2
i

∫ l

0

F

(
ln

(
n+ α

ne + α

)
+ ln

(
p+ α

pe + α

))
(n+ p− ne − pe) dx.

Then, using the estimate (2.5) for F , and the inequality
∣∣∣∣
ln(z + a)
z + a

∣∣∣∣ ≤ max
(

1
e
,

∣∣∣∣
ln a
a

∣∣∣∣
)
, for all z ≥ 0, a > 0,
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we get
∫ l

0

qUTRδ ln((n+ α)(p+ α)) dx ≥ −αc2
(
1 + ‖n‖L1 + ‖p‖L1

)
.

Combining the above estimates with (5.5), we obtain

Hα(t) ≤ c3 + c4

∫ t

0

(
1 + ‖n‖L1 + ‖p‖L1 + ‖E‖2L2 + |y|2

)
dx, (5.7)

using positive constants c3, c4. On the other end, applying the inequality

z − a ≤ c
[
z

(
ln
z

a
− 1

)
+ a

]
+ aε(c), for all z ≥ 0, a > 0, c > 0, (5.8)

with ε(c) = c(e1/c − 1)− 1 > 0, we find

qUT (‖n‖L1 + ‖p‖L1) +
ε

2
‖δE‖2L2 ≤ H∗α + qUT (e− 1)

∫ l

0

(ne + pe + 2α)dx.

Then we can conclude that

1 + ‖n‖L1 + ‖p‖L1 + ‖E‖2L2 + |y|2 ≤ c5Hα + c6, (5.9)

for some positive constants c5, c6. Combining (5.7)–(5.9) and using Gronwall’s lemma,
we deduce the thesis.

Lemma 5.3. Under the hypothesis of Lemma 5.2, there exists a constant c = c(T )
such that for all t ≤ T we have

‖n(·, t)‖2L2 + ‖p(·, t)‖2L2 +
∫ t

0

(
‖∂xn(·, s)‖2L2 + ‖∂xp(·, s)‖2L2

)
ds ≤ c. (5.10)

Proof. We consider the weak formulation (4.3a) with ψn = δn. Integrating with
respect to time, we find

1
2
(‖δn(·, t)‖2L2 − ‖δn(·, 0)‖2L2

)
+ UTµn

∫ t

0

∫ l

0

|∂xδn|2 dxds

= −UTµn

∫ t

0

∫ l

0

∂xn
e∂xδn dx ds+

∫ t

0

(µnn∂xV, ∂xδn) ds−
∫ t

0

(R, δn) ds.

We can estimate

−
∫ t

0

∫ l

0

∂xn
e∂xδn dxds ≤ 1

2

∫ t

0

(
‖∂xn(·, τ)‖2L2 + ‖∂xn

e‖2L2

)
ds.

Furthermore, integrating by parts and using the Poisson equation, we obtain
∫ t

0

(n∂xV, ∂xδn) ds =
∫ t

0

(δn∂xV, ∂xδn) ds+
∫ t

0

(neE, ∂xδn) ds

≤ q

2ε

∫ t

0

∫ l

0

(C − n+ p) (δn)2 dxds+
∫ t

0

(
c ‖E‖2L2 +

UT

4
‖∂xδn‖2L2

)
ds

≤ c(T )
{

1 + ‖n‖2L2 + ‖p‖2L2

}
+

q

2ε

∫ t

0

∫ l

0

n2(p− n)dx ds+
UT

4

∫ t

0

‖∂xδn‖2L2 ds.
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Here, we have used Lemma 5.2 to estimate all linear terms in n and p and the L2-norm
of E. For the recombination-generation (2.4), we have

|(R, δn)| ≤
∫ l

0

∣∣∣∣F
(np
n2

i

− 1
)
δn

∣∣∣∣ dx ≤ c
(
1 + ‖n‖2L2 + ‖p‖2L2

)
,

employing Fn ≤ F̄ . Putting everything together, we get the estimate

‖δn(t)‖2L2 +
UTµn

2

∫ t

0

∫ l

0

|∂xδn|2dxds

≤ c(T )
{

1 +
∫ t

0

(‖n‖2L2 + ‖p‖2L2) ds
}

+
q

ε

∫ t

0

∫ l

0

n2(p− n) dxds,

which leads to

‖n(t)‖2L2 +
∫ t

0

‖∂xn‖2L2 ds ≤ c(T )
{

1+
∫ t

0

(‖n‖2L2 +‖p‖2L2) ds
}

+ cn

∫ t

0

∫ l

0

n2(p−n) dx ds,

for some positive constant cn. Proceeding in the same way for p, we find

‖p(t)‖2L2 +
∫ t

0

‖∂xp‖2L2 ds ≤ c(T )
{

1+
∫ t

0

(‖n‖2L2 +‖p‖2L2) ds
}
− cp

∫ t

0

∫ l

0

p2(p−n) dxds,

for some positive constant cp. Then the last two estimates are multiplied by cp and cn,
respectively, such that in the sum of these estimates the whole cubic term is negative:
−(p2 − n2)(p − n) ≤ 0. Finally, invoking Gronwall’s lemma, we can conclude the
proof.

Combining the previous Lemmas, we arrive directly at the following a priori
estimate:

Lemma 5.4. There exists a constant c = c(T ) such that for all t ≤ T we have

‖n(·, t)‖2L2 + ‖p(·, t)‖2L2 + |y|2 +
∫ t

0

(
‖∂xn(·, τ)‖2L2 + ‖∂xp(·, τ)‖2L2

)
ds ≤ c.

5.2. Global existence and uniqueness. Next, we prove the main result of
this paper, asserting global existence and uniqueness of solutions to problem (4.1).

Theorem 5.5 (Global existence & uniqueness). Let the source functions ı, v
be continuous, the network matrices be symmetric, positive definite with conditions
(3.12)-(3.14), and assume constant diffusivities and mobilities. Then problem (4.1)
admits a unique solution on the time interval [0, T ] for any T ∈ (0, ∞).

The proof is based on the prolongation of the unique local solution ensured by
the following Theorem.

Theorem 5.6 (Local existence & uniqueness). Let the source functions ı and v
be continuous, the network matrices be symmetric, positive definite and the topological
conditions (3.12)-(3.14) be fulfilled, and diffusivities and mobilities be constant. Then
problem (4.1) admits a unique solution provided T > 0 is sufficiently small.

Proof. We introduce the Banach space

Z = (ne, pe) + C([0, T ]; L2 × L2) ∩ L2([0, T ]; X2),
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and fix the pair of functions (n̂, p̂) ∈ Z, and ŷ = (ŷ1, ŷ2)>∈ CL, with n̂(., 0) = n0(.),
p̂(., 0) = p0(.), and ŷ(0) = y0. We consider the following linearized problem for (n, p):

(∂tn, ψn) +
(
UTµn∂xn− µnn̂

+Ê, ∂xψn

)
+

(
R̂, ψn

)
= 0, (5.11)

(∂tp, ψp) +
(
UTµp∂xp+ µpp̂

+Ê, ∂xψp

)
+

(
R̂, ψp

)
= 0, (5.12)

for all test-functions (ψn, ψp) ∈ X2. Here, R̂ = R(n̂+, p̂+), g+ := max(g, 0), and

Ê(x, t) =
1
l

(
Vbi(l)− Vbi(0)−A>Dŷ1

)
+

∫ x

0

q

ε

(
n̂(x′, t)− p̂(x′, t)− C(x′)

)
dx′

− 1
l

∫ l

0

∫ x′

0

q

ε

(
n̂(x′′, t)− p̂(x′′, t)− C(x′′)

)
dx′′ dx′. (5.13)

Also, we consider the following problem for y = (y1,y2)>:

ÃP
dy

dt
+ B̃P ŷ + F̃ P (ı, v) +

(
AD 〈Ĵ 〉

0

)
= 0, (5.14)

with

Ĵ(t) = q
(
UTµn∂xn̂− µnn̂Ê − UTµp∂xp̂− µpp̂ Ê

)
. (5.15)

The decoupled equations (5.11)-(5.12), (5.15) admit a unique solution, (n, p,y),
which satisfies (n, p) ∈ (ne, pe) +Y 2, y ∈ CL, and have the initial data n(., 0) = n0(.),
p(., 0) = p0(.), y(0) = y0 of our problem. In fact, the existence of a unique solutions
y to (5.13) follows immediately by time integration of the equation over [0, t]. The
existence of a unique solution (n, p) to (5.11)–(5.12), follows by standard results for
linear parabolic equations with discontinuous coefficients (see [10], Th. III.4.2). It is
sufficient to note that (5.13) yields the estimate

‖Ê‖L∞ ≤ c (1 + |ŷ|+ ‖n̂‖L1 + ‖p̂‖L1), (5.16)

which implies immediately

‖µnn̂
+Ê‖L2 ≤ µn‖n̂‖L2‖Ê‖L∞ ≤ c ‖n̂‖L2 (1 + |ŷ|+ ‖n̂‖L1 + ‖p̂‖L1) .

It follows that µnn̂
+Ê, µpp̂

+Ê ∈ L2, so that equations (5.11)–(5.12) are well defined
for any choice of (n̂, p̂), and we can apply the above mentioned existence results.

Thus, assigning (n̂, p̂, ŷ) and solving the resulting problems (5.11), (5.12) and
(5.14) for (n, p,y), we obtain an operator Q, defined by

(n̂, p̂, ŷ) → (n, p,y) =: Q(n̂, p̂, ŷ),

which maps Z × CL into Z × CL. We introduce the norm

|||(n, p,y)|||2 = max
0≤t≤T

(
‖n(·, t)‖2L2 + ‖p(·, t)‖2L2 + |y(t)|2

)

+
∫ T

0

(
‖∂xn(·, t)‖2L2 + ‖∂xp(·, t)‖2L2

)
ds, (n, p,y) ∈ Z × CL.
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We are going to prove that Q is strictly contractive with respect to this norm, for T
small enough, in the set

Sa =
{
(n, p,y) ∈ Z ×C : n(., 0)= n0(.), p(., 0)= p0(.), y(0)= y0, |||(n, p,y)|||2 ≤ a

}
,

where the constant satisfies: a > ‖n0‖2L2 + ‖p0‖2L2 + |y0|2 . To this end, we consider
the triplets (n̂1, p̂1, ŷ1), (n̂2, p̂2, ŷ2) ∈ Sa and set

(n1, p1, y1) = Q(n̂1, p̂1, ŷ1), Ê1 = Ê(n̂1, p̂1, ŷ1),
(n2, p2, y2) = Q(n̂2, p̂2, ŷ2), Ê2 = Ê(n̂2, p̂2, ŷ2),

where Ê = Ê(n̂, p̂, ŷ) is defined by (5.13). We write (5.11) with n = n1 and n = n2,
both with test function ψn = n1− n2. Subtracting the two equations and integrating
over the time interval [0, t], we obtain

1
2
‖n1 − n2‖2L2 + UTµn

∫ t

0

‖∂x(n1 − n2)‖2L2 ds

= µn

∫ t

0

(
n̂+

1 Ê1 − n̂+
2 Ê2, ∂x(n1 − n2)

)
ds−

∫ t

0

(
R̂1 − R̂2, n1 − n2

)
ds,

where R̂i = R(n̂+
i , p̂

+
i ), i = 1, 2. Using a weighted Cauchy-Schwarz inequality, we get

1
2
‖n1 − n2‖2L2 + UTµn

∫ t

0

‖∂x(n1 − n2)‖2L2 ds

≤ c(η)
∫ t

0

{‖n̂+
1 Ê1−n̂+

2 Ê2‖
2

L2 + ‖R̂1 − R̂2‖
2

L2

}
ds

+ η

∫ t

0

{‖n1 − n2‖2L2 + ‖∂x(n1 − n2)‖2L2

}
ds, (5.17)

for some arbitrary positive real number η. To estimate the first term on the right-hand
side of (5.17), we first observe that (5.13) and the definition of Ê1 and Ê2, yield

‖Ê1 − Ê2‖L∞ ≤ c (|ŷ1 − ŷ2|+ ‖n̂1 − n̂2‖L1 + ‖p̂1 − p̂2‖L1). (5.18)

Then, using the embedding of L2 in L1, we can estimate

‖n̂+
1 Ê1 − n̂+

2 Ê2‖
2

L2 ≤ ‖n̂1‖2L2‖Ê1 − Ê2‖
2

L∞ + ‖n̂1 − n̂2‖2L2‖Ê2‖
2

L∞

≤ c(a)
(
|ŷ1 − ŷ2|2 + ‖n̂1 − n̂2‖2L2 + ‖p̂1 − p̂2‖2L2

)
.

For the recombination term in (5.17), using its definition (2.4), we get

‖R̂1 − R̂2‖
2

L2 ≤ c(a)
(
‖n̂1 − n̂2‖2L2 + ‖p̂1 − p̂2‖2L2

)
.

Using the above estimates in (5.17), we can conclude that

(1
2
− ηT

)
max
[0,T ]

‖n1 − n2‖2L2 + (UTµn − η)
∫ t

0

‖∂x(n1 − n2)‖2L2 ds

≤ c(a, η)T max
[0,T ]

(
|ŷ1 − ŷ2|2 + ‖n̂1 − n̂2‖2L2 + ‖p̂1 − p̂2‖2L2

)
. (5.19)
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An analogous estimate holds for p1 − p2.
Next, we write (5.14) for y = y1, y = y2, subtract the resulting equations and

multiply the result by y1 − y2. After integrating with respect to time, we find

1
2
(y1− y2)

>ÃP (y1− y2) = −
∫ t

0

(y1− y2)
>

{
B̃P (ŷ1− ŷ2) +

(
AD 〈Ĵ1− Ĵ2〉

0

)}
ds.

Employing positive definiteness, kA|y|2 ≤ y>ÃP y, the above equality implies

(kA − η) |y1 − y2|2 ≤ c(η)
∫ t

0

{
|ŷ1 − ŷ2|2 + |〈Ĵ1 − Ĵ2 〉|2

}
ds, (5.20)

investing again η > 0. For the coupling term, we find

〈Ĵ1 − Ĵ2〉 =
q

l

∫ l

0

{
−µn(n̂1Ê1 − n̂2Ê2)− µp(p̂1Ê1 − p̂2Ê2)

}
dx,

since we have
∫ l

0
∂x(n̂1 − n̂2)dx =

∫ l

0
∂x(p̂1 − p̂2)dx = 0. Then we can estimate

|〈Ĵ1 − Ĵ2〉|2 ≤ c
(
‖n̂1Ê1 − n̂2Ê2‖2L2 + ‖p̂1Ê1 − p̂2Ê2‖2L2

)

≤ c(a)
(
|ŷ1 − ŷ2|2 + ‖n̂1 − n̂2‖2L2 + ‖p̂1 − p̂2‖2L2

)
.

Using this result in (5.20), we find

(kA−η) max
[0,T ]

|y1−y2|2 ≤ c(a, η)T max
[0,T ]

(|ŷ1 − ŷ2|2+ ‖n̂1−n̂2‖2L2 + ‖p̂1−p̂2‖2L2

)
.

Eventually, we sum this result with the result (5.19) for n1 − n2, and with the
analog estimate for p1 − p2. Choosing η small enough, we deduce

|||(n1−n2, p1−p2,y1−y2)|||2 ≤ c(a)T max
[0,T ]

(
|ŷ1−ŷ2|2+ ‖n̂1−n̂2‖2L2 + ‖p̂1−p̂2‖2L2

)

≤ c(a)T |||(n̂1−n̂2, p̂1−p̂2, ŷ1−ŷ2)|||2.
Then there exists a time T > 0, such that Q becomes a contraction on Sa. Thus,
by Banach’s fixed-point theorem, we obtain the existence of a unique fixed-point
(n∗, p∗,y∗) ∈ Sa.

To show that this fixed-point is the unique solution to (4.1), it is sufficient to
prove the nonnegativity of n∗ and p∗. To this end, we consider n−∗ = min(n∗, 0) ∈ Y .
Writing (5.11) for the test-function ψn = n−∗ , after time integration, we obtain

1
2

∥∥n−∗ (t)
∥∥2

L2 + UTµn

∫ t

0

∥∥∂xn
−
∗

∥∥2

L2 ds

=
∫ t

0

∫ l

0

(
µnn

+
∗ E∗∂xn

−
∗ −R(n+

∗ , p
+
∗ )n−∗

)
dxds =

∫ t

0

∫ l

0

F (n+
∗ , p

+
∗ )n−∗ dx ds ≤ 0.

Hence n−∗ (t) vanishes almost everywhere, that is, n∗ is nonnegative almost everywhere.
In the same way we can prove the nonnegativity of p∗.

This section is concluded with the proof of Theorem 5.5. It suffices to notice
that the local solution ensured by Theorem 5.6 can be prolonged to arbitrary time
intervals, due the a priori a bound provided by Lemma 5.4.
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6. Asymptotic behavior. In this section, we study the asymptotic behavior
of the solution to (4.1) as t tends to infinity. For a single device without coupling
with an electric circuit, it is know that all solutions relax to equilibrium [3], if the
applied potential vanishes. Therefore, in the coupled system, we need to demand
appropriate topological conditions on the electric network to enable such a result. We
derive sufficient conditions on the network’s topology during the development of this
section. The resulting asymptotic result is stated at the end of the section.

Recalling Lemma 5.1 and the definition of jn, jp, Φn and Φp, for arbitrary times
t1 ≥ t0 ≥ 0 we find

Hα(t1) +
q

2

∫ t1

t0

∫ l

0

(
µn(n+ α) |∂xδΦn|2 + µp(p+ α) |∂xδΦp|2

)
dxds

+ q

∫ t1

t0

∫ l

0

UTF

n2
i

δ
(
(n+ α)(p+ α)

)
δ ln

(
(n+ α)(p+ α)

)
dx ds

≤ Hα(t0)−
∫ t1

t0

(
y>B̃P y + y>F̃ P

)
ds

+α q

∫ t1

t0

∫ l

0

{µn

2

∣∣∣δE − Eeδn

ne + α

∣∣∣
2

+
µp

2

∣∣∣δE − Eeδp

pe + α

∣∣∣
2

+
UTF

n2
i

δ(n+ p) δ ln
(
(n+ α)(p+ α)

)}
dxds.

Notice, ∂xΦe
n = α(∂xV

e)/(ne +α). Since the last integral term on the right-hand side
is bounded, we can pass to the limit as α tends to zero. The result is

H(t1) +
q

2

∫ t1

t0

∫ l

0

(
µnn |∂xδφn|2 + µpp |∂xδφp|2

)
dxds

≤ H(t0)−
∫ t1

t0

(
y>B̃P y + y>F̃ P

)
ds, (6.1)

where φn and φp are the physical quasi-Fermi levels and

H(t) =
∫ l

0

qUT

{
n

(
ln

n

ne
− 1

)
+ ne + p

(
ln

p

pe
− 1

)
+ pe

}
dx

+
∫ l

0

ε

2
|δE|2dx+

1
2
y>AP y

= H∗(t) +
1
2
y1(t)

>ACCA>Cy1(t) +
1
2
y2(t)

>Ly2(t).

We would like to use (6.1) for studying the asymptotic behavior of the solution to
problem (4.1) established above. This can be done only after a careful consideration
of the last term on the right-hand side. Explicitly, recalling the definition (3.15) of
AP , a comparison of the circuit’s energy balance equation (3.7) with identity (5.4)
yields

y>B̃P y + y>F̃ P = u>ARGA>Ru + u>AIı + >V v , (6.2)

where (z1, z2) ≡ (QCu, V ) is given in terms of (y1,y2) ≡ (P Cu, L) by the equations
(3.1b) for the algebraic network part. Identity (6.2) shows that the quadratic part of
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y>B̃P y is controlled by the voltage drops over resistors, that is, by |P Ru|2, where
P R = Id − QR, and QR denotes the orthogonal projector onto the kernel of A>R.
On its turn, |P Ru|2 is controlled by the differential node potentials y1 if we demand
kerA>R ⊂ kerA>C . From the viewpoint of circuits, there have to be enough resistors –
these are going to drain the capacitors’ energy. We can express this demand by the
topological condition

A>CQR = 0. (6.3)

In circuit’s language, the terminals of any capacitor are connected by a path of re-
sistors and for the orthogonal projector PC from above, this condition reads: P C =
P CP R. Thus we can estimate (with constant c′ > 0)

|P Cu|2 = |P CP Ru|2 ≤ |P Ru|2 ≤ c′ |u>ARGA>Ru|.
Condition (6.3) is not sufficient for our purposes. In fact, in (6.2), we still need to

evaluate the linear term y>F̃ P = (y1 + z1)>AIı + z>2v . This term can be controlled
by the quadratic term depending on y1, ı, v , if z does not depend on y2. To see how
this translates in topological conditions, we write explicitly the equations (3.1b) for
the algebraic network part:

Q>CARGA>R(z1 + y1) + Q>CAV z2 + Q>CALy2 + Q>CAIı = 0,
A>V z1 + A>V y1 − v = 0.

Due to the topological conditions (3.12)–(3.14), this system is solvable for z =
(z1, z2)>. If we assume the further topological condition

A>LQC = 0, (6.4)

then y2 is excluded from these algebraic equations, and thus we have the estimate

|z1|2 , |V |2 ≤ |z|2 ≤ c1
{ |y1|2 + |ı|2 + |v |2 }

. (6.5)

The new topological condition (6.4) is analogous to (3.12), and states that any induc-
tor is in a loop of capacitors.

Thus, provided conditions (6.3) and (6.4) hold, identity (6.2) gives the estimate

y>B̃P y + y>F̃ P ≥ cu |y1|2 − cs
{|ı|2 + |v |2}

for some constants cu and cs. Using this in (6.1), we find

H(t1) +
q

2

∫ t1

t0

∫ l

0

(
µnn |∂xδφn|2 + µpp |∂xδφp|2

)
dxds

+cu
∫ t1

t0

|y1|2 ds ≤ H(t0) + cs

∫ t1

t0

( |ı|2 + |v |2 )
ds, (6.6)

which implies for all t1 ≥ t0 ≥ 0

F(t1) ≤ F(t0), with F(t) := H(t)− cs

∫ t

0

( |ı|2 + |v |2 )
ds. (6.7)

Next, we assume that

lim
t→∞

( |ı(t)|2 + |v(t)|2 )
= 0,

∫ t

0

( |ı|2 + |v |2 )
ds ≤M, for all t ≥ 0, (6.8)
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for some real constant M (the electric sources decay fast in time or they are turned
off after a finite time). Thus inequality (6.6) reads

q

2

∫ t

0

∫ l

0

(
µnn |∂xδφn|2+ µpp |∂xδφp|2

)
dx ds+ cu

∫ t

0

|y1|2 ds ≤ H(0) + csM.

and in turn, there exists an unbounded, increasing sequence of times (tj), such that

lim
j→∞

[∫ l

0

(
µnn |∂xφn|2 + µpp |∂xφp|2

)
dx+ cu|y1|2

]
t=tj

= 0. (6.9)

Furthermore, to deduce relaxations for n, p and E, we consider the identity
∫ l

0

(
n |∂xφn|2 + p |∂xφp|2

)
dx

=
∫ l

0

{
n

(
E − UT

∂xn

n

)2

+ p
(
E + UT

∂xp

p

)2 }
dx

=
∫ l

0

{
(n+ p) |E|2 − 2UTE ∂x(n− p) + 4U2

T

(∣∣∂x

√
n
∣∣2 + |∂x

√
p|2

)}
dx.

For the middle term, we will apply integration by parts, the Poisson equation (2.3e),
the explicit formula (2.12) for the field E, and the identity nD − pD = C at the
boundary. In this way, we can estimate

∫ l

0

E ∂x(n− p) dx = [E (n− p)]l0 −
∫ l

0

(∂xE) (n− p) dx

≤ c (1 + |u2−u1|+ ‖n−p−C‖L1)− q

ε
‖n−p−C‖2L2 − q

ε

∫ l

0

C(n−p−C) dx

≤ c∗+
cu
µUT

|y1|2 −
q

2ε
‖n−p−C‖2L2 = c∗+

cu
µUT

|y1|2 −
1
2
‖∂xE‖2L2 ,

where µ = min{µn, µp} and c∗ are constants. Combining the above relations, we get
∫ l

0

{
µnn |∂xφn|2 + µpp |∂xφp|2

}
dx+ cu |y1|2 + c∗µUT

≥ c
(∥∥∂x

√
n
∥∥2

L2 + ‖∂x
√
p‖2L2 + ‖∂xE‖2L2

)
, (6.10)

for some constant c. Then, evaluating the previous inequality at t = tj , we find that
the following sequence is bounded:

{∥∥√n∥∥2

H1 + ‖√p‖2H1 + ‖E‖2H1

}
t=tj

.

Notice that |E|H1 ≤ c′ { 1 + |ADu| + |∂xE| }. Using the compact embedding of H1

into L4, we deduce the existence of functions n̄, p̄ ∈ L2 such that
√
n̄,
√
p̄ ∈ H1 and

n(tj) → n̄, p(tj) → p̄, in L2 (j →∞).

Recalling (6.9), we have lim y1(tj) = 0 (as j →∞) and thus from (6.5) and (6.8) we
deduce the limits

lim
j→∞

u(tj) = 0, lim
j→∞

V (tj) = 0. (6.11)



22 G. ALÌ, A. BARTEL AND M. GÜNTHER

Using the first limit, it follows for the potential

V (x, tj) → V̄ (x) = Vbi(0) +
x

l
[Vbi]l0 +

∫ x

0

∫ x′

0

q

ε

(
n̄− p̄− C

)
dx′′ dx′

−x
l

∫ l

0

∫ x′

0

q

ε

(
n̄− p̄− C

)
dx′′ dx′

in H1 ↪→ C. Then, proceeding as in [3], we can prove that

n̄ = ne, p̄ = pe, V̄ = V e.

So far, all convergence results holds for a specific sequence of times (tj). To pass
from the convergence along the specific sequence (tj) to the convergence in time, we
use the function F(t). Since it is decreasing and bounded, it converges to some real
number as t tends to infinity. It follows that also H converges and, recalling (6.11),
we have

lim
t→∞

H(t) = lim
j→∞

H∗(tj) + lim
j→∞

1
2
L(tj)>LL(tj). (6.12)

For the first limit on the right-hand side of (6.12), using the above convergence results
and the estimate

H∗ =
∫ l

0

qUT

{
(n−ne)2

∫ 1

0

(1− θ)dθ
ne + θ(n− ne)

+ (p−pe)2
∫ 1

0

(1− θ)dθ
pe + θ(p− pe)

}
dx

+
∫ l

0

ε

2
|δE|2dx ≤ c

(
‖n−ne‖2L2 + ‖p−pe‖2L2 + ‖E−Ee‖2L2

)
,

we find

lim
j→∞

H∗(tj) = 0. (6.13)

To prove that L converges for large times, we recall (2.1) and observe that
∫ t

0

∣∣∣dL

dt

∣∣∣
2

ds =
∫ t

0

∣∣∣L−1A>Lu
∣∣∣
2

ds ≤
∣∣∣L−1A>L

∣∣∣
2
∫ t

0

|u|2 ds ≤ c.

It follows that there exists some ̄L ∈ RnL such that

lim
t→∞

L(t) = ̄L. (6.14)

Then, (6.12), (6.13) and (6.14) give immediately

lim
t→∞

H∗(t) = lim
t→∞

1
2
y>1 (t)ACCA>Cy1(t) = 0. (6.15)

Finally, using the estimate (5.8), we can prove that

‖n− ne‖L1 + ‖p− pe‖L1 + ‖E − Ee‖2L2 ≤ c(ε)H∗ + ε for all ε > 0.

Passing to the limit, from the arbitrariness of ε we deduce that

lim
t→∞

{‖n− ne‖L1 + ‖p− pe‖L1 + ‖V − V e‖H1} = 0.
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We can summarize the results of this section in the following theorem:
Theorem 6.1 (Asymptotic behavior). Under the assumptions of Theorem 5.5,

let the network satisfy the further topological conditions:

A>LQC = 0, A>CQR = 0,

and let the sources satisfy the following decaying condition:

lim
t→∞

( |ı(t)|2 + |v(t)|2 )
= 0,

∫ t

0

( |ı|2 + |v |2 )
ds ≤M, for all t ≥ 0.

Then, as time tends to infinity, the solution of the PDAE problem (4.1) approaches
the equilibrium state in the following sense: there exists ̄L ∈ RnL such that

n→ ne, p→ pe, in L1,

V → V e in H1,

u → 0, V → 0, L → ̄L in Euclidean norm.

7. Conclusions. In refined network analysis, network equations describing lum-
ped elements are augmented by PDE models for distributed effects. This leads to
PDAE models. In this paper, we have investigated one example of a parabolic-elliptic
PDAE system, which results from a semiconductor description by the nonstationary
drift-diffusion model within electric networks. To prove the well-posedness of the
overall system in an index-1 setting, we had to combine uniform a-priori estimates for
all lumped and distributed differential components with generalized energy functionals
in a Banach fixed-point framework. This result heavily depends on the validity of
topological conditions that link the semiconductor part to the electrical network. If
additional topological conditions are assumed that ensure for the power loss of the
network, we are able to show that the joint system approximates asymptotically the
equilibrium state.

In our opinion, future research has to be devoted to two tasks. The first one is
the generalization of the analytical results to more sophisticated geometries (including
2d and 3d models), semiconductor models and topologies (higher-index systems).
The latter calls for combining the concepts of weakly ill-posed PDE systems with
the perturbation index for differential-algebraic equations. The second task is the
derivation of dynamic iteration schemes tailored to the mixed and multiscale nature of
the system. Here, adaptivity in time and space, based on appropriate error estimates,
is a prerequisite. Also, in order to analyse the convergence of the overall procedure, the
error propagation during the iteration has to be linked to the numerical discretization
schemes for the PDE and DAE parts.
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