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Abstract
Radio-frequency (RF) circuits produce quasiperiodic signals with widely
separated time scales. In the case of autonomous time scales, frequency
modulation occurs in addition to amplitude modulation. A multidimen-
sional signal model yields an efficient numerical simulation by compu-
tations via a multirate partial differential algebraic equation (MPDAE)
with periodic boundary conditions. We present a time domain method
for these systems, which integrates along characteristic curves and thus
is consistent with the inherent information transport. Moreover, we pro-
pose a special choice for additional boundary conditions, which are nec-
essary to determine local frequencies. Test results confirm that the con-
structed techniques compute efficiently frequency modulated quasiperi-
odic signals in RF applications.

1 Introduction

The numerical simulation of electrical circuits is based on a network approach,
which typically yields systems of differential algebraic equations (DAEs), see [2].
These systems describe the transient behaviour of all node voltages and some
branch currents. In RF applications, circuits often include signals with largely
differing time scales. Thus integrating the circuit’s equations in time domain
demands an enormous computational work, since the fastest rate limits the inte-
gration step size, whereas the slowest rate mostly decides the total time interval
of the simulation.
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A multidimensional signal model permits an alternative strategy by decoupling
the separate time scales. Consequently, the DAE model of the circuit is trans-
formed into a PDAE model, the multirate partial differential algebraic equation
(MPDAE). Corresponding multiperiodic solutions yield the desired DAE solu-
tions. Brachtendorf et al. [1] successfully applied this PDAE approach in fre-
quency domain by a generalisation of harmonic balance. An analysis of the
PDAE system exhibits an information transport along characteristic curves [8].
This structure enables a method of characteristics to compute multiperiodic solu-
tions. The technique is efficient and robust for simulating MPDAE models, where
the time scales are driven by input signals, see [9], and thus purely amplitude
modulated responses with constant frequencies arise.

If autonomous time scales occur in addition to driven rates, then the signals may
be frequency modulated, too. Narayan and Roychowdhury [7] generalised the
multidimensional model to this case and introduced a warped MPDAE system.
In contrast to the purely driven situation, an unknown local frequency function
arises in addition to the multiperiodic solution. Consequently, an extra condition
is required to determine uniquely the involved functions. Thus the multidimen-
sional model is more complicated in the case of autonomous time scales.

In this paper, we tailor the method of characteristics to the warped MPDAE
model. Thereby, just two time scales are considered, i.e. a forced and an au-
tonomous rate, since modifications to several time scales are straightforward. In
addition, we suggest a specific phase condition to fix the local frequency func-
tion. This condition produces additional boundary conditions in the method of
characteristics. Furthermore, we develop a homotopy method, which shall secure
the convergence of corresponding Newton iterations. The constructed method of
characteristics is used to solve two classical test examples in circuit simulation,
which represent systems of ordinary differential equations (ODEs). These ODE
systems already indicate the appearance of autonomous time scales.

The paper is organised as follows. We outline the multidimensional model in
Sect. 2. Then the corresponding warped MPDAE model is introduced. Analysing
the information transport in the system, we construct a method of characteristics
for the numerical solution in Sect. 4. Finally, test results using a Van der Pol and
a Colpitt oscillator are illustrated in Sect. 5 and Sect. 6, respectively.

2 Multidimensional Signal Model

The purpose of the multidimensional model is to represent efficiently signals
including widely separated time scales. As a simple instance, we consider the
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amplitude modulated signal

v(t) =
[
1 + 1

2
sin

(
2π
T1

t
)]

sin
(

2π
T2

t
)

(1)

with T1 À T2. Consequently, many time steps are required to resolve all oscil-
lations of the fast rate T2 during one slower rate T1. However, we are able to
change from the time-dependent signal (1) to a multidimensional representation,
where each time scale is described by its own variable. Accordingly, we obtain
the function

v̂(t1, t2) =
[
1 + 1

2
sin

(
2π
T1

t1

)]
sin

(
2π
T2

t2

)
, (2)

which is biperiodic and thus given by its values in the rectangle [0, T1[×[0, T2[.
Since v̂ owns a simple behaviour in this rectangle, we need relatively few grid
points to represent this function sufficiently accurate. Nevertheless, the original
signal v(t) can be completely reconstructed by v̂ via

v(t) = v̂(t, t). (3)

Thus we obtain an efficient multidimensional model of the time-dependent signal.
The new representation (2) is called the multivariate function (MVF) of the
multitone signal (1).

More general, we assume frequency modulation in addition to amplitude modu-
lation. The signal

w(t) =
[
1 + 1

2
sin

(
2π
T1

t
)]

sin
(

2π
T2

t + β sin
(

2π
T1

t
))

(4)

for T1 À T2, β > 0 includes both phenomena introduced by the slower time scale.
Fig. 1 illustrates the qualitative behaviour of this signal. A multidimensional
representation is directly given by the biperiodic function

ŵ1(t1, t2) =
[
1 + 1

2
sin

(
2π
T1

t1

)]
sin

(
2π
T2

t2 + β sin
(

2π
T1

t1

))
. (5)

Fig. 1 also shows this MVF. Unfortunately, many oscillations occur in the un-
derlying rectangle. The number of oscillations even increases with the amount
of frequency modulation, i.e. the larger the parameter β becomes. Thus the
representation (5) is inefficient.

Narayan and Roychowdhury [7] propose an alternative strategy by modelling the
frequency modulation separately. Consequently, we consider the MVF

ŵ2(t1, t2) =
[
1 + 1

2
sin

(
2π
T1

t1

)]
sin (2πt2) , (6)
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Figure 1: Frequency modulated signal w and unsophisticated MVF ŵ1.
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Figure 2: MVF ŵ2 and corresponding local frequency ν.
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where the second period is transformed to 1. This MVF is of the type (2). The
frequency modulation is described by the function

Ψ(t) =
t

T2

+
β

2π
sin

(
2π
T1

t
)

. (7)

Its derivative Ψ′ can be interpreted as the local frequency ν of the signal (4). In
our case, we obtain

ν(t) = Ψ′(t) =
1

T2

+
β

T1

cos
(

2π
T1

t
)

. (8)

Hence the local frequency is T1-periodic. Fig. 2 shows both MVF and local
frequency. We recognise that these functions own an elementary behaviour now.
The reconstruction of the original signal reads

w(t) = ŵ2(t, Ψ(t)), (9)

where the function Ψ stretches the second time scale. Therefore we call Ψ a
warping function. In the representation (5), the corresponding warping function
is linear, whereas the MVF is complicated. On the other hand, the nonlinear
warping function (7) produces an efficient description by the MVF.

More general, the multidimensional model can be introduced for a frequency
modulated quasiperiodic signal x(t) ∈ Rn of the form

x(t) =
∞∑

j1,j2=−∞
Xj1,j2 exp

(
i
(

2π
T1

j1t + 2πj2Ψ(t)
))

(10)

with constant coefficients Xj1,j2 ∈ Cn and warping function Ψ(t) ∈ R.

3 Warped MPDAE

In circuit simulation, the transient behaviour of all node voltages and some branch
currents is calculated. Modified nodal analysis [2] typically gives a system of
differential algebraic equations (DAEs), which we write as

d
dt
q(x) = f(b(t),x(t)). (11)

Thereby, x : R → Rk denotes unknown voltages and currents. The function
q : Rk → Rk represents charges and fluxes. The right-hand side f : Rl×Rk → Rk

also depends on input signals b : R→ Rl.

5



If the input signals are replaced by constant mean values b0 ≈< b(t) >, then an
autonomous DAE

d
dt
q(x) = f(b0,x(t)) (12)

arises. We assume that this DAE has a periodic solution xper. The corresponding
period T0 is unknown a priori. Since the DAE is autonomous, the relocated
periodic function

y(t) := xper(t + c) (13)

also satisfies (12) for any fixed c ∈ R. We can apply time or frequency domain
methods to determine such a solution and its period [6]. In time domain, a phase
condition like

d
dt
x1(0) = 0 (14)

without loss of generality for the first component of the solution has to be added
to extract a special solution from the continuum (13). A nonconstant periodic
function x1 ∈ C1 possesses several points of the form (14) and they are isolated
in general.

Now let the input signals b be periodic with time rate T1. Therefore they produce
a driven oscillation. In addition, the system (11) shall include a second inherent
time scale. The input signals may vary this time scale, i.e. frequency modula-
tion occurs. Consequently, a quasiperiodic solution of the form (10) arises. In
numerical simulation, we want to use the multidimensional signal model. The
transition to functions in several variables changes the DAE system of the circuit
into a partial DAE system. Accordingly, the warped multirate partial differential
algebraic equation (MPDAE) [7, 11] corresponding to (11) is defined as

∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f(b(t1), x̂(t1, t2)) (15)

with the MVF x̂ of x. The input signals b are just T1-periodic and thus do
not require a multidimensional description. Since the input signals cause the
frequency modulation, the local frequency function ν depends on the first variable
and is also T1-periodic. Generalisations to MPDAEs including several forced and
several inherent time scales can directly be performed. For simplicity, we restrict
to the frequent case (15).

It is straightforward to show that a solution x̂ of (15) yields a solution x of (11)
via

x(t) = x̂(t, Ψ(t)) with Ψ(t) =

∫ t

0

ν(τ) dτ. (16)

In addition, a biperiodic solution x̂ results in a frequency modulated quasiperiodic
signal x of the form (10). It is difficult to verify the existence of a quasiperiodic
solution for a given DAE (11). Nevertheless, the physical background often in-
dicates such solution types. If no quasiperiodic solution exists, then at least
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similar functions, especially in case of widely separated time scales. Thus the
quasiperiodic response appears as an idealisation. The existence and uniqueness
of quasiperiodic DAE solutions is closely connected to the existence and unique-
ness of multiperiodic MPDAE solutions, see [10].

The warped MPDAE (15) is autonomous in the second time scale. It follows that
a specific solution x̂ produces a continuum of solutions

ŷ(t1, t2) := x̂(t1, t2 + c) (17)

for each c ∈ R. Since this translation preserves the periodicities, we have to
isolate special biperiodic solutions.

The crucial problem of the warped MPDAE (15) is that the local frequency ν
represents an a priori unknown function. The resulting warping function Ψ shall
produce an efficient multidimensional description of the quasiperiodic solution.
Since there exists no a priori knowledge about the solution in general, we are
not able to choose a local frequency function. Thus we hold the local frequency
as an unknown function and deal with the underdetermined system (15). In the
previous section, we have seen that the warping function is not unique.

In RF applications, the forced time rate is often much slower than the autonomous
time scale, i.e. T1 À ν(t1)

−1 holds for all t1. Due to the periodicity, we have to
determine the values ν(t1) for t1 ∈ [0, T1[. Accordingly, a continuous condition
has to be posed, which determines the local frequency. One can try to demand
a condition, where the local frequency is directly involved. Another idea is to
determine the local frequency indirectly using the corresponding solution x̂, which
leads to a continuous phase condition in the multidimensional time domain. We
consider a single component of the solution, without loss of generality the first
component x̂1(t1, t2). In [7], the authors propose to prescribe the derivative

∂x̂1

∂t2
(t1, 0) = η(t1) for all t1 ∈ R (18)

as a slowly varying T1-periodic function η. Conditions of this form shall prevent
the solution from being highly oscillatory. The choice of the line t2 = 0 is arbitrary
due to the degree of freedom by translation in this coordinate direction. The
phase condition (18) can be added to the biperiodic boundary conditions in the
domain of dependence. However, we often do not have a priori knowledge how
to choose the function η to ensure the existence of a solution.

Another possibility is to arrange a minimum condition [4]. In general, a solution
of (15) exists, which satisfies an appropriate minimum condition. Yet the com-
putational effort for numerical simulation increases significantly in comparison to
requirements like (18).
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To avoid these difficulties, we propose a special choice for the phase condition.
Test results show that in the majority of cases solutions exist, which satisfy

∂x̂1

∂t2
(t1, t

0
2) = 0 (19)

for all t1 ∈ R and some t02 ∈ R. We find these phenomena in the case of two forced
time scales, too. In our example from the previous section, the unsophisticated
MVF (5) does not fulfil (19) for any t2, while the appropriate MVF (6) satisfies
the condition for t02 = π

2
, 3π

2
. Using the degree of freedom by translation in the

second coordinate direction, we strengthen the phase condition (18) to

∂x̂1

∂t2
(t1, 0) = 0 for all t1 ∈ R. (20)

This phase condition is heuristic and thus the existence of corresponding solutions
can not be guaranteed. However, the physical behaviour of signals indicates that
the choice is reasonable. The continuous phase condition (20) can be seen as
a multidimensional generalisation of the phase condition (14) for autonomous
DAEs.

A special case arises, if the local frequency is constant, i.e. ν(t1) ≡ ν0 ∈ R.
Accordingly, the warped MPDAE (15) becomes

∂q(x̂)

∂t1
+ ν0

∂q(x̂)

∂t2
= f(b(t1), x̂(t1, t2)), (21)

which corresponds to a standard MPDAE, cf. [1]. The frequency ν0 represents a
scalar unknown here. Now we just have to add a phase condition like

∂x̂1

∂t2
(0, 0) = 0 (22)

to isolate a solution from the family (17) and to determine the unknown frequency.
Thereby, the advantage is that solutions satisfying (22) do exist such as in the
DAE case using (14). Thus if a biperiodic solution of (21) exists, then some
translated functions via (17) also fulfil (22).

We can simulate the case of constant local frequency in the MPDAE model (15)
as well as (21). In general, a solution of (15) does not exhibit a constant local fre-
quency, since the input signals also influence the second time scale. Nevertheless,
we may use the model (21) as an idealisation, if ν(t1) ≈ ν0 holds approximately.
However, we can not apply standard perturbation theory here, since the proper-
ties of the solution change not only quantitatively but qualitatively.
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4 Method of Characteristics

Now we analyse the information transport in the warped MPDAE system (15).
Each equation owns the form

(1, ν(t1)) ·
(

∂qi(x̂)

∂t1
,
∂qi(x̂)

∂t2

)T

= f i(b(t1), x̂(t1, t2)) (23)

for the components i = 1, . . . , k. Hence the left-hand side represents the derivative
of qi(x̂) in direction (1, ν(t1)). Accordingly, we define a characteristic system of
the warped MPDAE (15) as the following equations

d
dτ

t1(τ) = 1

d
dτ

t2(τ) = ν(t1(τ))

d
dτ

q(x̄(τ)) = f(b(t1(τ)), x̄(τ)),

(24)

where the variables t1, t2 and the solution x̄ depend on a parameter τ . The system
(24) implies a family of DAEs and particular solutions are called characteristic
curves. Given a local frequency function ν, we solve the part for the variables
t1, t2 explicitly and obtain the characteristic projections

t1 = τ + c1

t2 = Ψ(t1) + c2 with Ψ(t1) =

∫ t1

0

ν(τ) dτ
(25)

for arbitrary c1, c2 ∈ R. These projections form a continuum of parallel curves in
the domain of dependence. If the function ν is periodic, continuous and positive,
then the resulting warping function Ψ becomes bijective.

It follows that solutions of the warped MPDAE are composed of characteristic
curves. Furthermore, Cauchy initial value problems are solvable under the usual
conditions. The proofs operate like for the ODE case analysed in [8]. Hence the
characteristic system (24) completely describes the information transport in the
warped MPDAE system (15).

Our aim is to determine a (T1, 1)-periodic solution x̂ of (15) together with its
T1-periodic local frequency ν, where T1 À ν−1 holds. Since the second period is
transformed to 1, the frequency function includes the magnitudes of the second
time scale. To construct an according method of characteristics, we perform the
following discretisation. In the rectangle [0, T1]×[0, 1], we choose the initial points

(t1,j, t2,j) = ((j − 1)h, 0) for j = 1, . . . , n and h = T1/n. (26)
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Figure 3: Characteristic projections in domain of dependence.

For a fixed local frequency function, a unique characteristic projection passes
through each point, see Fig. 3. Consequently, we extract the corresponding equa-
tions from the characteristic system (24), which are

d
dτ

q(x̃j(τ)) = f(b(τ + (j − 1)h), x̃j(τ)) for j = 1, . . . , n. (27)

These equations represent a collection of n DAE subsystems for the restrictions
x̃j. Initial values in the points (26) correspond to the parameter τ = 0 for each j.
They determine the solution along the characteristic projections via the systems
(27).

The characteristic projections themselves are given by the local frequency func-
tion. According to (26), we also discretise the local frequency to obtain a finite
set of values ν(t1,j) for j = 1, . . . , n.

Integrating the characteristic systems (27) yields final values on the line t2 = 1,
which correspond to different parameters τ = τj for each subsystem. We use these
final values to interpolate the solution in the opposite points ((j− 1)h, 1). Hence
the periodicity in the second coordinate direction generates boundary conditions

(
x̃1(0)T , . . . , x̃n(0)T

)T
= B (

x̃1(τ1)
T , . . . , x̃n(τn)T

)T
, (28)

where B ∈ Rnk×nk is a matrix. Thereby, the periodicity in the first coordinate
direction is also applied to identify points at the boundaries. Both B and the end
points τ1, . . . , τn depend on the local frequency and thus are unknown a priori.
However, for given starting values ν(t1,j), we can approximate the character-
istic projections. For example, using trapezoidal rule in the integration (25) is
equivalent to approximating the characteristic projections by piecewise quadratic
polynomials. Consequently, the equations (28) can be evaluated, which enables
a numerical scheme.
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Hence the method of characteristics results in a boundary value problem of DAEs
(27),(28). The DAE subsystems are independent from each other, since they
correspond to different characteristic curves. Just the boundary conditions cause
a coupling between the subsystems. Therefore the described technique leads
to drastic reductions of computational work in comparison to standard PDAE
techniques [9]. If the MPDAE (15) corresponds to an underlying ODE, then
the subsystems (27) also represent ODEs and the interpolation (28) is uncritical.
In the DAE case, modifications may be necessary to differ between free and
dependant components of the solution.

The problem (27),(28) is still underdetermined, since the values ν(t1,j) are un-
known. Thus we have to include the phase condition (20) in the discretised form

∂x̂1

∂t2
(t1,j, 0) = 0 for j = 1, . . . , n. (29)

The information transport via the characteristic curves performs in the direction
(1, ν), whereas the condition (29) represents a derivative in direction (0, 1). Hence
we can not directly add the phase condition (29) to the boundary conditions
(28) for the restrictions x̃j. Therefore we assume that the derivative of the first
component is explicitly given in the underlying DAE system (11)

dx1

dt
= f1(b(t),x). (30)

The corresponding equation in the MPDAE system (15) yields an alternative
now. If we replace the derivative in the first coordinate direction by a difference
formula, e.g. centred differences, then it follows the approximation

ν(t1,j)
∂x̂1

∂t2
(t1,j, 0)

.
= f1(b(t1,j), x̂(t1,j, 0))

− 1
2h

[x̂1(t1,j+1, 0)− x̂1(t1,j−1, 0)]
(31)

for j = 1, . . . , n. We use the periodicity in the first coordinate direction to
eliminate the unknowns for j = 0, n+1. Consequently, (29) and ν > 0 imply the
conditions

f1(b(t1,j), x̂(t1,j, 0))− 1
2h

[x̂1(t1,j+1, 0)− x̂1(t1,j−1, 0)] = 0 (32)

for all j = 1, . . . , n. Thereby, only initial values x̃j(0) arise in the equations (32).
Thus we add these equations to the boundary conditions (28). Consequently,
the problem includes as many boundary conditions as unknown functions and
frequency values.

To solve the complete task, one can apply techniques for boundary value problems
of DAEs, e.g. shooting methods [12]. In corresponding Newton iterations for
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solving nonlinear systems, we require appropriate starting values for the solution
and the local frequency. Otherwise the iterations may not converge at all. If
we replace the input signals b(t) by constant mean values b0, then we obtain
the autonomous DAE (12). We compute a periodic solution xper(t) with phase
condition ẋ1

per(0) = 0 and its period T0. This signal owns a trivial extension to a
MVF via x̂per(t1, t2) = xper(t2). We can apply this MVF and the local frequency
ν(t1) ≡ T−1

0 as starting values in the Newton iteration. Unfortunately, often this
choice is still not sufficient for the convergence.

Therefore we construct a homotopy method, which shall provide for convergence
of the Newton iterations. We consider the family of warped MPDAEs

∂q(x̂)

∂t1
+ ν(t1)

∂q(x̂)

∂t2
= f(λ(b(t1)− b0) + b0, x̂) (33)

including the homotopy parameter λ ∈ [0, 1]. The solution x̂ and the local
frequency ν depend on this parameter. The MVF x̂per together with ν(t1) ≡ T−1

0

satisfies the MPDAE for λ = 0 and the continuous phase condition (20). For
λ = 1, we obtain the desired solution. Accordingly, small step sizes in the
parameter λ ensure that the solution in one step represents good starting values
for the subsequent step. The homotopy method is based on the MPDAE model.
Hence we can use this strategy in any numerical scheme for solving biperiodic
boundary value problems of (15). The physical interpretation of this technique
is to supply the electrical circuit with appropriate input signals.

5 Van der Pol Oscillator

To apply the discussed model and the constructed method, we consider a forced
Van der Pol oscillator as benchmark

d2x

dt2
+ µ(x2 − 1)

dx

dt
+ κ2x = A sin

(
2π
T1

t
)

. (34)

The autonomous oscillator (A = 0) exhibits a periodic solution. Now the input
signal on the right-hand side introduces another time scale. Consequently, we
change to the multidimensional model.

The simulation uses the equivalent ODE system of first order. We set up the
resulting warped MPDE system and demand the continuous phase condition (20)
for the first component. Using the method of characteristics from the previous
section, we compute a biperiodic solution and corresponding local frequency.
Linear interpolation is applied at the boundaries. A boundary value problem of
ODEs arises, which we solve by a shooting method. Thereby, the trapezoidal rule
performs the integration. Hence the complete method is consistent of order two.
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Firstly, we observe a stiff case with the parameters

µ = 10, κ = 2π, A = 30, T1 = 1000.

Fig. 4 illustrates the resulting biperiodic solution and its local frequency. We
obtain the corresponding solution of (34) via (9) by interpolation using the com-
puted MVF values. Fig. 5 shows this solution in two time intervals. For com-
parison, the pictures also include the solution of an initial value problem, which
is computed by the trapezoidal rule, too. In the first few cycles, the functions
demonstrate a good agreement. In later cycles, a phase shift occurs between the
signals. This phase shift is generated by small numerical errors in the local fre-
quency, which amplify during many oscillations. Nevertheless, the other signal
properties also agree in this region.

Secondly, we consider a nonstiff case with parameters

µ = 0.1, κ = 2π, A = 30, T1 = 1000.

The computed MVF and its local frequency is shown in Fig. 6. We observe a
larger amount of amplitude modulation and less steep gradients as in the stiff case.
Interestingly, the frequency modulation vanishes here, i.e. the local frequency
represents a constant function. In this case, we can apply the idealised model
(21), where the local frequency is set to a constant value ν0. We also compute
the corresponding PDE solution, where the scalar phase condition (22) is used.
Thereby, the MVF exhibits the same form as in Fig. 6 and the frequency results
in ν0 = 0.9996.

0
200

400
600

800
1000

0

0.2

0.4

0.6

0.8

1
−3

−2

−1

0

1

2

3

t
1

t
2

0 100 200 300 400 500 600 700 800 900 1000
0.7

0.75

0.8

0.85

0.9

t
1
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6 Colpitt Oscillator

To simulate a more complex electrical circuit, we examine a forced Colpitt oscil-
lator. The Colpitt oscillator represents a typical LC-oscillator, see Fig. 7. The
circuit includes one inductance, four capacitances and a bipolar transistor. The
mathematical model of the Colpitt oscillator leads to an implicit ODE system,
which describes the transient behaviour of four node voltages, namely




1 0 0 0
0 C1 + C3 −C3 −C1

0 −C3 C2 + C3 + C4 −C2

0 −C1 −C2 C1 + C2







U̇1

U̇2

U̇3

U̇4


 =




R2

L
(U2 − U1) + R2U̇op

1
R2

(Uop − U1) +
(
IS + IS

bC

)
g(U4 − U2)− ISg(U4 − U3)

− 1
R4

U3 +
(
IS + IS

bE

)
g(U4 − U3)− ISg(U4 − U2)

− 1
R3

U4 + 1
R1

(Uop − U4)− IS

bE
g(U4 − U3)− IS

bC
g(U4 − U2)




.

(35)
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The applied transistor model includes the nonlinear function

g(U) = exp

(
U

UT

)
− 1. (36)

The technical parameters are set to the values

C1 = 50 pF, C2 = 1 nF, C3 = 50 nF, C4 = 100 nF, R1 = 12 kΩ,
R2 = 3 Ω, R3 = 8.2 kΩ, R4 = 1.5 kΩ, L = 10 mH, Uop = 10 V,
IS = 1 mA, bE = 100, bC = 50, UT = 25.85 mV.

Using these parameters, the Colpitt oscillator owns a periodic solution with time
rate T0 = 0.125 ms. More details about the modelling of the Colpitt oscillator
can be found in [5].

Now an external source controls the third capacitor

C3(t) = 50 nF
(
1 + 0.8 sin

(
2π
T1

t
))

(37)

and we choose T1 = 1 s. Hence the capacitance matrix in (35) becomes time-
dependent and the system is no longer of the form (11). However, a regular
capacitance matrix always arises. Thus the system (35) is equivalent to an explicit
ODE, which represents a special case of (11).

In the multidimensional model, we use the method of characteristics the same way
as described in the previous section. Fig. 8 shows the computed local frequency.
According to an LC-oscillator, the frequency increases for lower capacitances.
Fig. 9 illustrates the MVFs for the voltages U1 and U4. The corresponding ODE
solutions are given in Fig. 10 and Fig. 11, respectively. A reference solution is
computed by integrating the system (35) via the RADAU5 method [3]. We see
no difference between both signals in the first few cycles. Later the numerical
errors in the local frequency produce the said phase shift. Other signal properties
are resolved correctly.

This example illustrates the advantage of the multidimensional model with re-
spect to the computational effort. In the corresponding signals, more than 8000
oscillations arise during the time interval [0, T1]. An integration scheme using the
ODE model has to resolve all these oscillations. On the other hand, we compute
the PDE solution along 100 characteristic curves, where just a single oscillation
is integrated on each curve. Furthermore, we obtain a compact visualisation of
the signals by their MVFs and the local frequency, whereas the ODE solutions
need to be zoomed in relatively small time intervals for a detailed discussion.
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Figure 8: Input signal C3[nF] (left) and local frequency ν[s−1] (right) of solution
for Colpitt oscillator.
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Figure 9: MVFs Û1[V] (left) and Û4[V] (right) in Colpitt oscillator.
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Figure 10: ODE solution U1[V] of Colpitt oscillator integrated using RADAU5
(solid line) and interpolated from MPDE solution (dashed line) in time intervals
[0ms, 0.5ms] (left) and [700ms, 700.5ms] (right).
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Figure 11: ODE solution U4[V] of Colpitt oscillator integrated (solid line) and
interpolated from MPDE solution (dashed line) in time intervals [0ms, 0.5ms]
(left) and [700ms, 700.5ms] (right).

7 Conclusions

The warped MPDAE model provides an alternative strategy for the simulation
of frequency modulated quasiperiodic signals. A heuristic choice of the required
phase condition has been introduced. The information transport in the MPDAE
system performs along characteristic curves, which yields a corresponding numer-
ical technique for the arising boundary value problems. Test results confirm that
the constructed method is suitable for simulating RF circuits, which include a
mixture of widely separated driven and autonomous time rates. It is still open
to examine, if appropriate assumptions can guarantee the existence of solutions,
which satisfy the presented phase condition. Alternatively, this question may be
easier to decide for other additional equations, e.g. minimum conditions.
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