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Abstract

Physics informed neural networks (PINNs) have proven to be an efficient

tool to represent problems for which measured data are available and for which

the dynamics in the data are expected to follow some physical laws. In this

paper, we suggest a multiobjective perspective on the training of PINNs by

treating the data loss and the residual loss as two individual objective functions

in a truly biobjective optimization approach.

As a showcase example, we consider COVID-19 predictions in Germany and

built an extended susceptibles-infected-recovered (SIR) model with additionally

considered leaky-vaccinated and hospitalized populations (SVIHR model) to

model the transition rates and to predict future infections. SIR-type models are

expressed by systems of ordinary differential equations (ODEs). We investigate

the suitability of the generated PINN for COVID-19 predictions and compare

the resulting predicted curves with those obtained by applying the method of

non-standard finite differences to the system of ODEs and initial data.

The approach is applicable to various systems of ODEs that define dynam-

ical regimes. Those regimes do not need to be SIR-type models, and the cor-

responding underlying data sets do not have to be associated with COVID-19.

The severe acute respiratory syndrome type 2 (SARS-CoV-2) was chosen as the
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thematic scope because it is a topical issue.

Keywords: physics-informed neural networks, compartment models,

COVID-19, SARS-CoV-2, epidemiology, loss function, multiobjective

optimization, weighting parameters, Pareto front

1. Introduction

Physics informed neural networks (PINNs) [1], also called theory-inspired

machine learning [2], have recently become a popular method for solving dif-

ferential equations. By incorporating the residual of the differential equation

into the loss function of a neural network-based surrogate model, PINNs can

seamlessly combine measured data with physical constraints given by differential

equations. PINNs can also be viewed as a surrogate model for solving differen-

tial equations by incorporating additional data or as a data-driven correction

(or even discovery) of the underlying physical system.

We are currently situated in the fourth wave of the coronavirus pandemic,

when interventions and protection measures are lifted towards the summer of the

year 2022 in multiple countries, and vaccines against future mutations as well as

the predominant B.1.1.529 (omicron) variant are worked on by big biotechnology

companies, e.g. BioNTechPfizer, ImmunityBio, Sanofi, Valneva, Moderna or

AstraZeneca [3]. 75.8% of the German population is initially immunized and

59.5% have received a booster vaccination by now.

The B.1.617.2 (delta) variant of SARS-CoV-2, which is characterized by a

higher contagiosity than the previous B.1.1.7 (alpha), B.1.351 (beta) and P.1

(gamma) variants, has been observed in Germany since March 2021 and was

the predominant variant in Germany during several months in the year 2021

[4]. In the autumn of 2021, the new omicron variant was detected and classified

as concerning by the World Health Organization. Three sublines (BA.1, BA.2,

BA.3) and a transmission advantage with respect to the delta variant were

attributed to the omicron variant at the end of November 2021 [4]. The omicron

variant quickly spread worldwide. Three recombinations of the omicron and
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delta variant (XD, XE, XF) have already been registered as sublines [4].

Local peaks during the fourth COVID-19 wave in Germany were reached on

November 28th 2021 with 693, February 14th 2022 with 2,434 and March 20th

2022 with 2,619 daily infections per 1 million people. All of these peaks were

larger than the global peaks of the three previous waves experienced in spring

2020 (69 on April 2nd 2020), winter 2020/2021 (305 on December 22nd 2020)

and spring 2021 (257 on April 25th 2021) [5].

The mathematical model used in this work to describe the population dy-

namics of COVID-19 is the susceptible-vaccinated-infected-hospitalized-recovered

(SVIHR) model. Here, pre-symptomatic individuals are merged with symp-

tomatic people in the infected compartment, so that we have a single infected

compartment of people not hospitalized.

The contribution of our work consists of three large parts: Firstly, we estab-

lish the SVIHR model and build upon this a Physics-Informed Neural Network

(PINN). The PINN method uses certain physics-informed constraints, expressed

e.g. by differential equations, as part of the loss function of a corresponding deep

neural network. Thus, the system of ODEs plays a crucial role in the training

(i.e., the optimization) of the neural network.

PINNs were first introduced in the work of Raissi et al. and since then used to

solve different forward and inverse problems [1]. The PINN approach trades off

between the data-based and physical loss functions in the training process. This

reduces the space of reasonable solutions to those that satisfy a ’physical law’ to

some degree, i.e., an SVIHR compartmental model in this case. The loss function

of the PINN is based on reported data of recent infection events (data loss part),

and a system of ODEs inheriting transition and transmission dynamics, from

which so-called residual networks are computed using automatic differentiation

(residual loss part). The data loss makes PINNs a data-driven technique. The

PINN involves several fixed model parameters, from which transition parameters

are computed. The uniqueness of our PINN approach lies in the fact that we

apply it to the established SVIHR model and differentiate between training data

covering the time since the outbreak of the pandemic in Germany and training
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data involving exclusively one achieved peak.

Secondly, the constructed PINN is applied to pandemic-related data refer-

ring to a time-series of up to two years between 2020 and 2022. Two model

parameters called trainable parameters, which determine the force of disease

transmission and generated the PINN, are identified per run of the PINN. Mul-

tiple validation runs are performed to adapt the network structure and improve

predicted scenarios, minimizing the error between forecasts of the pandemic

wave and the corresponding reported data. The PINN is highly flexible with

respect to the modification of model restrictions.

The third contribution of our work is the optimization of the parameter

weighting the relation between the data and residual loss part. To achieve

this, we interpret the training process as a biobjective optimization problem,

where the residual loss and the data loss are considered as two independent and

generally conflicting objective functions. Rather than combining these two ob-

jectives with a pre-determined and fixed weighting parameter, we identify suit-

able weighting parameters by generating a (rough) approximation of the Pareto

front. For the training process, we adopt a scalarization-based approach that

transforms the biobjective problem into a series of weighted-sum scalarizations.

Favorable solutions are identified by repeated training runs with adaptively se-

lected scalarization parameters. The resulting approximation of the Pareto front

provides valuable information on the trade-off between data loss and residual

loss. On one hand, this information can be used to assess the suitability of

the employed physical model. On the other hand, a thorough analysis of the

(approximated) Pareto front supports an informed selection of a suitable com-

promise, focusing more on the data or more on the physical model depending

on the decision makers preferences and beliefs.

1.1. Related Research

Since the outbreak of the COVID-19 pandemic, a variety of compartmental

models have been introduced as enhanced susceptible-infected-recovered (SIR)

compartment models to study various aspects of the spread of SARS-CoV-2.
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PINNs have been applied to compartment models and studied in the context of

the COVID-19 pandemic as well.

For instance, Malinzi et al. applied a PINN to a susceptible-infected-recovered-

deceased (SIRD) model in order to identify the behavioural dynamics of COVID-

19 in the Kingdom of Eswatini between March 2020 and September 2021. They

found that their PINN outperformed all other data analysis models even when

given minimal quantities of training data [6].

Kharazmi et al. [7] considered different integer-order, fractional-order and

time-delay models expressed as systems of ODEs. For the aim of analyzing the

previous dynamics of COVID-19 in New York City, Rhode Island and Michi-

gan states and Italy, they used PINNs, that were explained as able to perform

parameter inference and simulation of the observed and unobserved dynamics

simultaneously. Their results showed that purely statistical approaches were

generally not well suited for long-term predictions of epidemiological dynamics,

and integer-order models seemed to be more robust than fractional-order mod-

els, that were first developed by Pang et al. [8]. Moreover, they stated that no

model could accurately capture all the dynamics that play out during an ex-

tended pandemic, but models with the ability to adjust key parameters during

training could lead to more useful predictions [7].

Cai, Karnidadakis and Li calibrated the unknown model parameters of a

susceptible-exposed-infected-removed (SEIR) model using the novel fractional

physics-informed neural networks (fPINNs) deep learning framework in order

to obtain reliable short-term predictions of the COVID-19 dynamics caused by

Omicron variant [9]. Data from the National Health Commission of the People’s

Republic of China covering the 27th February 2022 to end of April were used.

For instance, predictions are able to capture sudden changes of the tendency for

the new infected cases.

On the other hand, concerning the general PINN approach, we emphasize

that the multiobjective nature of PINN training was recognized in several recent

publications. Rohrhofer et al. [10] analyze the impact of different weights in a

weighted sum objective of data loss and model loss by scanning the weight
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interval. Also Jin et al. [11, Section 4.4.] studied the influence of weights in

an experiment for turbulent channel flow, by manually tuning the weight in

order to improve the results. Finally, Wang et al. [12, Algorithm 2.1] proposed

an an adaptive rule, called ’learning rate annealing for PINNS’, for choosing

the weights online during the training process. The basic idea behind is to

automatically tune the weights by using the back-propagated gradient statistics

during model training to properly balance all terms in the loss function.

Their numerical results on diffusion equations and Navier-Stokes equations,

respectively, impressively show the impact of the weight selection on the training

success. Indeed, suboptimal results are obtained for several training runs, thus

leaving room for improved multiobjective training approaches. When the phys-

ical model and the data are in good correspondence (this is, for example, the

case when the data is artificially generated from the model at hand), an ‘ideal’

solution that simultaneously minimizes data and model loss can be sought.

Maddu et al. [13] suggest a multiobjective descent method that adaptively

updates the weights using an inverse Dirichlet strategy to avoid premature ter-

mination. While they do not discuss convergence guarantees, their numerical

results show a good performance in comparison with recent adaptations of mul-

tiobjective descent methods [14, 15] to PINN training [16]. Stochastic multiob-

jective gradient descent algorithms were introduced for general NN training in

[17]. We also refer to self-adaptive PINNs [18] and to PINN training in which

the loss weights are regarded as hyperparameters [19].

In a more general setting, multiobjective training approaches were suggested

in [20] to trade-off between data loss and regularization terms in the context

of image recognition. The different characteristics (slope and curvature) of

the considered training goals are addressed by enhancing the stochastic multi-

gradient descent approach [17] by pruning strategies, and by combining adaptive

weighted-sum scalarizations with interval bisection. The latter supports the

identification of favorable knee solutions on the Pareto front.

This paper is organized as follows: In Section 2, the compartment model

for COVID-19 predictions is introduced. Firstly, the SIR model explained in
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Section 2.1 to provide an insight into the basics of epidemic modelling. Then

the system of ODEs of our compartment model, the SVIHR model, is defined

along with the used transition rates and transmission rate in Section 2.2. All

model parameters are listed in Table 1.

Section 3 is devoted to the methodological developments. The Nonstandard

Finite Difference (NSFD) method is introduced in Section 3.1, where the con-

cept of the scheme is explained, the so-called denominator function is derived

and the NSFD scheme for the SVIHR model is established. Section 3.2 provides

an introduction to physics-informed neural networks (PINNs) with a focus on

the loss function and the suggested neural network structure. Here, a brief

distinction between supervised and unsupervised neural networks in made. Sec-

tion 3.3 introduces some aspects of biobjective optimization needed to examine

the Pareto front that is obtained by biobjective PINN training approaches. Fi-

nally, in Section 3.4, we introduce a dichotomic search scheme aiming to quickly

find Pareto optimal solutions and supporting an informed decision on the prefer-

able trade-off between the data loss and the residual loss.

We present our results in Section 4. They comprise the validation of the

prediction for the calendar weeks 33 in 2021 to 5 in 2022 in Section 4.1 with

a focus on the effects of altered weighting parameters, and the forecast for

the calendar weeks 44 in 2021 to 8 in 2022 in Section 4.2 with a focus on a

more precise prediction. They are based on distinct training data sets, meaning

different extracts from the reported COVID-19 data used by us. Finally, we

present the results of the biobjective training in Section 4.3. A conclusion is

drawn and an outlook to future work is given in Sec. 5.

2. A Compartment Model for COVID-19 Predictions

The compartment model used to compute the residual loss during PINN

training in this paper is the susceptible-vaccinated-infected-hospitalized-recovered

(SVIHR) model, which was proposed by Treibert and Ehrhardt in [21]. It is

briefly derived in Section 2.2 again for the sake of completeness. Building upon
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the basic susceptible-infectious-recovered (SIR) model introduced by Kermack

and McKendrick in 1927 [22], the SVIHR model enhances the SIR model to

include a vaccinated and a hospitalized compartment. A general short intro-

duction to SIR models in mathematical epidemiology is provided in Section 2.1.

A comparison between the data-driven PINN approach with a distinct train-

ing data set and the NSFD method based on the SVIHR model in regard of

infection and hospitalization numbers was made in [21]. With the PINN itself

as well as the NSFD scheme, we computed future COVID-19 scenarios using

PINN-optimized parameters.

Regarding the application of the SVIHR model in this paper, the used data

and thus parameter values and compartment sizes are updated based on the

data sources [23, 24, 25] compared to [21]. Whereas the focus on the comparison

with the NSFD scheme is stronger in [21], we include validation runs with an

additional NSFD-induced loss term in Section 4 of this paper. This new loss is

based on iterations of the NSFD scheme and thus underlying system of ODEs

representing the SVIHR model and the initial compartment sizes. We weight the

resulting loss term with a second hyperparameter. The most relevant difference

between our validation runs in this paper and [21] is that the PINN and so

the compartment model are applied to different time periods with respect to

training data. Whereas the training set covers the beginning of the outbreak

in Germany until end of 2021 in [21], we focus on the training sets mentioned

in Section 4.1 and Section 4.2 to focus on the difference between a long- and

short-term prediction here.

An intensive focus on the performance of the NSFD scheme for a susceptible-

vaccinated-infected-intensive care-deceased-recovered (SVICDR) model was put

by Treibert and Ehrhardt in [26]. Here, the impact of parameter boundary mod-

ifications on predicted prevalence was investigated, taking into account data on

Germany in the pandemic, an exponential increasing vaccination rate in the con-

sidered time window and trigonometric contact and quarantine rate functions.

Our results showed that the NSFD can predict a global peak based solely on the

mathematical model and defined parameters, but independently of a previously

8



experienced behavior of the infectious disease.

As determining the proportion of asymptomatic individuals in the total in-

fected population is not our goal at this point, we do not incorporate a separate

compartment of asymptomatic infected individuals, but assume at least very

mild symptoms in infected individuals. The degree of infectivity of infected

individuals can be regulated by adjusting the transmission rate in the model.

Our model is adaptable to different vaccination and transmission scenarios.

2.1. The SIR Model in Mathematical Epidemiology

The basic SIR model consists of three compartments of susceptible (S),

infected (I), and recovered (R) individuals. We denote with K(t) the size of

a compartment K ∈ {S, I,R} at time t, where a time unit equals a week.

Susceptible individuals have not yet become infected but may become ill. In

the basic SIR model, infected individuals are also capable of infecting susceptible

persons, i.e. they are assumed to infectious (without any delay) and may or may

not have symptoms. Recovered individuals have overcome the disease and are

neither infectious nor ill.

The total size of the population at time t is denoted byN(t). The satisfaction

of the equation

N(t) = S(t) + I(t) +R(t) with N : [0, T ]→ N,

means that the number of individuals in the system is the sum of the compart-

ment sizes at each considered time point t ∈ [0, T ]. The system (2) must have

initial conditions S0 = S(0), I0 = I(0), R0 = R(0) = 0 to be well-defined [27,

p. 11]. The population size N(t) is constant, i.e. N(t) = N , if the derivative of

N(t) is zero, which means that the system does not contain a recruitment rate

Λ or a natural death rate.

Let p be the probability rate that a contact with a susceptible results in

a transmission, and let ζ be the per capita contact rate, i.e. the number of

contacts made by one infectious individual. Then ζ N is the number of contacts

per unit of time this infectious individual makes, and ζ N S
N denotes the number
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of contacts with susceptible individuals that one infectious individual makes per

unit of time. Moreover, we define a transmission rate constant β [27, p. 10]:

β = p ζ . (1)

If I(t) stands for the number of infected individuals at time t (prevalence), then

β S I denotes the number of individuals who become infected per unit of time

(incidence). If ωI is the recovery rate, we obtain the following system of ODEs,

that describes the SIR model [27, p. 11]:

dS(t)

dt
= −β I(t)S(t),

dI(t)

dt
= β I(t)S(t)− ωI I(t),

dR(t)

dt
= ωI I(t).

(2)

For the model in Equation (2), the maximum number of infected people

reached in the regarded epidemic is given by

Imax = −ωI

β
+
ωI

β
ln
(ωI

β

)
+ S0 + I0 −

ωI

β
ln
(
S0

)
. (3)

Let

F (t) = 1− e−ωIt, t ≥ 0 (4)

be the probability of recovering/leaving the infectious class in the interval [0, t)

[27, p. 11]. The function F (t), with F (t) = 0 for t < 0, is a probability

distribution. Then f(t) = dF (t)
dt is the respective probability density function:

f(t) = ωI e
−ωIt . (5)

If X denotes the average time spent in the infectious class, the mean time spent

in the infected class can be computed as the first moment

E
[
X
]
=

∫ ∞

−∞
t f(t) dt =

∫ ∞

−∞
t ωI e

−ωIt dt =
1

ωI
. (6)

For SARS-CoV-2, the mean time of infectiousness is not clearly defined. With a

mild or moderate course of disease, contagiousness clearly declines within the ten

days after symptom occurrence. Contagiousness has to be distinguished from
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positive test results, that can occur several weeks after catching the infection,

although the infectiveness is usually on a very low level then [28].

In this basic form of the SIR model, the population is assumed to be closed

so that no individual enters or leaves a compartment from the outside, and re-

covered individuals are completely immune so that they can never be reinfected

[27, p. 13].

The transmission rate constant (transmission risk) of the system in (2) can

be incorporated into a transmission rate function θ(t):

θ(t) := β ζ
(
1− q

)
I(t) . (7)

Here, ζ is the contact rate. The parameter q symbolizes the degree of inter-

vention strength, quarantine, and isolation measures implemented. We note

that time-dependent functions for the transmission risk β(t), contact rate ζ(t)

or isolation rate q(t) are possible. As shown in [26], modifying parameters in

trigonometric functions q(t) and ζ(t) were investigated with respect to the NSFD

scheme effects the height or point in time of peak occurrence. The rate

Θ(t) := θ(t)
S(t)

N(t)
(8)

is the standard incidence rate, which is similar to the mass action incidence β S I,

but it is normalized by the total population size. The standard incidence is used

for diseases for which the contact rate is assumed to not increase indefinitely

most of the time [27, p.38].

2.2. The SVIHR Model

The SIR model was enhanced by a compartment of hospitalized individuals

H and a compartment of fully, i.e. at least twice, vaccinated individuals V in [21].

We obtained our data sets from the Robert Koch-Institute (RKI) [23, 24] and

the German COVID-19 Vaccination Dashboard [25], based on which parameter

values and compartment sizes, referred to as reported compartment sizes or

reported data in the sequel, were computed.

11



Infected individuals remain infected for TI days until they recover, when a

proportion ξ of all individuals transiting from the infected individuals are hos-

pitalized. The exact daily or weekly number of infectious people among the

infected ones is not known. The number of infections registered by the Robert

Koch-Institute (RKI) is used to compute the reported size of the compartment

I for all considered calendar weeks in this paper. This number is based on the

number of infected individuals who are infectious enough so that the virus is

usually verifiable via a rapid antigen test. Infectious and not infectious infected

people are merged within the compartment I. The general degree of infectious-

ness of the individuals in I depends on the transmissibility of the virus and is

included in the transmission rate.

According to the RKI, the concrete time period of contagiosity is not clearly

defined, but infectiosity is highest right before and after the presence of first

symptoms and drastically declines maximally 10 days after the very first symp-

tom occurrence with a mild or moderate disease course [28]. We selected

TI = 1.2 weeks, i.e. 8.4 days, since we assumed a small time span of 1-2 days

between the first showing of symptoms and getting tested. The parameter ω1

is the rate at which persons per unit time (week) pass from compartment I to

R. It is defined as

ω1 =
1− ξ
TI

. (9)

The rate η at which individuals reach the compartment H per unit of time is

defined as

η =
ξ

TI
. (10)

As a proportion ξ of currently infected individuals is assumed to be hospitalized

within TI weeks, a proportion 1− ξ is assumed to recover within those TI days,

such that ω1 I(t) people recover and η I(t) individuals are hospitalized within

week t. It is assumed here that hospitalized individuals cannot infect susceptible

individuals because of their isolated state. They remain infected TH days from

the time of their hospitalization. In a German academic survey with 1,426

COVID-19 patients with an acute respiratory disease, an average duration of
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hospital stay of 10 days was observed [28]. We selected TH = 1.5 weeks, i.e. 10.5

days. A proportionM of persons transiting from the hospitalized compartment

die from disease-related causes rather than recover. Consequently, the rate ω2

at which persons per unit time pass from compartment H to R is given by

ω2 =
1−M
TH

. (11)

The vaccinated compartment V contains all susceptible individuals who have

received a COVID-19 vaccination. It is reached from the compartment S at a

rate V. If vaccination does not guarantee complete immunity to infection, we

speak of a leaky vaccination. Due to the assumed leakiness, all vaccinated in-

dividuals have a lower probability of contracting the infection than susceptible

individuals in compartment S. If an all-or-nothing vaccine was assumed, vac-

cinated people would be completely protected from the infection to a specific

portion of the susceptible class per unit time t, whereas the other susceptibles

did not gain any protection. Let κ denote the residual probability of infection

after vaccination. The rate at which vaccinated individuals reach the infected

compartment I is κ θ(t).

Furthermore, we incorporate a constant system inflow, the so-called recruit-

ment rate Λ (e.g. birth of new individuals that can get infected), and the natural

mortality rate µ. The recruitment and natural death rate are set to zero as they

are regarded as equal in both [21] and this paper, but are still included in the

system of ODEs for the purpose of properly deriving the denominator function

in the NSFD scheme, see Section 3.1. The total population size is kept constant

like this. The corresponding system of ODEs has the following form:

dS(t)

dt
= Λ− θ(t) S(t)

N(t)
− (V + µ)S(t),

dV (t)

dt
= V S(t)− θ(t)κ S(t)

N(t)
− µV (t),

dI(t)

dt
= θ(t)

(
1 + κ

) S(t)
N(t)

−
(
η + ω1 + µ

)
I(t),

dH(t)

dt
= η I(t)− (ω2 + µ)H(t),

dR(t)

dt
= ω1 I(t) + ω2H(t)− µR(t).

(12)
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The system (12) extends the simple system (2) by the differential equations for

V (t) and H(t), describing the inflow into and the outflow from the compartment

V or H, respectively, as well as the recruitment rate Λ and the natural death

rate µ. Figure 1 shows the dynamical system described by (12). Blue arrows

from one compartment to another indicate a transition, where the compartment

from which the red dashed arrow emanates can infect susceptibles. Table 1 lists

S I H

R

V

V
θ(t)
κ θ(t)

ω1 ω2

η

µ µ µ

µ

µ

Λ

Figure 1: Compartment model for the SVIHR model

the model parameter definitions and used values. We note that the parameter

values for the SVIHR model used in this paper stated in Table 1 differ from the

ones used in [21].

3. Finding Optimized Weights in PINN Approaches

We implement a physics informed neural network (PINN) that is trained

both w.r.t. German COVID-19 data and w.r.t. the SVHIR model introduced in

Section 2.2 above. This technique is validated using error computations with

regard to reported data. The method and structure of PINNs is explained in

Section 3.2. Moreover, scenarios generated using the PINN are compared to

those produced using the technique of nonstandard finite difference (NSFD)

schemes. A short introduction to NSFD schemes and the application on the

SVIHR model are outlined in Section 3.1.
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Since the PINN is trained w.r.t. two loss terms, we take a biobjective ap-

proach to investigate the influence of weighting parameters on each loss term.

We consider the two losses as independent objective functions and want to find

weighting parameters to achieve an approximation of the Pareto front. We

therefore first introduce certain aspects of bicriteria optimization in Section 3.3

and then introduce a dichotomic search scheme to efficiently approximate the

Pareto front in Section 3.4.

3.1. Nonstandard Finite Difference Schemes

NSFD schemes trace back to a paper by Mickens published in 1989 [30].

Their structural properties originate from studies of special groups of differential

equations, for which exact finite difference schemes are not available. For reasons

of completeness, the NSFD scheme for the SVIHR model is derived at this point

again. It has already been derived in a similar way in [21].

In NSFD schemes, derivatives have to be modelled by proper discrete ana-

logues, i.e. nonstandard difference quotients of the form, cf. [31]

du(t)

dt
→ un+1 − ψ(h)un

ϕ(h)
, (13)

where tn = nh, un is the approximation of u(tn), and ψ(h) = 1 +O(h). Using

this rather general time discretization (13) in NSFD schemes our aim is to model

the asymptotic long-time behaviour of the solution. A numerical scheme for a

system of first-order differential equations is called NSFD scheme if at least one

of the following conditions hold [31]:

• Discrete representations for derivatives must, in general, have nontrivial

denominator functions. Here, the first-order derivatives in the system

are approximated by the generalized forward difference method dun

dt ≈
un+1−un

ϕ(h) , where un ≈ u(tn) and ϕ ≡ ϕ(h) > 0 is the so-called denominator

function such that ϕ(h) = h+O(h2), with h the step size.

• The consistency orders of the finite difference quotients should be equal

to the orders of the corresponding derivatives appearing in the differential

equations.
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• The nonlinear terms are approximated by non-local discrete representa-

tions, for instance by a suitable function of several points of a mesh, like

u2(tn) ≈ unun+1 or u3(tn) ≈ u2nun+1.

• Special conditions that hold for either the ODE and/or its solutions should

also hold for the difference equation model and/or its solution, e.g. the

equilibrium points of the underlying ODE system.

NSFD schemes satisfy the positivity condition and the conservation law for

Λ = µ = 0 yielding stability of the scheme. The equilibrium points of the ODE

model appear in the proposed NSFD-scheme as well.

In the sequel, we will derive an appropriate denominator function ϕ(h) for

the NSFD discretization of the system (12). This function is chosen such that

the numerical solution exhibits the same asymptotic behaviour as the analytic

solution. To do so, we consider the total population N = S + V + I +H + R

of the ODE system (12). Adding the equations of (12), a differential equation

describing the dynamics of the total population N is obtained as

dN(t)

dt
= Λ− µN(t) , (14)

which is solved by

N(t) =
Λ

µ
+
(
N(0)− Λ

µ

)
e−µt = N(0) +

(
N(0)− Λ

µ

)
(e−µt − 1), (15)

where N(0) = S(0)+ V (0)+ I(0)+H(0)+R(0). Now, adding the equations in

the discrete NSFD model (21) yields

Nn+1 −Nn

ϕ(h)
= Λ− µNn+1, (16)

i.e.

Nn+1 =
Nn + ϕ(h)Λ

1 + ϕ(h)µ
= Nn −

(
Nn − Λ

µ

) ϕ(h)µ

1 + ϕ(h)µ

= Nn +
(
Nn − Λ

µ

)( 1

1 + ϕ(h)µ
− 1

)
.

(17)

The denominator function can be derived by comparing Equation (16) with the

discretized version of Equation (15), that is

Nn+1 = Nn +
(
Nn − Λ

µ

)
(e−µh − 1), h = ∆t, (18)
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such that the (positive) denominator function is defined by

1

1 + ϕ(h)µ
= e−µt, (19)

i.e.

ϕ(h) =
eµh − 1

µ
=

1 + µh+ 1
2µ

2h2 + . . .− 1

µ
= h+

µh2

2
+. . . = h+O(h2). (20)

Now, making use of the denominator function in (13), the NSFD discretiza-

tion can be established. The implicit form of this discretization is provided in

Equation (21). Here, ϕ(h) is given by (20)

Sn+1 − Sn

ϕ(h)
= Λ− β In Sn+1 − (V + µ)Sn+1,

V n+1 − V n

ϕ(h)
= V Sn+1 − β κ In Sn+1 − µV n+1,

In+1 − In

ϕ(h)
= β (1 + κ) In+1 Sn+1 − (η + ω1 + µ) In+1,

Hn+1 −Hn

ϕ(h)
= η In+1 − (ω2 + µ)Hn+1,

Rn+1 −Rn

ϕ(h)
= ω1 In+ 1 + ω2H

n+1 − µRn+1 .

(21)

We can rewrite the scheme in order to obtain an explicit variant of it, as to be

found in (22). From the explicit representation we can deduce that this scheme

preserves the positivity.

Sn+1 =
Sn + ϕ(h)Λ

1 + ϕ(h) (β In + µ)
,

V n+1 =
V n + ϕ(h)Sn+1 (V − β κ In)

1 + ϕ(h)µ
,

In+1 =
In

1 + ϕ (η + ω1 + µ− β (1 + κ)Sn+1)
,

Hn+1 =
ϕ(h) η In+1 +Hn

1 + ϕ (ω2 + µ)
,

Rn+1 =
Rn + ϕ(h) (ω1 I

n+1 + ω2H
n+1)

1 + ϕ(h)µ
.

(22)

The calculation must be done in exactly this order. All parameters appearing

in these type of epidemic models are always non-negative.
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3.2. Physics-informed Neural Networks for Compartment Models

Physics-informed neural networks (PINN) are neural networks that include

the laws of dynamical systems into a deep learning framework. Machine learning

has emerged as an alternative to numerical discretization in high-dimensional

problems governed by partial differential equations. Nonetheless, a sufficient

amount of data as required for training deep neural networks is not necessar-

ily available. In such cases, missing data can be substituted by incorporating

additional information obtained from enforcing the physical laws of dynamical

systems [32]. Such laws can be described by partial or ordinary differential

equations. One example where dynamical systems can be used are populations

undergoing transitions between different infected or uninfected states during an

epidemic, as considered in this paper.

PINNs can approximate the solutions of differential equations by training a

loss function incorporating the initial and boundary conditions and the residual

at so-called collocation points [33]. Instead of approximating solutions of differ-

ential equations, PINNs can use a system of differential equations describing a

certain real-world process along with time-series data sets describing the past

course of such a process for the purpose of generating predicitions for future

progressions.

The loss function of a corresponding neural network includes not solely the

so-called data error related to the difference between the output of the network

and the reported data used, but also the so-called residual error related to the

ODEs or PDEs.

Olumoyin et al. [34] refer to a type of feedforward neural network including

epidemiological dynamics such as lockdown into their loss function by using the

term Epidemiology-Informed Neural Network (EINN). EINNs extend PINNs

for epidemiology models and are able to capture the dynamics of the spread

of the disease and the influence of the mitigation measure. The loss function

is enhanced to include time-varying rates using epidemiology facts about the

infectious disease [34].

Shaier, Raissi and Seshaiyer [35] describe a type of PINN-based neural
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network that can be applied to increasingly complex systems of differential

equations describing various known infectious diseases with the term Disease-

Informed Neural Networks (DINN). DINNs can be systematically applied to

increasingly complex governing systems of differential equations describing in-

fectious diseases. They are able to effectively learn the dynamics of the disease

and forecast its progression a month into the future from real-life data [35].

The neural network established and applied in this paper can be described

as a special type of EINN or DINN based on a special kind of epidemic compart-

ment model called SVIHR model regarding the susceptible, vaccinated, infected,

hospitalized and recovered part of the population. We focus on the German pop-

ulation in this paper, using data provided by the Robert Koch-Institute [23, 24]

and the German COVID-19 Vaccination Dashboard [25]. The model parameters

included in (12) can be comprised in a vector ϑ:

ϑ = [β, ζ, q,V, κ, ξ, TI , TH ,M, TH ]⊤ . (23)

This vector is partitioned into fixed parameters pf and trainable parameters p:

pf := [ζ, q,V, ξ, TI , TH ,M, TH ]⊤,

p := [β, κ]⊤ .

So we decide to optimize the transmission risk β and the factor κ during the

training process of the neural network.

We fit a vector of tl points in time T = [t1, . . . , tl]
⊤ as input vector to our

network. Let

K̂(t) = [K̂1(t), . . . , K̂n(t)]⊤

be the vector of the reported sizes of those n compartments at time t. If K

denotes the n compartments, we express the terms on the right-hand side of

(12) by

Fp(K) = [F 1
p (K), . . . , Fn

p (K)]⊤ .

Here, n is the number of compartments, i.e. n = 5 in case of the SVIHR model.

The subscript p stands for the model parameters that the system of ODEs
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depends on and thus the solution will depend on, too. It holds that F j
p =

Fp(Kj(t)) ∈ C(R), for all j ∈ {1, . . . , n}. The system of ODEs in (12) can then

be discretized as

dK(t)
dt

− Fp(K) = 0, t ∈ {t1, . . . , tl} . (24)

Our PINN

PINNW
p : R→ Rn

is used to approximate the solution

Kp = [S, V, I,H,D,R]⊤ : R→ Rn , (25)

of the system of ODEs (12) by performing error minimization during training

[36]. The superscript W represents the weights used during the forward and

backward propagation in the neural network. At time instance t, t ∈ {t1, . . . , tl},

the solution is expressed as

Kp(t) = [K1
p(t), . . . ,Kn

p (t)]
⊤ ,

where Kj
p(t) ∈ C1(R) is the output of the PINN for the jth compartment at

time t. The parameters W and p are optimized during the backpropagation

process of the neural network such that PINNW
p fits the reported data K̂ in a

least-squares sense [36]. In the kth training iteration Jk, k ∈ {1, . . . ,M}, with

PINN output PINNW
p (Jk), we compute the usual data error defined as

MSEU = MSEU (W,p) :=
1

M

M∑
k=1

∥PINNW
p (Jk)− K̂j∥2 . (26)

Next, let us extend the loss function of the PINN by the additional term

Fp(PINNW
p , Jk) :=

dPINNW
p (Jk)

dt

∣∣∣
t=k
− Fp

(
PINNW

p (Jk)
)
, (27)

where

Fp(PINNW
p , Jk) = 0 for all t ∈ {t1, . . . , tl} (28)

means that the PINN solves the given system of ODEs exactly. The computation

of the time derivative of the neural network output
dPINNW

p (Jk)

dt

∣∣∣
t=k

can be
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performed using automatic differentiation [37]. Then the physics-informed part

of the loss function, the residual error, is given by

MSEF = MSEF (W,p) :=
1

M

M∑
k=1

∥Fp(PINNW
p , Jk)∥2 . (29)

We introduce a hyperparameter and weighting factor α ∈ [0, 1] weighting

the data loss and residual loss in the loss function. We define the loss function

as

Lα = Lα(W,p) := α MSEU +(1− α) MSEF (30)

and the minimization problem of the neural network as

min
W,p

(
Lα

)
. (31)

The loss function (30) can be enhanced by a third term to add another cri-

terion to the respective optimization problem. The data loss error (26) can be

further subdivided by introducing additionally a new so-called NSFD-induced

error MSENSFD that can be defined by computing the mean-squared error be-

tween the application of the system of ODEs to the network output of the cur-

rent iteration and the current output of the proposed NSFD scheme designed

especially for the SVIHR compartment model. The idea behind is that this loss

function MSENSFD takes into account which numerical solution method is used

for solving the system of ODEs, e.g. compared to using MATLAB’s standard

ODE45 solver. Thus, the adequate numerical discretization method of NSFD

can be used as another restrictive factor of the parameter optimization. Our

results in Section 4 show that the NSFD loss term yields scenarios with smaller

errors and more variable outputs. However, the impact on the biobjective net-

work training turned out to be rather small.

Let the output of the NSFD scheme for a compartment Kj , j ∈ {1, . . . , n},

after M training steps be given by Kj
NSFD ∈ Rm, where m ≥ l is the number

of weeks predicted by the respective NSFD scheme. As before, l stands for

the number of weeks that the PINN makes predictions for. This NSFD scheme

needs parameter values ϑ and initial compartment sizes K̂0 as inputs. Then,
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the new numerical loss term can be defined as

MSENSFD = MSENSFD(W,p) :=
1

M

M∑
k=1

∥Kj
NSFD − Fp

(
PINNW

p (Jk)
)
∥2 .

(32)

It is weighted with a parameter γ here, such that the new loss function becomes

Lα,γ = γ MSENSFD +(1− γ)Lα . (33)

The NSFD-induced loss (32) can be viewed as a type of data loss calculated not

based on the reported data but the output of the NSFD scheme with initially

reported compartment sizes. Since the numerical NSFD scheme is based on the

underlying compartment model and system of ODEs, the loss term can also be

described as partial physical loss.

In the computation of this loss in the kth training step, the available values

for β and κ of this kth training iteration are used. For all implementations, the

programming language Python and the deep-learning framework of PyTorch are

used. We establish two input and two output layers per PINN predicting the

size of one compartment for l following weeks, as e.g. infection numbers. The

inputs are the tl points in time as well as the initial sizes of the five compart-

ments at the time at which a respective prediction starts. The outputs are an

optimized parameter vector p = [β, κ]⊤ as well as inferred sizes of the respective

compartment Kp at the points in time tl+1, . . . , t2 l.

During the validation process, the network structure was adapted step by

step. Our final version of the PINN has six linear layers with 300 neurons

each and a linear output layer of size 300 × tl for the output of infection or

hospitalization numbers. Moreover, it has three linear layers with 200 neurons

each and a rectified linear unit output layer of size 200×2 for the output p. The

ADAM optimizer, rectified linear unit activation functions and the learning rate

lr = 0.003 are applied. A good overview of current descent methods in machine

learning is provided by [38].

The data sets obtained from the RKI [23, 24] and Germany Vaccination

Dashboard [25] were pre-processed and then fed into the PINN. They refer to
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the calendar weeks 10 in 2020 to 14 in 2022. Weekly case-hospitalization, case-

fatality and vaccination rates were computed based on the given data sets. The

RKI registers deceased individuals, in whom the SARS-CoV-2 pathogen was

detected, as people who died from COVID-19. With respect to the underlying

compartment size data set K̂ ∈ Rn×tl , we firstly select tl = 76, covering the

calendar weeks 10 in 2020 to 32 in 2021, and compute prediction errors starting

from the calendar week 33 in 2021.

The described PINN training does not use the labelled training data, where

compartment sizes K̂ are assigned to specific weeks ti, i ∈ {1, . . . , l}, as its direct

input but for the computation of the data loss in every single training step. Since

we do not use completely unlabelled data as the training basis here, we cannot

describe our PINN approach as an unsupervised neural network. Nonetheless,

we do not have a typical kind of supervised classification network. Consequently,

the following validation process in not a typical sensitivity or specificity analysis.

We focus on the investigation of the predicted trends with local maxima and

minima during the course of the pandemic in specific time periods. Errors

between the reported data and predictions are computed to more specifically

compare the results obtained with different weighting parameter values.

The weighted loss function consists of the data loss and the residual loss

term. As pointed out in [32], the training using the data loss (i.e. measurements,

physics-uninformed) is regarded as supervised learning while the training w.r.t.

the residual loss using the governing differential equation (physics-informed) is

regarded a unsupervised learning.

3.3. Conflicting Training Goals: Pareto Front and Trade-Off Analysis

In this paper, we take a biobjective perspective on the optimization problem

described in (30). This is the basis for a thorough trade-off analysis regarding

the two loss terms MSEU and MSEF . Rather than considering a weighted

sum of these two training goals with a fixed weighting parameter, we consider

both optimization goals independently and comprise them in a vector-valued

objective function L that maps every feasible solution vector (W,p) to a two-
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dimensional outcome vector y = L(W,p) ∈ R2:

min
W,p
L(W,p) = min

W,p

(
MSEU (W,p),MSEF (W,p)

)
. (34)

As before,W denotes the neural network weights and p the trainable parameters

of the compartment model. Let us emphasize here that the objective values also

depend on the training data xd, which are usually assumed to be given and fixed.

All variations of the input data are thus highlighted to avoid misinterpretations

of the results. To analyze the biobjective optimization problem (34), we first

review some basic concepts from the field of multiobjective optimization. For a

more detailed introduction into this field see, e.g., [39].

Towards this end, we denote by Y the outcome set of problem (34) that

includes all possible outcome vectors y = L(W,p) ∈ R2. A solution (Ŵ , p̂) is

called efficient or Pareto optimal if there exists no other solution (W,p) such

that L(W,p) ≤ L(Ŵ , p̂), i.e., if there is no other solution (W,p) such that

MSEU (W,p) ≤ MSEU (Ŵ , p̂) and MSEF (W,p) ≤ MSEF (Ŵ , p̂) where at least

on of these two inequalities is strict. If (Ŵ , p̂) is Pareto optimal, then the

corresponding outcome vector L(Ŵ , p̂) is called nondominated point. Hence,

Pareto optimal solutions are those solutions that can not be improved in one

loss function without deterioration in the other loss function. The set of all

Pareto optimal solutions (nondominated points, respectively) is denoted by XE

(YN , respectively). Figure 2 shows an example of a set of nondominated points

YN within a set of outcome vectors Y in R2. Note that YN is also often referred

to as Pareto front.

In order to better analyze the trade-off between the data loss and the residual

loss, we want to approximate the Pareto front of the problem (34). This can

be implemented by solving a series of parametric single-objective subproblems,

so-called scalarizations (see again, e.g., [39]). To keep these subproblems simple,

we use a weighted sum approach that leads to the single-objective optimization

problem (31) with the objective function (30), i.e.,

min
W,p

(
Lα(W,p)

)
= min

W,p

{
α MSEU (W,p) + (1− α) MSEF (W,p)

}
(31)
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Figure 2: Points belonging to YN are depicted in orange.

It is a well-known fact [39] that for all weighting parameters α ∈ (0, 1), an

optimal solution of (31) is always part of YN . However, the converse statement

is only true under certain convexity assumptions. Indeed, the complete set YN

can be generated by varying the weighting parameter α ∈ (0, 1) whenever the

set Y is R2
≥-convex, a property that can generally not be guaranteed in neural

network training. We recall that Pareto optimal solutions (Ŵ , p̂) ∈ XE are

called supported if there is some α ∈ (0, 1) such that (Ŵ , p̂) ∈ XE is an optimal

solution of (31). The sets of all supported efficient solutions and supported

nondominated points are denoted XsE and YsN , respectively. Note that all

supported nondominated points are located on the boundary of the convex hull

of Y (see, e.g., [40]). Figure 3 illustrates supported as well as unsupported

nondominated outcome vectors for an exemplary outcome set Y .

In order to obtain a first approximation of the Pareto front, we used a pre-

defined set of weighting parameters α in problem (31) ranging from 0.05 to 0.95

in steps of 0.05. The results of this search can be seen in Figure 4. This scan of

the Pareto front required 19 training runs in total, which is generally too costly.

Moreover, the distribution of points on the Pareto front can not be expected

to always be as uniform as seen in Figure 4. Indeed, even for biobjective and
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Figure 3: The set of supported nondominated points YsN of an exemplary problem with

Y ⊂ R2, shown here in orange. The dashed line depicts the part of the boundary of the

convex hull of Y that is not part of the set Y .
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Figure 4: Scan of the Pareto front with pre-defined weighting parameters α. The value of α

is indicated for each generated outcome vector.

convex problems, pre-defined weighting parameters may lead to very un-evenly

distributed points on the Pareto front, see, e.g., [41]. Moreover, this approach

does not scale well to higher-dimensional problems that include more than two

training objectives.

In the next section we present an alternative approach that supports an adap-

tive selection of weighting parameters and thus allows for a problem-dependent

choice of the accuracy of the approximation and the overall computational time

(i.e., the number of training runs).

3.4. Dichotomic Search for Adaptive Pareto Front Approximations

In the previous section, we scanned the Pareto front to find solutions with

meaningful trade-offs. But it would be desirable to find such solutions without

scanning the whole Pareto front to save computational time and to perform

fewer training runs. This can be realized with a scalarization-based dichotomic

search algorithm as described in [40]. It aims at an automatic adaptation to

the curvature and scaling of the problem in order to quickly find a diverse set of
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solutions. Moreover, dichotomic search can be easily integrated in an interactive

procedure that allows to zoom in into specific parts of the Pareto front that are

most interesting to the decision maker, see, e.g., [42].

The following ideas can be found in [40]. In the biobjective case, the di-

chotomic search comes down to solving a sequence of weighted sum scalariza-

tions (31) with α ∈ (0, 1) and makes use of the fact that in the two-dimensional

case, for two nondominated points yr and ys it holds that yr1 < ys1 implies

yr2 > ys2. A weighted sum scalarization (31) with α = (yr2 − ys2)/c > 0 and

1−α = (ys1 − yr1)/c > 0, where c = yr2 − ys2 + ys1 − yr1, is then solved to find new

supported points between yr and ys. The weighting parameter α hence defines

a normal vector to the line segment connecting yr and ys since

(
yr − ys

)⊤  α

1− α

 =
(
yr1 − ys1, yr2 − ys2

) α

1− α


= c ·

(
−(1− α), α

) α

1− α

 = 0.

This is illustrated in the left of Figure 5. Solving the weighted sum problem

with the new weighting parameter α leads to a nondominated point yt (if the

problem is solved to global optimality) for which two cases can occur:

1. If (α, 1−α)⊤yt < (α, 1−α)⊤yr, then yt is a new supported nondominated

point. Two new subproblems are generated, one of which is defined by yr

and yt while the other one is defined by yt and ys. This case is illustrated

in the right of Figure 5.

2. If (α, 1 − α)⊤yt = (α, 1 − α)⊤yr = (α, 1 − α)⊤ys, then yt lies on the line

segment connecting yr and ys and the search can stop in this interval.

The dichotomic search is progresses in levels, where level 1 contains the outcome

vectors of the weighted sum scalarization with the two initial weights α1 and α2,

α1 < α2, and one dichotomy step (see the left part of Figure 5 for an illustration

of the associated weighting parameter). In level 2, weighted sum scalarizations

are solved for all weights defined by the line segments comprising the convex hull
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of the current approximation of the Pareto front (see the right part of Figure 5

for an illustration). The search is repeated until a prespecified number of levels

has been evaluated, or until no new subproblems have been generated.

yr

ys

MSEF

M
S
E
U

yr

ys
yt

MSEF

M
S
E
U

Figure 5: Mode of action of the dichotomic search. On the left: The connecting line segment

between yr and ys is perpendicular to the vector (α, 1 − α)⊤ that is here multiplied with

a negative scalar to show the minimization direction. On the right: Since (α, 1 − α)⊤yt <

(α, 1 − α)⊤yr, the new point yt is nondominated and two new subproblems are generated.

[40, p. 7] (own illustration).

Algorithm 1 summarizes the implementation of the dichotomic search that

was used in this work. It is based on [20].

4. Results

This section is subdivided into three parts. In Sections 4.1 and 4.2, our

PINN is validated. We use two different sets of training data for this. At

first, data that do not include infections predominantly tracing back to the

omicron variant, but to the alpha, beta, gamma and delta variant, are used

and errors are computed. At next, exclusively data covering the autumn/winter

2021/2022 are used to train the network. So, we firstly make predictions based

on a 76-week-long training data set and later on a 16-week-long training data set.

Differences between the outcomes using the two training data sets are discussed.

Consequently, we distinguish between training data sets covering the time since

the outbreak of the pandemic in Germany, which we call long-term training
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Algorithm 1: Dichotomic Search

Data: Training data Sd, hyperparameter settings for single-objective

stochastic gradient descent (SGD) solver, depth of the search

(levels), initial weighting parameters α1, α2 ∈ (0, 1), α1 < α2, to

approximate extremal solutions focusing on MSEU and MSEF ,

respectively (see (30))

Result: Approximation of the Pareto front and corresponding PINN

parameters

1 Λ← {α1, α2};

2 cand← ∅;

3 for l = 1, . . . , levels do

4 for α ∈ Λ do

5 train with weighted sum objective Lα;

6 add objective vector to cand;

7 delete all dominated points in cand;

8 sort cand by second objective function (in increasing order);

9 if l < levels then

10 for i ∈ {2, . . . , |cand|} do

11 diff← cand(i)− cand(i− 1);

12 Λ← Λ ∪
{

-diff1

diff2−diff1

}
13 resort Λ increasingly

14 Return nondominated points from cand to illustrate trade-offs;

data, and training data sets that exclusively contain data of a specific wave or

even peak reached during the pandemic, which we call short-term training data.

For better comparability, we let the PINN identify a fixed transmission risk

β in both validation subsections. We use this as a point of reference and apply a

fixed transmission risk in the implementation of the NSFD scheme as well. The

NSFD scheme substantially serves as a numerical method for comparison with

the results of the PINN and the effect of a manual alteration of the transmission
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risk is observed. It is also applied to obtain the NSFD-induced loss for a part

of our validation runs.

In Section 4.3, we present the results of the dichotomic search to examine

the influence of the weighting parameter α in the training objective (30).

4.1. Validation of Scenarios Generated with Long-Term Training Data

In this first validation part, a major target was the observance of differences

resulting from distinct choices of the weighting parameters α and γ. We firstly

use data reported for the calendar weeks 10 in 2020 to 32 in 2021, i.e. long-term

data, in order to perform our first validation runs. We made use of the range

of 76 calendar weeks because our first aim was to adapt the learning procedure

of the PINN to multiple mutated variants, all seasons and different experienced

scenarios of intervention. We regard the prediction error between reported and

PINN-predicted infection numbers starting in the calendar week 33 in 2021.

The following validation covers the time until February 2022, but NSFD

output is visualized for 32 further weeks here, since we want to include the local

peaks in the plots in order to notice when they are reached and what their

height is. Thus, Figure 6 shows the size of the infected compartment over 24

points in time (weeks) resulting from the PINN and given by the reported data

set and for 56 points in time for the NSFD scheme with different values of the

transmission risk parameter β. The prediction with the NSFD scheme in this

figure corresponds to a prediction of the PINN with a NSFD-induced loss with

parameter choice γ = 1. We use the 10th calendar week in 2020 as the 1st week

considered, since this is the first week for which data are available. The forecast

then begins in the 76th week considered (calendar week 33 in 2021). The same

NSFD predictions and reported data are shown in all four diagrams of Figure 6,

but a distinct PINN prediction is depicted in each diagram.

We can see from Figure 6 that the actual infection rate increased with a

growing slope between the 76th and 90th as well as 95th and 100th considered

week. In fact, a local maximum of 693 infections per 1 million people were

registered in Germany on November 28th 2021, which already was the highest
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Figure 6: Per diagram: Infection numbers obtained from the reported data (black), the NSFD

scheme, i.e. γ = 1, and with three different transmission risk parameter values (blue, cyan,

green), and the training of the PINN with the loss terms MSEU and MSEF (red) using a

distinct choice of the weighting parameter α (α ∈ [0.5, 0.9, 0.95, 1]). The prediction starts

in the 76th considered week starting at August 9th 2021. The used training data cover the

calendar weeks 10 in 2020 to 32 in 2021 (1st to 76th considered week).
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infection rate since March 2020. A more than 3 times as large peak with 2,434

infections per 1 million people was attained on February 14th 2022 [5].

It is obvious that the strong increase of infection rates up to 1, 571, 595

weekly new infections (last week of March 2022) is not predicted by the PINN

if we use training data covering the time until August 2021. The omicron

variant with its higher transmissibility than previous variants is not a part of

the training data in this case. A maximum of 174,701 weekly new infections

was registered by the RKI in calendar week 51 in 2020, i.e. during the weeks

used for the training. We also remain on a level below 200,000 weekly infections

in our prediction. Nevertheless, a steady increase in infection numbers from

the last week of November 2021 is predicted by our PINN. Figure 6 serves to

analyze the effect of different choices of the hyperparameter α on the prediction

outcome. Among the four given choices of α, the value of α = 0.95 yields the

highest infection numbers and the resulting curve comes closest to the reported

data here, although a good approximation of high omicron infection numbers is

not obtained as explained before. Differences between the computed errors for

different values for the weighting parameters α and γ can be found in Table 2.

The NSFD scheme with a constant transmission risk obviously predicts one

maximum during the course of one wave. In fact, a local maximum of 1,307,475

weekly new infections was reached in the calendar week 6 in 2022 (102nd con-

sidered week) and a global maximum was attained in the 108th considered week

(1,571,595 weekly new infections). We notice variations in the NSFD prediction

if the transmission parameter β is modified. To create Figure 6, three slightly

different values of β were selected such that great variations in the prediction

are obtained. If we select β = 1.88 · 10−8, the NSFD scheme approximates

the curves predicted by the PINN based on training data covering times of

present alpha, beta, gamma and beginning delta variants rather than the sharp

increase drawing back to the omicron variant. In contrast to that, the choice

β = 2.02 · 10−9 allows the prediction to approach the omicron-effected sharp

increase of infection rates from January 2022. Maxima with a height of 1.2 · 106

to 1.5 · 106 weekly infections between the 102nd and 108th considered week can
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be attained with the NSFD scheme if β ∈ [1.99 · 10−9, 2.03 · 10−9]. We found

that assigning β = 1.98 · 10−9 is most suited for the approximation of the peak

in the 90th considered week at the same time, cf. Figure 8.

We note that the inclusion of a time-varying transmission rate in the NSFD

approach would facilitate the prediction of multiple peaks within a wave, as

shown in [21]. For simplicity we did not include a time-dependent rate in the

PINN or NSFD scheme used in this paper.

The third loss term, based on the NSFD scheme, was added to the PINN

to analyze whether a reduction in the error between the reported data and the

PINN outputs could be achieved by including the NSFD-induced loss term.

This term is a numerically calculated part of the network and results from the

system of ODEs in a different way than the residual loss. We have created a

Table 2 that gives the prediction errors for different values of α and γ. Using

the third loss term, we are able to compare the PINN results with the γ ∈ [0, 1]

parameter, i.e., we can consider a PINN without any influence of the NSFD

scheme on the results or a PINN whose loss function is calculated based solely

on the NSFD method.

It is striking that the computed error is distributed differently on the 27

considered calendar weeks for distinct values of γ. It lies between 0 and 200,000

during the first 23 weeks, for which validation forecasts were made. We observe

that the error in the first 15 considered weeks (beginning of August until end

of November 2021) and in the 20th to 23rd considered week (January 2022)

consistently increases the larger γ > 0.1 is selected. We can see from Figure 7

that the error is nevertheless larger for γ = 0.05 than for γ = 0.1 in the first 10

considered weeks, and remains clearly below 50,000. The error is significantly

smaller between the 15th to 19th considered week (December 2021) for a larger

value of γ. Whereas a local error peak of 300,000 is reached in the 17th consid-

ered week (end of September 2021) for γ = 0.05, this peak is only 100,000 for

γ = 0.5. The figure implies that the inclusion of the NSFD-induced loss term to

a larger proportion enables a better approximation of the real data at the end of

the first omicron wave (late November to late December 2021). However, Fig-
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Figure 7: Per diagram: Errors between the reported data and the infection numbers obtained

with the PINN with α = 0.9 and an additional NSFD-based loss with γ =∈ [0.05, 0.1, 0.3, 0.5]

and for 27 calendar weeks from August 2021.
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ure 7 indicates that the hyperparameter γ should be chosen only as γ = 0.1 to

obtain a very small error for August to November 2021. It is relevant to always

consider the strong dependence of the performance of the NSFD scheme on the

transmission parameter β. We also found that the NSFD scheme was suited for

the prediction of specific peaks heights like the peak height of the first omicron

wave during the course of the pandemic, as well as smooth increases of infection

numbers. In contrast to that, the PINN based on the data and residual loss is

able to capture smaller local peaks and oscillations.

In all cases of choices of the parameter γ, the error most sharply increases

from the 22nd observed week (late January 2022), which is reasoned by the

second maximum during the fourth wave responsible of the highest infection

numbers since the outbreak of SARS-CoV-2 in early 2020. Table 2 provides a

comparison between the four choices of the parameter γ depicted in Figure 7.

To create this table, we computed the absolute difference between the re-

ported data and compartment size output of the PINN as

diff =

k∑
j=1

diffj , (35)

with

diffj = ||K̂j − PINNW
p j
|| for all j = 1, . . . , k. (36)

Moreover, we computed the mean squared error as

MSEdiff =
1

k

k∑
j=1

diffj
2 , (37)

where k is the number of weeks for which the output of the PINN and the

reported data shall be compared.

Absolute differences and mean squared errors for chosen parameter assign-

ments are shown in Table 2 for different values of the weighting parameters α

and γ. We selected k = 25. The used learning rate is lr = 0.01.

In this case, we manually modified the values of α and γ in the implemen-

tation, such that results for selected values are shown in Table 2. Furthermore,

it is important to note that we analyze errors emerging from a special scenario
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value of α value of γ diff (regularized by 10−6) MSEdiff (regularized by 10−11)

1 0 47.97354 41.134955

0.999 0 47.96365 41.095809

0.995 0 44.81831 33.610758

0.99 0 44.74700 33.556702

0.96 0 44.68934 33.309817

0.95 0 44.66775 33.261432

0.94 0 44.98273 33.997154

0.9 0 45.22915 034.567847

0.8 0 46.72179 37.996877

0.5 0 51.15098 49.218819

0.9 0.05 43.20369 40.192425

0.9 0.1 38.63568 34.506249

0.9 0.3 41.49101 24.350765

0.9 0.5 52.51707 33.797033

0.95 0.1 38.28079 33.624826

Table 2: Absolute differences and mean squared errors between the reported data and outputs

of the PINN with training data covering the calendar weeks 10 in 2020 to 32 in 2021 if distinct

weighting parameter values are used.
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with a training basis of 76 weeks between March 2020 and August 2021, and a

prediction covering 25 calendar weeks. For other scenarios, different ranges of

errors would be obtained.

We can observe that the smallest errors, i.e. diff < 45, are reached with

α ∈ [0.94, 0.995]. This leads to the impression that the predictive value of the

data loss in the loss function of the PINN is highly relevant, and much more

significant than the residual loss. The data-drivenness of the PINN enables to

capture dynamics of the infectious disease, which numerical methods cannot

anticipate. Table 2 implies that the smallest error among the chosen parameter

values is achieved with α = 0.95, where diff = 44.66775.

Despite the remarkable significance of the data loss, we have to take into

account that the parameter value α = 0.8 leads to a smaller error than α = 1,

i.e. weighting the residual loss 20% reduces our prediction error compared to

weighting it 0%. By including the residual term, we use systematic knowledge

about the disease propagation and make our neural network a more mathemat-

ical approach. Certain parameter values can be derived from elaborate studies,

knowledge about a possible next mutation, intervention or vaccination strategy

can be incorporated, and SIR-type models provide clues to transition dynamics.

We can see that incorporating the NSFD-induced loss into the loss function

can further reduce our error. The system of ODEs, which is the physical part of

our PINN, is used in a different way in the establishment of the NSFD scheme

than in the computation of the residual error. In our manually generated sce-

narios, the choice γ = 0.1 among γ ∈ [0, 0.05, 0.1, 0.3, 0.5] results in the smallest

errors for different selections of α. For instance, we obtain diff = 38.28079 with

the combination α = 0.95, γ = 0.1. It has to be stressed that little modifications

of the transmission risk can cause big changes in NSFD predictions in terms of

the slope and attained height of the reached maximum.

In order to obtain a better approximation of the strong increase before the

second peak of the fourth and omicron-dominated COVID-19 wave in Germany,

we extended the training data set. The extended set includes the calendar weeks

10 in 2020 to 50 in 2021, i.e. 94 weeks now. Thus, it also contains data of the
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first peak during the fourth wave. We still deal with long-term training data

here. Figure 8 depicts the result of the PINN prediction with α = 0.95 and

γ = 0 as well as NSFD predictions, which correspond to PINN predictions with

γ = 1. We can see in Figure 8 that the height and point in time of the local

Figure 8: Infection numbers obtained from the reported data (black), the training of the PINN

with the loss terms MSEU and MSEF (red) with α = 0.95 and γ = 0, or the NSFD scheme,

i.e. γ = 1, with distinct transmission risk parameter values (blue, cyan, green) from the 77th

considered week starting at August 16th 2021. The used training data covers the calendar

weeks 10 in 2020 to 50 in 2021 (1st to 94th considered week).

maximum in the 90th considered week is approximated much better than in

the diagrams of Figure 6. The local minimum of 193,939 weekly infections is

captured by the PINN. The following strong increase before the second peak

during the fourth wave is also predicted by the PINN, although the predicted

increase is less sharp than it is in the reported data. Taking into account the

77th to 100th considered week and α = 0.95, the computed mean squared error

is MSEdiff = 17.36 · 109. The implementation with the larger training data

set substantiates our assumption that the inclusion of specific virus variant-

influenced compartment size data has a great effect on the resulting predicted

scenario. It has to be noted that the training data has a substantial impact on

the inferred transmission rate, which again influences the system of ODEs used

for residual loss computation in every single training step.
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4.2. Validation of Scenarios Generated with Short-Term Training Data

Aside from the above validation results, which serve to analyze the influence

of the two weighting parameters α and γ, we want to analyze the potential

improvement of our predictions if data of infection rates at times of a dominant

omicron variant are used as a part of the data basis. In fact, we want to

make a short-term prediction. The question is whether the high infection rates

of February to April 2022 tracing back to the omicron variant are foreseeable

with our PINN approach. Since in this case, we want to focus on the trade-off

between data loss and residual loss, we set γ = 0, i.e., we do not include the

NSFD scheme. The underlying data set is reduced in the way that only data of

the calendar weeks 40 in 2021 to 2 in 2022 are given as an input to the neural

network. This means that the calendar weeks 10 in 2020 to 39 in 2021 do not

serve as a training basis here, and hence the training data set is reduced by 80%

in size. It is important to note that data covering the increase in infection rates

due to the omicron spread must be included in the training data to be able to

predict the further increase. The PINN adapts its trained parameters to the

underlying data set.

Figure 9 illustrates the results of this additional analysis. It shows three

prediction curves emerging from a short-term prediction until the calendar week

8 in 2022 based on training data of the weeks 40 in 2021 to 2 in 2022 and using

different values for the weighting parameter α.

It should be noted that the calendar weeks 40 to 43 are not visualized here.

The compartment size data of the calendar week 40 are given as an initial

condition K̂0 and direct input to the PINN. This explains the small gap between

the red and black curves in the very beginning of the predictions in Figure 9.

We observe that the first actual peak in 2022 (1,307,475 weekly infections in

calendar week 6) as well as the local minimum of 193,939 weekly infections in

calendar week 51 in 2021 are both recognized if α = 0.95 is selected. In the case

α = 0.9, the local minimum of the 95th considered week is captured as well,

and the gap between the prediction and reported data is 1.2 · 105 in the 101st

considered week. The error between the reported and predicted data between
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Figure 9: Infection numbers obtained from the reported data (black) or the training of the

PINN with the loss terms MSEU and MSEF (red) from the 88th considered week in November

2021 for three different assignments of the weighting parameter α (α = 0.85, 0.9, 0.95) and

γ = 0. The training data set covers the calendar weeks 40 in 2021 to 2 in 2022 (84th to 98th

considered week).

the 96th and 101st considered week is smaller for α = 0.9 than for α = 0.95. The

specific errors are shown in Table 3. The performance of the prediction with

α = 0.85 (upper diagram) is less satisfying than the one with α = 0.9 in terms

of the gaps of 1.5 · 105 in the 101st and 1.7 · 105 in the 102nd considered week.

However, the increase in the reported data between the calendar weeks 52 and
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5 is accounted for best among the three choices of the weighting parameter.

In comparison with the results shown in Figure 6, the sharp increase of,

on average, 75,305 weekly registered infections between the calendar week 44

in 2021 to 6 in 2022 is captured in the middle and lower diagram of Figure 9.

This stresses the strong dependence of the performance of our PINN on the

training data set. The beginning of the mentioned increase is included in the

training data set of the prediction visualized in Figure 9. Our result here is

that short-term predictions should be favoured if we are interested in precise

predictions.

The respective computational errors for different values of the weighting

parameter α and for k = 16 considered points in time are shown in Table 3.

To create Table 3, we manually modified the weighting parameter α ∈ (0, 1).

Compared to Table 2, we have much smaller error values, which draws attention

on the better performance of the PINN for short-term predictions.

It is remarkable that the smallest error is achieved with α = 0.94 (among

the considered parameter values.) With α = 0.95, the error diff becomes 1.82

times as large and with α = 0.93 it becomes 2.23 times as large. Note, however,

that the individual training runs do not necessarily terminate with a (globally)

optimal solution; so the reported error values can only approximate the best

possible error for the respective choices of weighting parameters. Nevertheless,

we can observe that diff is approximately twice and MSEdiff more than four

times as large for α = 0.9 as for α = 0.99 in the considered scenario. Clear

reductions in the performance of the network are observable when setting α <

0.9. For instance, we obtain an approximate duplication of diff if the weighting

parameter α is decreased from α = 0.91 to α = 0.85, and almost a tripling if it is

decreased from α = 0.91 to α = 0.65 or from α = 0.65 to α = 0.1, and a 2.2-fold

increase if the parameter is decreased from α = 0.65 to α = 0.3. Those two

aspects stress the significance of the data loss even more than in the previously

considered prediction with a larger training data set.

The errors for α = 0.92 are nevertheless smaller than for α = 0.99. Com-

pletely neglecting the residual loss still does not yield the best performance of our
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value of α diff (regularized by 10−3) MSEdiff (regularized by 10−9)

0.1 8,782.944 427.6832

0.3 6,469.858 230.0317

0.5 4,396.296 105.3495

0.65 2,969.012 91.7439

0.85 1,217.442 79.6116

0.9 804.601 34.6124

0.91 554.790 16.4997

0.92 391.053 9.8716

0.93 175.823 5.2877

0.94 78.409 0.3301

0.95 142.195 1.8924

0.96 237.102 3.0019

0.97 344.892 6.3855

0.99 401.915 7.8172

Table 3: Absolute and mean squared errors between the reported data and outputs of the

PINN with training data covering the calendar weeks 40 in 2021 to 3 in 2022, depending on

the weighting parameter α.
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PINN. Although no mathematical model can optimally describe an infectious

disease as not every epidemiological detail relevant to transmission is known,

we can incorporate systematic knowledge about the spread and transmission

dynamics of the disease into our neural network with the aid of the residual

loss. Since α = 1 or α = 0.99 does not yield the smallest errors in our validation

runs, the inclusion of the residual error remains warrantable and reasonable.

It enables to trade between the traditional mathematical approach and newer

data-driven method. In general, predictions of future pandemic courses are

connected to several uncertainties owing to unknown mutant variants, changing

intervention measures or population compliance and new vaccination strategies.

Apart from this, we note much larger differences between the errors for

choices of α ≥ 0.9 and α < 0.9 than in Table 2. While we have only an

increase of 13% in diff and 48% in MSEdiff if α is decreased from 0.9 to 0.5

in Table 2, we can see a 5.47-fold increase in diff and a tripling of MSEdiff

for the same alteration of the weighting parameter in the implemented short-

term prediction. This emphasizes the larger sensitivity to weighting parameter

modification of the prediction with a training data set covering only one wave

over 16 weeks compared to the forecast with a training data set covering 76

weeks. Our results imply that the short-term prediction yields better results

in terms of the approximation of omicron-effected high infection rates. This is

recognizable in the extremely large differences in diff and MSEdiff .

The above discussion shows that the choice of the weighting parameter α

plays an important role in the prediction quality. Note that the prediction

quality here is measured by comparisons with the real data. It is therefore

not surprising that the prediction quality is higher when the data loss MSEU

is highly weighted in the weighted sum training objective (30). However, the

results also show that the residual loss MSEF should not be ignored. This

motivates a more detailed analysis of the trade-off between data loss and residual

loss using dichotomous search in the following section.

45



4.3. Results of the Dichotomic Search

In this section, we present the results of dichotomic search using Algorithm 1.

Based on the discussion in the previous sections, we focus on short-term train-

ing data from calendar week 40 in 2021 to 2 in 2022 (84th to 98th considered

week). See Section 4.2 and Figure 9 for comparison. Four levels of Pareto front

approximations (based on three, five, nine and 17 training runs, respectively)

are shown in in Figure 10. Each training run was performed with 5000 epochs

and the ADAM optimizer with a fixed learning rate of 0.003. The search was

initiated with α1 = 0.1 and α2 = 0.99. Other search windows can be used

depending on preferences or if additional information is available. In addition,

the search window can be used to zoom into a specific part of the Pareto front.

The results confirm that a pronounced Pareto front with a diverse set of out-

come vectors was approximated after only a few training runs. Indeed, level 2

based on five training runs (see Figure 10(b)) already provides a rough approx-

imation of the Pareto front. At level 3 (Figure 10(c)), after nine training runs,

we already have a very good approximation of the Pareto front. The final level 4

is based on 17 training runs (Figure 10(d)). On a machine with an AMD Ryzen

7 3700X 8-Core Processor and NVIDIA GeForce RTX 3060 graphic card, each

training run took about 3 minutes, so the final level needed a computation time

of about 51 minutes. The computation time of each training run is of course

dependent on the specific problem and network, however, the goal here was to

show that one can gain insight into the complete Pareto front of the problem

with rather few training runs.

This shows that the dichotomic search scheme was successful in obtaining

a diverse set of solutions with only very few training runs necessary, allowing

the decision maker insight into the effect of changing the weighting parameter

α that reflects the importance of each loss function.

Figure 11 shows a dichotomic search with starting weights α1 = 0.8 and

α2 = 0.99 in order to zoom into the part of the Pareto front that emphasizes

the data loss MSEU . This is motivated by the results presented in Section 4.2

for the same short-term data that indicated that the best prediction results
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(a) Level 1: Lexicographic optimization and

one weighted sum (three training runs)

(b) Level 2: Five training runs

(c) Level 3: A pronounced Pareto Front is

forming

(d) Level 4: Final Level with 17 training runs

Figure 10: Pareto front approximation using dichotomic search with a learning rate of 0.003

with starting weights α1 = 0.1 and α2 = 0.99. Favorable trade-offs can be identified starting

from Level 3.
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are obtained for weighting parameters α ≈ 0.94. Starting from level 3 (see

Figure 11(c)) the additional gain wrt. the data loss MSEU is only marginal

when we increase the weighting parameter α beyond 0.93. This is in accordance

with the fact that the prediction accuracy, that relates not only to the prior

data but also to the SVIHR model, does not improve beyond α ≈ 0.94.

(a) Level 1: Lexicographic optimization and

one weighted sum (three training runs)

(b) Level 2: Five training runs

(c) Level 3: MSEU only improves marginally

beyond α = 0.93

(d) Level 4: Final Level with 17 training runs

Figure 11: Pareto front approximation using dichotomic search with a learning rate of 0.003

with starting weights α1 = 0.8 and α2 = 0.99.

Overall, it can be seen that the variation of α has a large impact on the

relative importance of data loss and residual loss. The results of the previous

sections show that a high prediction accuracy for weighting parameters α in the
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range of 0.95 is achieved. This is due to the fact that the prediction accuracy was

assessed by comparison with the real data and not with the model predictions.

In other applications, different preferences may lead to a different preferred

choices of α.

5. Conclusion and Outlook

We considered the physics-informed neural networks (PINNs) method, a

Deep Learning technique in which the weighted loss function consists of a data

loss and a residual loss. In our approach, the data loss results from the sizes of

the compartments of an established susceptible-vaccinated-infected-hospitalized-

recovered (SVIHR) model derived from a training set of reported COVID-19

data. The residual loss is derived from a system of ODEs based on the pro-

posed SVIHR model, which mathematically describes the dynamics of transi-

tions between different compartments and infectious disease transmission in a

population affected by the COVID-19 pandemic. We proposed a NSFD scheme

especially designed for the solution of the SVIHR model. Its solution leads to a

straight-forward extension of the used loss function, also to measure the s

Our results for predicting the COVID-19 pandemic show large differences

when using short-term data covering 16 weeks compared to long-term data

covering a 76-week interval. Our 76-week training data set does not include

the fourth wave, i.e., autumn 2021, winter 2021/2022, or spring 2022, when the

Omicron variant spread and three spikes were observed. Our numerical results

indicate that accurate predictions would require the consideration of adaptive

and time-dependent transmission rates. With fixed transmission rates, however,

the PINN was not able to anticipate the strong increases in November/December

2021 and early 2022. When the beginning of the first local maximum of the

fourth COVID-19 wave, that was reached in November 2021, is included in the

training data we obtain a better prediction of the steep increase of infection

numbers in early 2022. Alternatively, we considered shorter data sets to predict

individual waves. In this case, the prediction based on the 16-week training
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dataset covering only the autumn/winter of 2021/2022 performs very well in

approximating the second peak during the fourth wave.

Finally, we considered PINN training from a biobjective perspective to better

analyze the trade-off between data loss and residual loss. We performed a

dichotomic search that successfully approximated the Pareto front and thus

found a large number of solutions (i.e., trained networks) with comparatively few

training runs. We found that the preferred values of the weighting parameter

α in the total loss function were greater than 0.9 in most cases, thus giving

greater weight to data loss than to residual loss. This could indicate that one

should further improve the model. We find that the biobjective approach to

PINN training can be applied to PINNs regardless of the number of loss terms

or application field.

In future work, time-varying functions for vaccination and transmission rates

will be included to account for seasonal and variant-dependent fluctuations, cf.

[43]. Time-variability in the transmission rate should especially be taken into

consideration with respect to long-term predictions, in which the training data

set covers multiple months and thus includes different mutations, lockdown poli-

tics and seasons. An adaptive learning rate scheme will be applied and compared

with the fixed learning rate in terms of the prediction accuracy achieved, cf. [44].

It is worth noting that we only dealt with two loss terms here and therefore used

a biobjective optimization model. The concept of multiobjective PINN training

can easily be extended to consider more than two objective functions. This oc-

curs in more advanced applications such as solving PDEs by PINNs, e.g., using

gradient-enhanced PINNs (gPINNs) [45], in which case the number of loss terms

is greater than two and a multiobjective approach is required. For example, in

[45, Section 2.2], the number of loss terms is 3 + d, where d is the dimension

of the spatial domain. Here, one has to identify similar and conflicting training

objectives in order to avoid an overly large parameter set. This extension to

multiobjective optimization approaches will be the content of a follow-up article.
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