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Summary. In radio frequency (RF) application, electric circuits often exhibit mul-
titone signals, where time scales differ by several orders of magnitude. Thus circuit
simulation by means of transient analysis becomes inefficient. A multivariate model
yields an alternative strategy considering amplitude as well as frequency modulation.
Consequently, a warped multirate partial differential algebraic equation (MPDAE)
has to be solved using periodic boundary conditions. Thereby, the determination of
a local frequency function is crucial for the efficiency of the model. For this purpose,
two special choices of continuous phase conditions are applied as additional bound-
ary conditions. Numerical simulations show that these continuous phase conditions
identify local frequency functions, which are physically reasonable.
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1 Introduction

Numerical simulation of electric circuits rests upon a network approach, which
yields systems of differential algebraic equations (DAEs), see [GF99]. In RF
application, generated signals often exhibit widely separated time scales. For
example, a slow oscillation may vary the amplitude of a carrier wave. Therefore
a transient integration of the DAE system becomes costly, since the fastest
rate restricts the step size.

A signal model using multivariate functions (MVFs) decouples the time
scales and thus provides an alternative strategy. Consequently, Brachtendorf
et al. [BWLB96] introduced a multirate partial differential algebraic equa-
tion (MPDAE), which allows the simulation of amplitude modulated signals
in forced oscillators. If the circuit also includes autonomous time scales, fre-
quency modulation may result, too. Narayan and Roychowdhury [NR03] gen-
eralised the model into a warped MPDAE for this case. Accordingly, a time-
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dependent local frequency function arises, which influences essentially the sig-
nal representation. However, an appropriate choice of the local frequency is
unknown at the beginning.

We use continuous phase conditions to determine the local frequency func-
tion by the behaviour of corresponding MVFs. Thereby, the idea is to control
the phase in slice planes of the MVF. This strategy yields additional bound-
ary conditions for the warped MPDAE system in time domain. We apply this
technique to a forced Van der Pol oscillator.

2 Multivariate Signal Model

To illustrate the multidimensional signal model, we consider a simple multi-
tone oscillation

x(t) =
[
1 + α sin

(
2π
T1

t
)]

sin
(

2π
T2

t + β sin
(

2π
T1

t
))

(1)

for parameters 0 < α < 1, β > 0. If T1 À T2 holds, then a high-frequency
oscillation arises, where amplitude as well as frequency is modulated by a slow
oscillation. Hence we need many time steps to resolve this signal accurately.
Alternatively, an own variable is introduced for each separate time scale, which
yields directly the biperiodic function

x̂1(t1, t2) =
[
1 + α sin

(
2π
T1

t1

)]
sin

(
2πt2 + β sin

(
2π
T1

t1

))
, (2)

where the second period is transformed to 1. We can completely reconstruct
the original signal via x(t) = x̂1(t, t/T2). This representation (2) is called a
MVF of the multitone signal (1). Unfortunately, the MVF (2) exhibits many
oscillations in the rectangle [0, T1[×[0, 1[ for large parameters β. Thus we
include only the amplitude modulation part in a MVF, i.e.

x̂2(t1, t2) =
[
1 + α sin

(
2π
T1

t1

)]
sin (2πt2) . (3)

Now the function features a simple behaviour in [0, T1[×[0, 1[. Therefore we
can represent this MVF with sufficient accuracy using relatively few grid
points. The frequency modulation part is modelled by a separate function

Ψ(t) =
t

T2
+

β

2π
sin

(
2π
T1

t
)

. (4)

Now we are able to reconstruct the signal (1) applying x(t) = x̂2(t, Ψ(t)). The
derivative ν := Ψ ′, which is a T1-periodic time-dependent function, can be seen
as a local frequency of the signal. Thus we obtain an efficient representation
by means of this model.

Using the inappropriate MVF (2), the reconstruction formula indicates
a local frequency ν ≡ 1/T2. It follows that the choice of a local frequency
function is not unique and critical for the efficiency of the MVF model.
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3 Warped MPDAE System

In general, an electric circuit is modelled by a DAE system of the form

dq(x)
dt

= f(x) + b(t)
(
x(t),b(t),q(x), f(x) ∈ Rk

)
, (5)

where x denotes unknown voltages and currents. The input signals b shall
be T1-periodic. We assume that x is a multitone signal of the discussed type.
Applying the multivariate model, the DAE changes into the MPDAE

∂q(x̂)
∂t1

+ ν(t1)
∂q(x̂)
∂t2

= f(x̂) + b(t1)
(
x̂(t1, t2) ∈ Rk, ν(t1) ∈ R

)
(6)

with the MVF x̂ of x. It follows that a (T1, 1)-periodic MPDAE solution
yields multitone DAE solution via x(t) = x̂(t,

∫ t

0
ν(τ)dτ). Thereby, the T1-

periodic local frequency ν is a priori unknown and thus the system (6) is
underdetermined. Houben [Hou04] proposed minimum conditions, which re-
duce oscillatory behaviour in MVFs, to fix this function.

Alternatively, we try to control the phase in each slice plane of the MVF for
constant t1. A unifying effect shall produce simple MVF representations. Since
the local frequency is a scalar function, we consider just a single component
of the MVF x̂ = (x̂1, . . . , x̂k)T , for example the first one. Now feasible choices
for continuous phase conditions are

x̂1(t1, 0) = η (η ∈ R) for all t1 (7)

or
∂x̂1

∂t2

∣∣∣∣
t2=0

= 0 for all t1. (8)

Consequently, we add either (7) or (8) to the biperiodic boundary conditions in
a time domain method. Thus the resulting technique is cheaper in comparison
to a minimisation procedure. The existence of MVFs satisfying one of the
phase conditions can be motivated by transformations of MPDAE solutions.

4 Numerical Simulation

As benchmark, we consider a forced Van der Pol oscillator of the form

ẋ = y
ẏ = −10(x2 − 1)y + (2πz)2x
0 = z − [

1 + 1
2 sin

(
2π10−3t

)]
,

(9)

which represents a DAE system of index 1. A multitone solution arises and
we employ the warped MPDAE model. Numerical solutions are obtained by
a time domain technique, which is based on characteristic curves, see [Pul04].
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Let νa and νb be the local frequencies, which are caused by the phase con-
ditions (7) and (8), respectively. Fig. 1 illustrates these functions, which are
nearly the same (|νa−νb| < 10−3). Since the frequencies respond to the input,
they are physically reasonable. The corresponding MVFs x̂ and ŷ are shown
in Fig. 2. The solutions belonging to the two phase conditions differ mainly
by a translation in t2-direction, which reflects that (6) is autonomous in the
variable t2. Although x̂ exhibits nearly constant amplitude, ŷ includes am-
plitude modulation. Finally, Fig. 3 displays the reconstructed DAE solution
x together with a reference solution of (9). We observe a phase shift in later
cycles. Nevertheless, the other signal properties coincide at any time.
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Fig. 1. Local frequency νa (solid line) together with input signal (dashed line) (left)
and difference of local frequencies νa − νb (right).
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Fig. 2. MPDAE solutions using phase condition (7) (left) and (8) (right).
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Fig. 3. DAE solution x integrated by trapezoidal rule (solid line) and interpolated
by MPDAE solution (dashed line) in time intervals [0, 10] (left) and [700, 710] (right).

5 Conclusions

A multivariate model for analysing oscillators, which produce amplitude as
well as frequency modulated signals, has been presented. The arising MPDAE
system demands the identification of an appropriate local frequency func-
tion. Numerical simulations demonstrate that continuous phase conditions are
able to determine physically reasonable local frequencies. Thus corresponding
MVFs exhibit a simple structure and the model becomes efficient. Underlying
existence theorems using the phase conditions still have to be researched.
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