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We consider the reflectionless transport of Manakov solitons in networks. The system is modelled
in terms of the Manakov system on metric graphs subject to transparent boundary conditions at
the branching points. Simple constraints combining the equivalent usual Kirchhoff vertex conditions
with the transparent conditions are derived in terms of nonlinearity coefficients. Although the
method is used for a metric star graph, an extension to more complicated graph topologies is easily
possible.

I. INTRODUCTION

The Manakov system is an integrable system of cou-
pled nonlinear Schrödinger equations (NLSE) that al-
lows various soliton solutions. It is widely used in mod-
elling vector solitons propagating in Kerr media (nonlin-
ear optics), in describing matter waves (physics of Bose-
Einstein condensation) and in describing the propaga-
tion of matter waves, in the description of the propa-
gation of matter waves (physics of Bose-Einstein con-
densates (BEC)), in the propagation of orthogonally po-
larised beams in planar AlGaAs waveguides [13], in ul-
trafast soliton switching devices [14] and in the modelling
of rogue waves [17]. Logic gates and computational op-
erations based on colliding Manakov vector solitons were
studied in [15]. The dynamics of Manakov vector solitons
in optical fibres was studied in Refs. [1, 2]. Various math-
ematical aspects of the Manakov system and properties
of Manakov vector solitons were studied in [3–12].

In optical and opto-electronic applications, vector soli-
tons are used as signal carriers, with signal transfer usu-
ally taking place in branched fibres and networks. For
optimal functioning of such devices, signal losses must
be avoided or minimised by achieving a minimum of
soliton backscattering, i.e. the solitons are propagated
without reflections. The successful solution of such a
problem requires the construction of mathematical mod-
els that describe the tunable transport of solitons in a
given structure. Since most losses in networks occur at
the branching points (vertices), ensuring freedom from
reflection or absorption at these points is a key problem
in avoiding signal loss. Solving such problems requires ef-
fective mathematical models that describe the reflection-
free propagation of solitons in networks and branched
structures.

A powerful mathematical tool for solving the prob-
lem of reflectionless soliton propagation is the imposi-
tion of so-called transparent boundary conditions (TBCs)
on a wave equation describing soliton transport. When
projecting the problem onto networks, the transparent
boundary conditions should be imposed at the network

vertices (nodes). The problem of optimising signal trans-
fer in opto-electronic networks thus leads to the develop-
ment of models for nonlinear networks with transparent
nodes. Apart from opto-electronic networks, the Man-
akov system in branched domains finds application in
modelling the dynamics of vector solitons in BEC on
branched traps, in the realization of soliton-based logic
gates in networks and in the transport of vector solitons
in branched thin crystals.

In contrast to linear evolution equations, the prob-
lem of designing TBCs for nonlinear equations cannot be
solved by simple factorization of the differential operator
or by direct use of pseudodiffential operators. However,
for special cases of the nonlinear Schrödinger equation it
is possible to formulate the exact TBCs in closed form by
using the so-called potential approach [18, 20]. Such an
approach has recently been successfully applied to NLSE
on metric graphs. Later, the approach was used for mod-
elling the reflectionless propagation of the Manakov soli-
ton on a line [45]. In [46] the potential approach was
extended to the sine-Gordon equation on a line describ-
ing the reflectionless kink propagation in 1D space.

Here, we extend this promising concept to the Man-
akov system on networks by modeling the latter as met-
ric graphs. Metric graphs are domains consisting of 1D
wires connected at the nodes. The connection rule is
called the topology of a graph and is given for any graph
by the so-called adjacency matrix [40, 41]. We note that
nonlinear evolution equations on branched domains and
networks have attracted much attention in the literature
in the last decade (see Refs. [47]–[61] and recent review
paper [62]).

This paper is organized as follows. In the next sec-
tion, we briefly recall soliton solutions and conserving
quantities for the Manakov system on a line. Section III
contains a brief discussion of transparent boundary con-
ditions for the Manakov system on a line. In Section IV,
we formulate the problem of TBCs for the Manakov sys-
tem on metric graphs together with some analytical and
numerical results. Finally, Section V contains the con-
cluding remarks.



2

II. TRANSPARENT BOUNDARY CONDITIONS
FOR THE MANAKOV SYSTEM ON A LINE

A. Soliton solutions of the Manakov system

The Manakov system is a two-component coupled non-
linear Schrödinger equation, which is explicitly given as

i∂tΨ1 +
1

2
∂2xΨ1 + (|Ψ1|2 + |Ψ2|2)Ψ1 = 0,

i∂tΨ2 +
1

2
∂2xΨ2 + (|Ψ1|2 + |Ψ2|2)Ψ2 = 0,

(1)

where (Ψ1,Ψ2) =
(
Ψ1(x, t),Ψ2(x, t)

)
, x ∈ R, t > 0. It

was introduced first by Manakov [21] to describe statio-
nary self-focusing electromagnetic waves in homogeneous
waveguide channels. The single-soliton solution of the
Manakov system can be written as

(Ψ∗
1,Ψ

∗
2) = i

( c

|c|

)η exp |2i(η2 − ξ2)t− 2ixξ|
cosh[2η(x+ x0 + 2ξt)]

, (2)

where x0 = ln(2η/|c|)/2η is the initial position of the
soliton and

(
c ≡ (c11, c21)]

)
is the unit vector that de-

termines the soliton polarization. The parameters ξ and
η denote the speed and amplitude of the soliton, respec-
tively.

Multi-soliton solutions of the Manakov system can
be obtained by Hirota’s bilinearization method [22, 23].
Eq. (1) admits infinitely many preserving quantities,
which implies their integrability. Physically, the two
most important conserving quantities, the norm N and
the energy E, determined as in [24], are respectively

N =

∫ ∞

−∞

(
|Ψ1|2 + |Ψ2|2

)
dx

E =

+∞∫
−∞

( 2∑
m=1

1

2

∣∣∣∂Ψm

∂x

∣∣∣2 − 1

2

2∑
m=1

|Ψm|4 − |Ψ1|2 |Ψ2|2
)
dx.

(3)
In [25] the norm and energy conservation laws have been
used to derive vertex boundary conditions for the Man-
akov system on a metric graph.

B. Transparent boundary conditions

Here we briefly recall, following Ref. [45], the prob-
lem of transparent boundary conditions for the Manakov
system. In the framework of the potential approach, the
Manakov system (1) can be formally written as a system
of linear PDEs:

i∂tΨ1 +
1

2
∂2xΨ1 + V (x, t)Ψ1 = 0,

i∂tΨ2 +
1

2
∂2xΨ2 + V (x, t)Ψ2 = 0,

(4)

where the potential V (x, t) is given as

V (x, t) = |Ψ1|2 + |Ψ2|2.

Introducing the new vector function as [45]

v(x, t) = e−iν(x,t)Ψ(x, t),

Ψ(x, t) =

(
Ψ1(x, t)
Ψ2(x, t)

)
, v(x, t) =

(
v1(x, t)
v2(x, t)

)
,

(5)

where

ν(x, t) =

∫ t

0

V (x, τ) dτ

=

∫ t

0

(
|Ψ1(x, τ)|2 + |Ψ2(x, τ)|2

)
dτ.

(6)

from Eq. (4), one can get [45]

L(x, t, ∂x, ∂t)v = i∂tv +
1

2
∂2xv +A∂xv +Bv = 0, (7)

where A = i∂xν, B = 1
2

(
i∂2xν − (∂xν)

2
)
. Using pseudo-

differential operators symbolic calculations we can write
the operator L as [45]

L =
( 1√

2
∂x + iΛ−

)( 1√
2
∂x + iΛ+

)
=

1

2
∂2x +

i√
2
(Λ+ + Λ−)∂x +

i√
2
Op(∂xλ

+)− Λ−Λ+,

(8)

where λ+ is the principal symbol of the operator Λ+ and
Op(p) denotes the associated operator of a symbol p. The
Eqs. (7) and (8) provide the transparent boundary con-
ditions for the Manakov system (1) in the form of the
following symbolic system of equations [45]:

i√
2
(λ+ + λ−) = a,

i√
2
∂xλ

+ −
+∞∑
α=0

(−i)α

α!
∂ατ λ

−∂αt λ
+ = −τ + b, (9)

where Op(a) = A and Op(b) = B can be set as a = A and
b = B due to the fact that these two functions correspond
to zero order operators. An asymptotic expansion in the
inhomogeneous symbols

λ± ∼
+∞∑
j=0

λ±1/2−j/2, (10)

allows to write the TBCs in different orders of approx-
imation (see Ref. [45] for details). For the first order
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approximation holds

1√
2
∂xΨ1|x=0 − e−iπ4 eiν · ∂1/2t (e−iνΨ1)|x=0 = 0,

1√
2
∂xΨ2|x=0 − e−iπ4 eiν · ∂1/2t (e−iνΨ2)|x=0 = 0, (11)

1√
2
∂xΨ1|x=L + e−iπ4 eiν · ∂1/2t (e−iνΨ1)|x=L = 0,

1√
2
∂xΨ2|x=L + e−iπ4 eiν · ∂1/2t (e−iνΨ2)|x=L = 0. (12)

We note that unlike the standard Dirichlet, Neumann
or Robin boundary conditions, the boundary conditions
given by Eqs. (12), are quite complicated and can be
implemented only numerically.

0

B
1

B
2

B
3

FIG. 1: Sketch of a star graph with 3 semi-infinite bonds.

III. TRANSPARENT BOUNDARY
CONDITIONS FOR THE MANAKOV SYSTEM

ON METRIC GRAPHS

A. Manakov system on a metric star graph

In this section we consider the dynamics of Manakov
solitons on a metric star graph (see Fig. 1), focusing on
the reflectionless transmission of solitons through the ver-
tex boundary. The Manakov system on graphs has al-
ready been considered in [25], where the integrability of
the problem under certain conditions was shown and ex-
plicit soliton solutions were derived. From the point of
view of formulation and solution of the evolution equa-
tions, a metric graph is a domain consisting of branched
wires connected at the nodes. On each bond (arm) of the
graph, the dynamics of the vector solitons is determined
by a set of integrable two-component coupled nonlinear
Schrödinger equations of Manakov type given by [25]

i∂tuj +
1

2
∂2xuj + βj(|uj |2 + |vj |2)uj = 0, (13a)

i∂tvj +
1

2
∂2xvj + βj(|uj |2 + |vj |2)vj = 0, (13b)

where uj , vj , j = 1, 2, 3, are the components of the Man-
akov soliton, j represents the bond index and βj is the
nonlinearity coefficient at bond j.

We denote Ψj = (uj , vj)
⊤ and set the boundary condi-

tions for the vertex resulting from the weight continuity

α1Ψ1(0, t) = α2Ψ2(0, t) = α3Ψ3(0, t) (14)

and the generalized Kirchhoff rules

1

α1

∂Ψ1

∂x

∣∣∣
x=0

=
1

α2

∂Ψ2

∂x

∣∣∣
x=0

+
1

α3

∂Ψ3

∂x

∣∣∣
x=0

, (15)

where αj(j = 1, 2, 3) are nonzero real constants.
Without loss of generality of the approach, we can as-

sume that αj =
√
βj . Then we assume that the following

condition is satisfied

1

β1
=

1

β2
+

1

β3
. (16)

The soliton solutions of the Manakov system on metric
star graph can be written as [25]

Ψj(x) =
1√
βj

Φj(x), (17)

where Φj(x) are the soliton solutions of the Manakov
system (1) on a line.

B. TBC for the Manakov system on a metric star
graph

In this section, we derive the TBCs for the Manakov
system on graphs and prove that they are equivalent to
the vertex boundary conditions given by Eqs. (14) and
(15), provided that the sum rule in Eqs. (26) is satis-
fied. The system (13a)-(13b) can be formally reduced to
a system of linear PDEs and written as follows

i∂tΨj +
1

2
∂2xΨj + Vj(x, t)Ψj = 0, (18)

where Ψj = (uj , vj)
⊤ and the potential, Vj(x, t) is given

as

Vj(x, t) = βj(|uj |2 + |vj |2).

To impose TBCs for Eq. (18), we split the whole do-
main (graph) into two domains, which we call “interior”
(−∞ < x < 0) and “exterior” (0 < x <∞). These termi-
nologies were borrowed from the original papers [26–28],
in which the basic idea of constructing TBCs was pro-
posed. Accordingly, we have interior and exterior prob-
lems. The interior problem for B1 can be written as

i∂tΨ1 +
1

2
∂2xΨ1 + V1(x, t)Ψ1 = 0, (19)

Ψ1

∣∣
t=0

= ψI(x),

∂xΨ1

∣∣
x=0

= (T0Ψ1)
∣∣
x=0

.
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The exterior problems for B2,3 are given as

i∂tΨ2,3 +
1

2
∂2xΨ2,3 + V2,3(x, t)Ψ2,3 = 0, (20)

Ψ2,3

∣∣
t=0

= 0,

∂xΨ2,3

∣∣
x=0

= Φ2,3(t), Φ2,3(0) = 0,

(T0Φ2,3)
∣∣
x=0

= ∂xΨ2,3

∣∣
x=0

.

We introduce the following new vector function as

w(x, t) = e−iν2,3(x,t)Ψ2,3(x, t),

Ψ2,3(x, t) =

(
u2,3(x, t)
v2,3(x, t)

)
, w(x, t) =

(
ω1(x, t)
ω2(x, t)

)
,
(21)

where

ν2,3(x, t) =

∫ t

0

V2,3(x, τ) dτ

= β2,3

∫ t

0

(
|u2,3(x, τ)|2 + |v2,3(x, τ)|2

)
dτ.

(22)

Using the results of the recent work [45], the formal
TBCs for Ψ2,3 at x = 0 can be written as

∂xΨ2,3|x=0 =
√
2e−iπ4 eiν2,3 · ∂1/2t (e−iν2,3Ψ2,3)|x=0

+ i
1

4
∂xV2,3e

iν2,3It(e
−iν2,3Ψ2,3)|x=0 = 0,

where the fractional 1/2 derivative is given by

∂
1/2
t f(t) =

1√
π
∂t

∫ t

0

f(τ)√
t− τ

dτ ,

and

It(f) =

∫ t

0

f(τ) dτ.

Using the vertex boundary conditions (14) and (15) we
have

ν2,3(0, t) = ν1(0, t), (23)

1

β1
∂xV1|x=0 =

1

β2
∂xV2|x=0 +

1

β3
∂xV3|x=0, (24)

which leads to

∂xΨ2,3|x=0 =
√
2

√
β1
β2,3

e−iπ4 eiν1 · ∂1/2t (e−iν1Ψ1)|x=0

+ i
1

4

√
β1
β2,3

∂xV2,3e
iν1It(e

−iν1Ψ1)|x=0 = 0,

Now, from the boundary conditions (14) and (15) we
obtain

∂xΨ1

∣∣
x=0

=

√
β1√
β2
∂xΨ2

∣∣
x=0

+

√
β1√
β3
∂xΨ3

∣∣
x=0

= β1

( 1

β2
+

1

β3

)[√
2e−iπ4 eiν1 · ∂1/2t (e−iν1Ψ1)

]∣∣
x=0

+ i
1

4
∂xV1e

iν1It(e
−iν1Ψ1)|x=0 = 0. (25)

The boundary condition given by (25) coincides with
that in Eq. (11) and thus provides reflection-free trans-
mission for the bond B1 if the following sum rule is ful-
filled:

β1

(
1

β2
+

1

β3

)
= 1. (26)

Thus, the satisfaction of the sum rule (26) implies that
the vertex boundary conditions (14) and (15) become
equivalent to the TBCs at the vertex of the graph.

IV. NUMERICAL EXPERIMENT

In this section, we show numerically that satisfying
the condition (26) allows reflectionless transmission of a
soliton through the vertex of a graph with boundary con-
ditions in the form of (14) and (15). The experimental
setup consists of a star-shaped graph with three bonds
(see Fig. 1). We consider the soliton going from the first
bond to the second and third, i.e., the initial condition
is compactly supported in the first bond. As initial con-
dition we choose a single soliton from the exact solution
given by

G(x) =
√
σ sech

[√
2σ(x− x0)

]
exp

[
i
√
2p(x− x0)

]
,

so that

Ψ1(x, 0) = G(x)

(
1
1

)
,

Ψ2(x, 0) =
(
0, 0

)⊤
, Ψ3(x, 0) =

(
0, 0

)⊤
.

In our experiments, we used the explicit midpoint
rule [70], the so-called leapfrog finite-difference method,
which was also used in our recent work [45]. We chose the
following system parameters: The lengths of the bonds
B1, B2, B3 are L1 = L2 = L3 = 40, accordingly the
parameters of the initial condition are σ = 1, p = 1,
x0 = −20 and the space discretization ∆x = 0.05, the
time step ∆t = 0.00125. The evolution of the right-
travelling single soliton is shown in Fig. 2 in four succes-
sive time steps. From this plot, the reflectionless trans-
mission of the soliton is evident.
Finally, in order to show that in the case where the

sum rule is violated the transmission of the soliton is
accompanied by reflections, we have plotted in Fig. 3 the
reflection coefficient, which is determined as the ratio of
the partial norm for the first bond to the total norm, i.e.

R =
N1

N1 +N2 +N3
,

as a function of β1 for the fixed values of β2 and β3.
From this plot it can be seen that the reflection coefficient
becomes zero for the value of β1 that satisfies the sum
rule (26).
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FIG. 2: Soliton dynamics plotted at different time instances
for the regime when the sum rule is fulfilled (no reflection
occurred): β1 = 1.2, β2 = 2, β3 = 3.

V. CONCLUSIONS

In this paper, by extending our previous study pre-
sented in Ref. [45], we have studied the problem of trans-
parent Manakov networks with transparent nodes. The
latter implies the absence of backscattering at the nodes.
The concept of transparent boundary conditions is ap-
plied to the Manakov system on metric graphs to model
the reflectionless transmission of vector solitons through

0 1.2 2 3 4

β
1

0

0.2

0.4

0.6

0.8

1

R
(β

1
,t
=

1
2
.5

0
)

FIG. 3: Dependence of the vertex reflection coefficient R on
the parameter β1 when time elapses (t = 12.50). For fixed
β2 = 2 and β3 = 3, R = 0 when β1 = 1.2.

the graph vertex. It is shown that for the case where the
nonlinearity coefficients satisfy the sum rule in Eq. (26),
the vertex boundary conditions in terms of weight conti-
nuity and Kirchhoff rules become equivalent to the trans-
parent BCs. Although the above study is focused on star
branched graph only, the approach we proposed can be
directly applied for wide class of graph topologies, such
as e.g., tree graph or H-graph, etc. The only restriction
for graph architecture is that it should have one incoming
and at least two outgoing semi-infinite bonds and arbi-
trary graph in between these bonds. The results obtained
in this paper have direct application in modeling reflec-
tionless (lossless) signal propagation in opto-electronic
networks, optical waveguides, tunable transport of BEC
in branched traps, etc.
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